JPS63137168A - Microwave plasma treatment apparatus - Google Patents

Microwave plasma treatment apparatus

Info

Publication number
JPS63137168A
JPS63137168A JP28306486A JP28306486A JPS63137168A JP S63137168 A JPS63137168 A JP S63137168A JP 28306486 A JP28306486 A JP 28306486A JP 28306486 A JP28306486 A JP 28306486A JP S63137168 A JPS63137168 A JP S63137168A
Authority
JP
Japan
Prior art keywords
microwave
processing apparatus
material gas
plasma
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28306486A
Other languages
Japanese (ja)
Other versions
JPH0521988B2 (en
Inventor
Kazuo Suzuki
和夫 鈴木
Atsushi Chiba
淳 千葉
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP28306486A priority Critical patent/JPS63137168A/en
Publication of JPS63137168A publication Critical patent/JPS63137168A/en
Publication of JPH0521988B2 publication Critical patent/JPH0521988B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To stably generate plasma without sticking a metallic material to a vacuum partition window, by arranging throttle plates in waveguides for guiding microwaves so as to prevent the diffusion of gases for the metallic material introduced into a reaction chamber toward the window. CONSTITUTION:Microwaves 2 generates by a microwave generator 1 are guided to a plasma generation chamber 12 through waveguides 10a-10c and low temp. plasma is generated. Throttle plates 13a-13c for regulating vacuum conductance are arranged in the waveguides 10a-10c and a vacuum partition window 9 is placed between the plate 13a and the microwave generator 1. The generated plasma is diffused in a reaction chamber 18 to excite and ionize gases for a metallic material introduced into the chamber 18 from a pipe 20 and a film is formed on a substrate 22 in the chamber 18.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波プラズマ処理装置に係り、特に金属
材料ガスを用いて金i膜を形成するのに好適なマイクロ
波プラズマ処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microwave plasma processing apparatus, and particularly to a microwave plasma processing apparatus suitable for forming a gold i film using a metal material gas.

〔従来の技術〕。[Conventional technology].

マイクロ波発生器から導波管によって導かれてくるマイ
クロ波を真空仕切り窓を通してプラズマ生成室に導入し
て電子サイクロトロン共鳴法により低温プラズマを生成
し、材料ガスを注入した反応室に前記低温プラズマを拡
散して材料ガスを励起、電離し、反応室内の試料に膜を
形成するマイクロ波プラズマ処理装置が特開昭56−1
55535号公報に記載されている。
Microwaves guided by a waveguide from a microwave generator are introduced into a plasma generation chamber through a vacuum partition window to generate low-temperature plasma by electron cyclotron resonance, and the low-temperature plasma is introduced into a reaction chamber into which material gas has been injected. A microwave plasma processing device that diffuses and excites and ionizes a material gas to form a film on a sample in a reaction chamber was developed in Japanese Patent Application Laid-Open No. 56-1.
It is described in Publication No. 55535.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこのようなマイクロ波プラズマ処理装置は、金
属膜を形成しようとして金属材料ガスを反応室へ注入す
ると、反応室へ注入した金属材料ガスがプラズマ生成室
側に拡散してマイクロ波導入部の真空仕切り窓に付着し
、該金属材料ガスの付着量がマイクロ波の表皮効果以上
の厚みに達するとマイクロ波がプラズマ生成室に導入さ
れなくなってプラズマが生成されなくなる問題があった
However, in such a microwave plasma processing apparatus, when metal material gas is injected into the reaction chamber in order to form a metal film, the metal material gas injected into the reaction chamber diffuses into the plasma generation chamber side, causing a vacuum in the microwave introduction section. When the metal material gas adheres to the partition window and the amount of the metal material gas adhered reaches a thickness that exceeds the skin effect of the microwave, there is a problem that the microwave is no longer introduced into the plasma generation chamber and no plasma is generated.

従って本発明の目的は、反応室に注入した金属材料ガス
が真空仕切り窓に付着するのを防止することにある。
Therefore, an object of the present invention is to prevent the metal material gas injected into the reaction chamber from adhering to the vacuum partition window.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこの目的を達成するために、プラズマ生成室に
マイクロ波を導いて電子サイクロトロン間にマイクロ波
導入用の真空仕切り窓を設けたことを特徴とする。
In order to achieve this object, the present invention is characterized in that a vacuum partition window for guiding microwaves into the plasma generation chamber and between the electron cyclotrons is provided for introducing the microwaves.

〔作用〕[Effect]

反応室に注入された金属材料ガスがプラズマ生成室に拡
散されても絞り板が障壁となってこの金属材料ガスが真
空仕切り窓まで侵入するのを妨げる。
Even if the metal material gas injected into the reaction chamber is diffused into the plasma generation chamber, the aperture plate acts as a barrier and prevents this metal material gas from penetrating to the vacuum partition window.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

マグネトロン1の発振により発生されたマイクロ波2は
、反射波吸収用アイソレータ3、入反射波電力モニタ用
のパワーモニタ4、自動整合装置5を備えた整合器6を
介して出力される。負荷側インピーダンスの変化は反射
波電力の増加としてパワーモニタ4により検出され、増
幅器7を介して自動整合装置5に帰還されて整合器6に
よるインピーダンス整合が行われ、更に入射波電力と設
定値の差を増幅器7を介してマイクロ波発振用マグネト
ロン電源8の出力を波回路に帰還してマグネトロン1の
発振力を制御することにより常に一定のマイクロ波電力
がプラズマ生成室へ伝送されるようにする。
The microwave 2 generated by the oscillation of the magnetron 1 is outputted via a matching device 6 including an isolator 3 for absorbing reflected waves, a power monitor 4 for monitoring the power of input reflected waves, and an automatic matching device 5. Changes in the load-side impedance are detected by the power monitor 4 as an increase in reflected wave power, which is fed back to the automatic matching device 5 via the amplifier 7, where impedance matching is performed by the matching device 6, and further between the incident wave power and the set value. The output of the magnetron power source 8 for microwave oscillation is fed back to the wave circuit via the amplifier 7 to control the oscillation power of the magnetron 1, so that a constant microwave power is always transmitted to the plasma generation chamber. .

以上のようにして出力されたマイクロ波2は真空仕切り
窓9を通して導波管10a内に導入され、コーナ用金属
メツシュ11での反射によって90度方向転換されて導
波管10b、10c内を伝播してプラズマ生成室12に
伝送される。導波管10a〜loc内には石英やセラミ
ックス等の誘電体る。
The microwave 2 output as described above is introduced into the waveguide 10a through the vacuum partition window 9, is reflected by the corner metal mesh 11, changes its direction by 90 degrees, and propagates inside the waveguides 10b and 10c. and transmitted to the plasma generation chamber 12. A dielectric material such as quartz or ceramics is inside the waveguides 10a to loc.

バルブ14を介して供給されるプラズマ生成用ガスはス
パッタ防止用放電管を兼ねたガス注入筒15からプラズ
マ生成室12内に注入され、磁界発生用!赫イイルエ6
により発生した磁界とマイクロ波2によって電子サイク
ロトロン共鳴を起こして低温プラズマを生成する。この
低温プラズマは予め排気17によって高真空にされた反
応室18内に拡散され、パルプ19を介して供給されガ
ス注入管20によって該反応室18内に注入された金属
材料ガスと衝突してこれを励起、電離し、該反応室18
内の試料ホルダ21に保持された試料22の表面に金属
薄膜を生成する。
The plasma generation gas supplied through the valve 14 is injected into the plasma generation chamber 12 from the gas injection tube 15 which also serves as a discharge tube for preventing spatter, and is used to generate a magnetic field! Hei Iile 6
Electron cyclotron resonance is caused by the magnetic field generated by the microwave 2 and the microwave 2, and low-temperature plasma is generated. This low-temperature plasma is diffused into the reaction chamber 18 which has been made into a high vacuum by the exhaust 17, and collides with the metal material gas supplied through the pulp 19 and injected into the reaction chamber 18 through the gas injection pipe 20. is excited and ionized, and the reaction chamber 18
A thin metal film is generated on the surface of the sample 22 held in the sample holder 21 inside.

補助排気ポンプ23は導波管10a  (10b。The auxiliary exhaust pump 23 has a waveguide 10a (10b).

10c)内に拡散されたきた金属材料ガスを補助排気速
度調整パルプ24を介して吸い込んでバルブ25を介し
て排気する。パージ用ガス注入管26はパルプ27を介
して供給されたプラズマ生成用ガスを真空仕切り窓9の
内側へパージ用として注入する。
10c) The metal material gas diffused inside is sucked in through the auxiliary exhaust speed adjusting pulp 24 and exhausted through the valve 25. The purge gas injection pipe 26 injects the plasma generation gas supplied through the pulp 27 into the vacuum partition window 9 for purging.

は拡散しにくく、拡散されても補助排気ポンプ23真空
仕切り窓9の内側へはガス注入管26によってプラズマ
生成用ガスがパージ用として注入されているので、核部
の圧力が高く、従って金属材料ガスが真空仕切り窓9に
達する機会は更に低減される。 ところで、コンダクタ
ンス絞り手反L 3 a〜13cを金属で構成した場合
には、導波管1゜a〜lOcは負荷インピーダンス一定
の導波管として一定のマイクロ波電力をプラズマ生成室
12へ伝送するが、誘電体で慣成した場合には金属材料
ガスが付着して負荷インピーダンスが変化する。
is difficult to diffuse, and even if it is diffused, the plasma generation gas is injected into the inside of the vacuum partition window 9 of the auxiliary exhaust pump 23 for purging purposes by the gas injection pipe 26, so the pressure at the core is high, and therefore the metal material The chances of gas reaching the vacuum partition window 9 are further reduced. By the way, when the conductance apertures L3a to 13c are made of metal, the waveguides 1a to lOc transmit a constant microwave power to the plasma generation chamber 12 as waveguides with a constant load impedance. However, if it is made of a dielectric material, metal material gas will adhere and the load impedance will change.

しかしこの場合の負荷インピーダンスの変化は、その反
射波電力をパワーモニタ4で積出して整合器6によって
変化分を補償しマイクロ波伝送系の牟反13cを、プラ
ズマによるスパウタ低減のために、石英やセラミック等
の誘電体とした場合には金属材料ガスが該コンダクタン
ス絞り板13cに付着してインピーダンスが変化する。
However, in this case, the reflected wave power is outputted by the power monitor 4 and the change in load impedance is compensated for by the matching box 6. When a dielectric material such as ceramic is used, metal material gas adheres to the conductance aperture plate 13c, changing the impedance.

しかしこのインピーダンスの変化は、前述のようにマイ
クロ波反射波電力の増加としてパワーモニタ4によって
検出され、整合器6によってインピーダンス整合される
ので一定のマイクロ波電力をプラズマ生成室12へ伝送
することができる。
However, as described above, this change in impedance is detected by the power monitor 4 as an increase in microwave reflected wave power, and the impedance is matched by the matching box 6, so that a constant microwave power can be transmitted to the plasma generation chamber 12. can.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、真空仕切り窓に向って拡散され
る金属材料ガスを絞り仮によって妨げるようにしたので
、マイクロ波を導入する真空仕切り窓に金属材料ガスが
付着するのを防止することができ、従って金属材料ガス
を用いたマイクロ波プラズマ処理装置においてプラズマ
を安定して生成することができる。
As described above, the present invention prevents the metal material gas from being diffused toward the vacuum partition window by restricting it, thereby preventing the metal material gas from adhering to the vacuum partition window through which microwaves are introduced. Therefore, plasma can be stably generated in a microwave plasma processing apparatus using metal material gas.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示すマイクロ波プラズマ処理装
置の縦断側面図である。
The figure is a longitudinal sectional side view of a microwave plasma processing apparatus showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、マイクロ波発生器で発生したマイクロ波を導波管を
介してプラズマ生成室に導いて電子サイクロトロン共鳴
法により低温プラズマを生成し、材料ガスを注入した反
応室に前記低温プラズマを拡散して該材料ガスを励起、
電離し、反応室内の試料に膜を形成するマイクロ波プラ
ズマ処理装置において、前記材料ガスに金属材料ガスを
用い、前記導波管に真空コンダクタンス調整用絞り板を
設け、この絞り板と前記マイクロ波発生器の間にマイク
ロ波導入用の真空仕切り窓を設けたことを特徴とするマ
イクロ波プラズマ処理装置。 2、特許請求の範囲第1項において、前記絞り板はマイ
クロ波用インピーダンス窓を兼ねることを特徴とするマ
イクロ波プラズマ処理装置。 3、特許請求の範囲第1項において、前記絞り板と真空
仕切り窓の間の導波管内を排気する補助排気装置を設け
たことを特徴とするマイクロ波プラズマ処理装置。 4、特許請求の範囲第1項において、前記真空仕切り窓
の内側近傍にパージ用ガスを注入する手段を設けたこと
を特徴とするマイクロ波プラズマ処理装置。
[Claims] 1. Microwaves generated by a microwave generator are guided to a plasma generation chamber through a waveguide to generate low-temperature plasma by electron cyclotron resonance, and the Diffusing low-temperature plasma to excite the material gas,
In a microwave plasma processing apparatus that ionizes and forms a film on a sample in a reaction chamber, a metal material gas is used as the material gas, a vacuum conductance adjustment aperture plate is provided in the waveguide, and the aperture plate and the microwave A microwave plasma processing apparatus characterized in that a vacuum partition window for introducing microwaves is provided between a generator. 2. The microwave plasma processing apparatus according to claim 1, wherein the aperture plate also serves as a microwave impedance window. 3. The microwave plasma processing apparatus according to claim 1, further comprising an auxiliary exhaust device for evacuating the inside of the waveguide between the aperture plate and the vacuum partition window. 4. The microwave plasma processing apparatus according to claim 1, further comprising means for injecting a purge gas near the inside of the vacuum partition window.
JP28306486A 1986-11-29 1986-11-29 Microwave plasma treatment apparatus Granted JPS63137168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28306486A JPS63137168A (en) 1986-11-29 1986-11-29 Microwave plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28306486A JPS63137168A (en) 1986-11-29 1986-11-29 Microwave plasma treatment apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13394890A Division JPH0317273A (en) 1990-05-25 1990-05-25 Microwave plasma treating device

Publications (2)

Publication Number Publication Date
JPS63137168A true JPS63137168A (en) 1988-06-09
JPH0521988B2 JPH0521988B2 (en) 1993-03-26

Family

ID=17660735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28306486A Granted JPS63137168A (en) 1986-11-29 1986-11-29 Microwave plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPS63137168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290760A (en) * 1988-05-19 1989-11-22 Nippon Telegr & Teleph Corp <Ntt> Device for forming thin film
JPH0379421U (en) * 1989-12-01 1991-08-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290760A (en) * 1988-05-19 1989-11-22 Nippon Telegr & Teleph Corp <Ntt> Device for forming thin film
JPH0379421U (en) * 1989-12-01 1991-08-13

Also Published As

Publication number Publication date
JPH0521988B2 (en) 1993-03-26

Similar Documents

Publication Publication Date Title
KR940000384B1 (en) Treating apparatus of plasma
JP3288490B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
EP0300447A2 (en) Method and apparatus for treating material by using plasma
KR850000901A (en) Microwave plasma treatment method and apparatus
JPH11335868A (en) Surface treatment and apparatus therefor
JPH05217535A (en) Particle source, especially particle source for reactive ion etching method and plasma cvd method
KR880011894A (en) Downstream microwave plasma processing device with improved coupling structure between microwave and plasma
JPH07263353A (en) Device and method for plasma treatment
JP2003142457A (en) Plasma treatment apparatus
JPS63137168A (en) Microwave plasma treatment apparatus
JP2980856B2 (en) Plasma processing equipment
JP3647592B2 (en) Plasma source, ion source using the same, and plasma processing apparatus
US5272360A (en) Thin film transistor having enhance stability in electrical characteristics
JPH03261062A (en) Plasma trace element mass spectrometer
JPH0317273A (en) Microwave plasma treating device
JP2808888B2 (en) Microwave plasma device
JP3266076B2 (en) Microwave plasma processing apparatus and counter electrode used for its implementation
JPH02149339A (en) Apparatus for microwave plasma treatment
JPH08236296A (en) Plasma device
JP2972507B2 (en) Microwave plasma processing equipment
JP2001118698A (en) Method of generating surface wave excitation plasma and plasma generating apparatus
JP2544936B2 (en) Plasma equipment
JP2836329B2 (en) Plasma apparatus and plasma processing method
JP2515885B2 (en) Plasma processing device
JP4052735B2 (en) Plasma processing equipment