JPS63136706A - Surface acoustic wave transducer - Google Patents

Surface acoustic wave transducer

Info

Publication number
JPS63136706A
JPS63136706A JP28196286A JP28196286A JPS63136706A JP S63136706 A JPS63136706 A JP S63136706A JP 28196286 A JP28196286 A JP 28196286A JP 28196286 A JP28196286 A JP 28196286A JP S63136706 A JPS63136706 A JP S63136706A
Authority
JP
Japan
Prior art keywords
electrode
acoustic reflection
transducer
area
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28196286A
Other languages
Japanese (ja)
Inventor
Koichi Kawabata
広一 川端
Riichi Kodama
児玉 利一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28196286A priority Critical patent/JPS63136706A/en
Publication of JPS63136706A publication Critical patent/JPS63136706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To decrease the effect of the fluctuation of an external load by setting the area of an electrode finger part causing the acoustic reflection within a range of a specific value of the area of an electrode finger part in the electrode cross region of a transducer so as to make a radiation conductance of a transducer in the pass band nearly constant. CONSTITUTION:The quantity of the acoustic reflection of the titled transducer depends on the ratio of the total area SE (=SE1+SE2) of the electrode region between two electrode fingers connected together to the total area SA (=SA1+SA2) of the electrode region between two electrode fingers connected together in the former cross region, and in this embodiment, the ratio of decided in the range of 0.6 <= SA/SE <= 0.9. Thus, the distribution of the weighting of the acoustic reflection is in a form of roll-off. Since the weighting of the acoustic reflection is applied by the rate of the electrode finger part causing the acoustic reflection really in existing in the direction of the cross width, the value A is selected to the maximum electrode cross width. The electroacoustic conversion loss of the transducer designed as above depands oN the degree of the cancellation between the electric reflection and the acoustic reflection.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は弾性表面波装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a surface acoustic wave device.

(従来の技術) 圧電性基板上にインターディジタル電極を形成して成る
弾性表面波トランスジューサは、テレビジョン受像機の
中間周波フィルタ等に実用化されている。
(Prior Art) Surface acoustic wave transducers formed by forming interdigital electrodes on a piezoelectric substrate have been put to practical use in intermediate frequency filters of television receivers and the like.

このようなインターディジタル電極を用いて構成された
弾性表面波装置においては、櫛歯状電極による弾性表面
波の反射に起因するスプリアス(以下反射スプリアスと
いう)が常に問題とされる。この反射スプリアスは実際
にフィルタや遅延線を構成した場合にトリプル・トラン
ジット・エコー(TTE)の形で現われ、特性を著しく
劣化させる原因となっている。従って従来からこの反射
スプリアスを減少させるための研究がなされている。
In surface acoustic wave devices configured using such interdigital electrodes, spurious (hereinafter referred to as reflected spurious) caused by reflection of surface acoustic waves by the comb-like electrodes is always a problem. This reflected spurious appears in the form of triple transit echo (TTE) when a filter or delay line is actually constructed, and causes a significant deterioration of the characteristics. Therefore, research has been conducted to reduce this reflected spurious.

反射スプリアスの要因としては、櫛歯状電極の電極′部
とこれら電極部間の間隙との音響インピーダンスの鼻に
より生ずる反射成分(以下音響反射という)と、櫛歯状
電極の電気的な再励起により生ずる反射成分(以下電気
反射という)の2つがあることが知られている。そこで
この2つの反射成分に着目し、それらを互いに逆相にし
て相殺し、反射スプリアスを取り除くようにした第2図
(a)に示すような構成の弾性表面波トランスジューサ
が提案されている(特開昭60−145716号)。
The causes of reflected spurious are the reflection component (hereinafter referred to as acoustic reflection) caused by the acoustic impedance between the electrode part of the comb-shaped electrode and the gap between these electrode parts, and the electrical re-excitation of the comb-shaped electrode. It is known that there are two types of reflected components (hereinafter referred to as electrical reflections) caused by this. Therefore, focusing on these two reflected components, a surface acoustic wave transducer with a configuration as shown in FIG. (No. 145716, 1983).

この弾性表面波トランスジー〜すは、同図のよより構成
されている。
This surface acoustic wave transformer is constructed as shown in the figure.

そして、電極交差幅が一様であるとき音響的反射の重み
付は量は第3図(a)に示すように伝搬方向に一様であ
り、音響的反射を生じさせる部分がトランスジューサの
電極交差領域全面に分布している。
When the electrode crossing width is uniform, the weighting of the acoustic reflection is uniform in the propagation direction as shown in Figure 3(a), and the portion that causes acoustic reflection is the transducer's electrode crossing. Distributed throughout the area.

また、このような電極交差幅及び音響的反射の重み付は
量が一様であるトランスジューサの放射コンダクタンス
の周波数特性は第4図(a)に示す如く双峰性を示し、
通過帯域内で大きく変化する。
Furthermore, the frequency characteristics of the radiation conductance of the transducer, in which the weighting of the electrode crossing width and the acoustic reflection are uniform, exhibit bimodal characteristics as shown in FIG. 4(a).
It varies greatly within the passband.

一方、このような音響的反射の重み付は量が伝搬方向に
一様である弾性表面波トランスジューサにおいて、反射
スプリアスをさらに改善するために第2図(b)に示す
ような音響的反射の重み付は量を電極交差幅関数の自己
コンポIJ、−シッン関数、すなわち第3図中)に示す
如く三角形状の分布で与えるようにした弾性表面波トラ
ンスジューサも提案されている(特開昭60−1409
17号)。
On the other hand, in a surface acoustic wave transducer in which the amount of weighting of acoustic reflections is uniform in the propagation direction, the weighting of acoustic reflections as shown in Fig. 2(b) is applied in order to further improve reflection spurious. A surface acoustic wave transducer has also been proposed in which the quantity is given in a triangular distribution as shown in the self-composite IJ, -Shin function of the electrode crossing width function, i.e., in Fig. 1409
No. 17).

また、この電極交差幅が一様のときの放射フンダクタン
スの周波数特性は第4図(e)に示す如く単峰性を示し
、同様に通過帯域内で大きく変化する。
Furthermore, when the electrode crossing width is uniform, the frequency characteristic of the radiation fundance exhibits a single peak as shown in FIG. 4(e), and similarly changes greatly within the pass band.

(発明が解決しようとする問題点) このように、一様電極交差幅のトランスジーーサにおい
て音響的反射の重み付は量が伝搬方向に一様または電極
交差幅関数の自己コン=tr IJエージ■ン関数で与
えられる場合、トランスジユーサの放射コンダクタンス
の周波数特性はそれぞれ第4図(a)および(e)に示
される如く通過帯域内で大きく変化し、外部負荷の変動
により電気−音響変換損失の周波数特性、従ってフィル
タを構成した場合は通過特性が影響を受けるという欠点
がある。
(Problem to be Solved by the Invention) In this way, in a transducer with a uniform electrode crossing width, the weighting of acoustic reflections is uniform in the propagation direction or the self-constituent of the electrode crossing width function = tr IJ age. When given by a function of There is a drawback that the frequency characteristics of the loss and therefore the pass characteristics are affected when a filter is configured.

また、音響的反射の重み付は量を一定才たは自己コンポ
リニージョン関数で定めたときのトランスジューサの電
気−音響変換損失は電極指の膜厚等の制御lこより電極
指での音響的な反射率を変えるときで行われるが、膜厚
が厚くなると電極幅等の関係からトランスジューサの製
作が難しくなるという欠点もある。
In addition, when the weighting of acoustic reflection is determined by a constant value or a self-composite function, the electro-acoustic conversion loss of the transducer is determined by controlling the film thickness of the electrode fingers, etc. This is done when changing the reflectance, but it also has the disadvantage that as the film thickness increases, it becomes difficult to manufacture the transducer due to the electrode width, etc.

本発明は、音響的反射の重み付は量を従来のものと変え
ることにより、放射コンダクタンスが通過帯域内でほぼ
一定の値となり、外部負荷の変動の影響を小さい弾性表
面波トランスジューサを提供することを目的とするもの
である。
The present invention provides a surface acoustic wave transducer in which the radiation conductance has a substantially constant value within the passband and is less affected by changes in external load by changing the amount of weighting of acoustic reflections from the conventional one. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は上記問題点を解決するために、圧電基板上に第
1および第2の櫛歯状電極からなるインターディジタル
電極を形成してなる弾性表面波トランスジューサであっ
て前記第2の櫛歯状電極は前記第1の櫛歯状電極の隣接
する電極指間に3本の電極指が介在するよう構成されて
いるとともにこの3本の電極指のうちの2本の一部が互
いに連結され −             でおり、
かつこの連結される2本の電極指間の電極交差領域の会
計の面積をSp+とじたとき、この電極交差領域内の前
記連結領域の合計の面積SAが0.6≦S人/SB≦0
.9の範囲にあることを特徴とする弾性表面波トランス
ジューサを提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a surface acoustic wave transducer in which interdigital electrodes consisting of first and second comb-shaped electrodes are formed on a piezoelectric substrate. The second comb-shaped electrode is configured such that three electrode fingers are interposed between adjacent electrode fingers of the first comb-shaped electrode, and among these three electrode fingers, Parts of the two are connected to each other,
When the total area of the electrode crossing area between the two connected electrode fingers is calculated as Sp+, the total area SA of the connecting areas within this electrode crossing area is 0.6≦S people/SB≦0.
.. Provided is a surface acoustic wave transducer characterized in that the surface acoustic wave transducer is in the range of 9.

(作用) このような本発明の構成によると、その音響的反射の重
み付は量は、従来の弾性表面波伝搬方向に一様にした場
合と三角形状とした場合との中間的な値となり、その結
果放射コンダクタンスの周波数特性も従来の双峰性と単
峰性の中間的な特性すなわち通過帯域内でほぼ一定の特
性となる。
(Function) According to the configuration of the present invention, the amount of weighting of the acoustic reflection becomes an intermediate value between the conventional case where the acoustic reflection is weighted uniformly in the propagation direction of the surface acoustic wave and the case where it is weighted in a triangular shape. As a result, the frequency characteristic of the radiation conductance also becomes an intermediate characteristic between the conventional bimodal and unimodal characteristics, that is, a nearly constant characteristic within the pass band.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の弾性表面波トランスジーーサの一実
施例を示すものである。図においてインターディジタル
電極を構成する第1の櫛歯状電極11は幅λ/8の電極
指を周期λで配列したものである。また、第2の櫛歯状
電極12は上記第1の櫛歯状電極の隣接する2本の電極
指間に基本的に幅λ/8の電極指を3本それぞれλ/8
の間隔を置いて配列したものであるが、そのうち2本の
電極指がその一部において互いに連結されている。
FIG. 1 shows an embodiment of the surface acoustic wave transducer of the present invention. In the figure, a first comb-like electrode 11 constituting an interdigital electrode has electrode fingers each having a width of λ/8 and arranged at a period of λ. The second comb-shaped electrode 12 basically has three electrode fingers each having a width of λ/8 between two adjacent electrode fingers of the first comb-shaped electrode.
The electrode fingers are arranged at intervals of , but two of the electrode fingers are connected to each other at a part of the electrode fingers.

従って、この連結部においては幅3λ/8の電極指とな
っている。
Therefore, in this connecting portion, the electrode fingers have a width of 3λ/8.

この装置の音響的反射の量は、上記連結される2本の電
極指間の電極交差領域の合計の面積SE(=8Bm+S
B、)と、この交差領域内で連結される2本の電極指の
連結領域の合計の面積S A (=S A、 +84)
との比で決定され、本発明ではこれが0.6≦SA/3
、E≦0.9の範囲で決定されている。従って、その音
響的反射の重み付は量の分布は第3図(C)に示すよう
にロールオフ状となっている。
The amount of acoustic reflection of this device is the total area SE (=8Bm+S
B, ) and the total area of the connection area of the two electrode fingers connected within this intersection area S A (=S A, +84)
In the present invention, this is determined by the ratio of 0.6≦SA/3.
, E≦0.9. Therefore, the weighting of the acoustic reflection has a roll-off distribution as shown in FIG. 3(C).

(作用) そこでこの第3図(C)のような正弦波的なロールオフ
状の重み付は量を考える。インターディジタル電極の電
極指1ま、t=−aからt = aの範囲にあり、ロー
ルオフ率をαとすると重み付は量Ar(t)は以下のよ
うになる。
(Function) Therefore, consider the amount of weighting in a sinusoidal roll-off shape as shown in FIG. 3(C). The electrode finger 1 of the interdigital electrode is in the range from t=-a to t=a, and when the roll-off rate is α, the weighting amount Ar(t) is as follows.

ここで、音響的反射の重み付けは交差幅方向に存在する
正味として音響的反射を生じさせる電極指部分の割合い
で行われるので、Aは最大電極交差幅に設定される。電
極交差部分の面積871として離散的に与えられる交差
幅の分布の包絡線で囲まれる部分の面積、音響的反射を
生じさせる部分(連結領域)の面積SRとして重み付は
量Ar(t)の面積を考えると、 となる。SAが0.7SB のときの放射コンダクタン
スでの変化が小さくなっていることがわかる。
Here, since the acoustic reflection is weighted by the ratio of the electrode finger portions that are present in the crossing width direction and cause a net acoustic reflection, A is set to the maximum electrode crossing width. The area of the part surrounded by the envelope of the intersection width distribution discretely given as the area 871 of the electrode intersection part, and the area SR of the part (connection area) that causes acoustic reflection, are weighted by the amount Ar(t). Considering the area, it becomes . It can be seen that the change in radiation conductance is small when SA is 0.7SB.

また、このようなトランスジューサの電気−音響変換損
失は電気的な反射と音響的な反射の打ち消し合いの度合
いにより定まる。電極交差幅が一様のトランスジューサ
の電気的反射の時間軸特性はほぼ三角形状であり、その
周波数特性は中心周波数を中心にして(−)露の形であ
る。
Further, the electro-acoustic conversion loss of such a transducer is determined by the degree of cancellation between electrical reflection and acoustic reflection. The time-axis characteristic of the electrical reflection of a transducer with a uniform electrode crossing width is approximately triangular, and its frequency characteristic is (-) dew-shaped around the center frequency.

一方、音響的反射の周波数特性はAr(t)でaを2a
としてそのフーリエ変換 で与えられる。中心周波数での音響的な反射の大きさは
0式でw=Qの場合として得られる。すなわち、中心周
波数での音響的な反射の大きさは、音響的反射の重み付
は量の積分値、従って音響的反射を生じさせる部分の面
積8Aにより定まる。これから、中心周波数lこおける
変換損失は8人の増大とともに向上することがわかる。
On the other hand, the frequency characteristic of acoustic reflection is Ar(t) where a is 2a
is given by its Fourier transform as . The magnitude of acoustic reflection at the center frequency is obtained by equation 0 when w=Q. That is, the magnitude of the acoustic reflection at the center frequency is determined by the integral value of the weighting of the acoustic reflection, and therefore by the area 8A of the portion that causes the acoustic reflection. From this, it can be seen that the conversion loss at the center frequency l increases as the number of people increases.

しかし、8人を大きくしてSKと等しくすると、従来の
音響的反射が一定のものとなり、第4図(a)に示され
る如く反射スプリアスの影響が現れ、SAが0.98に
のときにはその影響が目立たない。
However, when 8 people are increased to be equal to SK, the conventional acoustic reflection becomes constant and the influence of reflected spurious appears as shown in Figure 4(a), and when SA is 0.98, the effect of reflected spurious appears. The effect is not noticeable.

また、SAがo、ssEから0.68B  の範囲のと
き、フィルタを構成したときの通過特性は三角形状のと
きとほぼ同一であり、音響的反射の重み付は量を変化さ
せることの効果があまりない。
Furthermore, when SA is in the range from o, ssE to 0.68B, the pass characteristics when the filter is configured are almost the same as when the filter is triangular, and the effect of changing the amount of acoustic reflection weighting is Not so much.

従って、実用的にはSAは0.68Bから0.98にの
範囲に設定される。第4図Φ)および(d)はそれぞれ
8A=0.98n 、 5A=0.68Bの場合の放射
コンダクタンスの周波数特性である。また、第4図(a
′)〜(e′)は(a)〜(e)の特性を有するトラン
スジューサを入・出力トランスジューサとして構成した
フィルタの通過特性である。
Therefore, SA is practically set in the range of 0.68B to 0.98. Fig. 4 Φ) and (d) show the frequency characteristics of the radiation conductance when 8A=0.98n and 5A=0.68B, respectively. In addition, Fig. 4 (a
') to (e') are the pass characteristics of a filter configured with transducers having the characteristics of (a) to (e) as input/output transducers.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は、弾性表面波トランスジューサに
おいて音響的反射を生じさせる電極指部分の面積8人を
トランスジューサの電極交差領域の電極指部分の面積S
Rの0.6から0.9倍の範囲に設定することにより、
通過帯域内でのトランスジーーサの放射コンダクタンス
をほぼ一定にし、外部負荷の変動の影響を小さくする。
As described above, in the present invention, the area of the electrode finger portion that causes acoustic reflection in a surface acoustic wave transducer is reduced by the area S of the electrode finger portion of the electrode crossing region of the transducer.
By setting it in the range of 0.6 to 0.9 times R,
The radiation conductance of the transducer within the passband is kept almost constant to reduce the influence of external load fluctuations.

あるいは、中心周波数における電気−音響変換損失、フ
ィルタを構成した場合は挿入損失を向上させることが出
来る。
Alternatively, if a filter is configured, the electro-acoustic conversion loss at the center frequency can be improved, and the insertion loss can be improved.

また、トランスジューサの音響的反射の大きさが同一で
あればほぼ同一の電気−音響変換損失が得られ、中心周
波数での音響的反射の大きさは音響的反射を生じさせる
部分の面積Snと電極での音響的な反射率により定まる
Furthermore, if the magnitude of the acoustic reflection of the transducer is the same, almost the same electro-acoustic conversion loss can be obtained, and the magnitude of the acoustic reflection at the center frequency is determined by the area Sn of the part where acoustic reflection occurs and the electrode It is determined by the acoustic reflectance at

従来、SEは電極対数や最大電極交差幅、交差幅関数等
により定まり、電極膜厚を変えることにより音響的反射
の大きさを制御していた。本発明では、電極膜厚が一定
でもSxの面積で音響的反射の大きさを制御出来、電極
対数等を変えても同一の音響的反射が得られるなど、設
計の自由度が増す利点がある。
Conventionally, SE was determined by the number of electrode pairs, maximum electrode crossing width, crossing width function, etc., and the magnitude of acoustic reflection was controlled by changing the electrode film thickness. The present invention has the advantage of increased design freedom, such as being able to control the magnitude of acoustic reflection by the area of Sx even if the electrode film thickness is constant, and obtaining the same acoustic reflection even if the number of electrode pairs etc. is changed. .

第5図では、トランスジューサの存在する範囲を変えた
とき中心周波数で同一の音響的反射(斜線部の面積は等
しい)となる音響的反射の重み付は量の大きさの伝搬方
向の分布の様子を示す。
In Figure 5, the weighting of acoustic reflections that result in the same acoustic reflection at the center frequency (the area of the shaded area is the same) when the range in which the transducer exists is changed is the distribution of the magnitude of the quantity in the propagation direction. shows.

なお、本発明は音響的反射の重み付は量の分布が第3図
(C)のロールオフ状のものに限定されるものではなく
、また、上記の実施例では全て電極交差幅が一様のもの
について述べたが、交差幅が伝搬方向に沿って変化する
場合にも適用することが出来る。
Note that the weighting of acoustic reflections in the present invention is not limited to the roll-off shape shown in FIG. Although this has been described above, it can also be applied to cases where the crossing width changes along the propagation direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は従来の弾
性表面波装置を示す図、第3図は音響反射の重み付は量
の分布の様子を示す図、第4図は弾性表面波装置の放射
フンダクタンスの周波数特性と、それを入力・出力トラ
ンスジューサとして構成したフィルタの通過特性図、第
5図はロールオフ状の音響的反射の重み付は量の大きさ
のトランスジューサ内の分布の様子を示す。 11.12・・・櫛歯状電極、SE、 、SE、・・・
電極交差領域面積、SA、、SA2・・・連結領域面積
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a conventional surface acoustic wave device, FIG. 3 is a diagram showing the distribution of the amount of weighting of acoustic reflection, and FIG. Figure 5 shows the frequency characteristics of the radiation conductance of a surface acoustic wave device and the passage characteristics of a filter configured as an input/output transducer. The distribution within is shown. 11.12...Comb-shaped electrode, SE, ,SE,...
Electrode crossing area area, SA,, SA2... connection area area.

Claims (1)

【特許請求の範囲】 圧電基板上に第1および第2の櫛歯状電極からなるイン
ターディジタル電極を形成してなる弾性表面波トランス
ジューサであって、前記第2の櫛歯状電極は前記第1の
櫛歯状電極の隣接する電極指間に3本の電極指が介在す
るよう構成されているとともに、この3本の電極指のう
ちの2本の一部が互いに連結され ており、かつこの連結される2本の電極指間の電極交差
領域の合計の面積をSEとしたとき、この電極交差領域
内の前記連結領域の合計の面積SAが0.6≦SA/S
E≦0.9の範囲にあることを特徴とする弾性表面波ト
ランスジューサ。
[Scope of Claim] A surface acoustic wave transducer comprising an interdigital electrode consisting of first and second comb-shaped electrodes formed on a piezoelectric substrate, wherein the second comb-shaped electrode is connected to the first comb-shaped electrode. The comb-shaped electrode is configured such that three electrode fingers are interposed between adjacent electrode fingers, and two of these three electrode fingers are partially connected to each other. When the total area of the electrode crossing area between two connected electrode fingers is SE, the total area SA of the connecting areas within this electrode crossing area is 0.6≦SA/S
A surface acoustic wave transducer characterized in that E≦0.9.
JP28196286A 1986-11-28 1986-11-28 Surface acoustic wave transducer Pending JPS63136706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28196286A JPS63136706A (en) 1986-11-28 1986-11-28 Surface acoustic wave transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28196286A JPS63136706A (en) 1986-11-28 1986-11-28 Surface acoustic wave transducer

Publications (1)

Publication Number Publication Date
JPS63136706A true JPS63136706A (en) 1988-06-08

Family

ID=17646325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28196286A Pending JPS63136706A (en) 1986-11-28 1986-11-28 Surface acoustic wave transducer

Country Status (1)

Country Link
JP (1) JPS63136706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073763A (en) * 1990-11-02 1991-12-17 R.F. Monolithics, Inc. Group single-phase unidirectional transducers with 3/8λand 5/8λ sampling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073763A (en) * 1990-11-02 1991-12-17 R.F. Monolithics, Inc. Group single-phase unidirectional transducers with 3/8λand 5/8λ sampling
JPH05267974A (en) * 1990-11-02 1993-10-15 Rf Monolithics Inc Single-phase unidirectional transducer for group based on 3/8lambda and 5/8lambda sampling

Similar Documents

Publication Publication Date Title
US4023124A (en) Acoustic surface wave devices
JPH11500593A (en) Weighted taper SPUDT-SAW device
US7023300B2 (en) Surface wave devices with low passband ripple
TW437166B (en) Surface acoustic wave filter
US4342011A (en) Surface acoustic wave device
JPS60169210A (en) Surface wave device
JP3414373B2 (en) Surface acoustic wave device
US4144508A (en) Surface acoustic wave filters
US5818310A (en) Series-block and line-width weighted saw filter device
US4333065A (en) Low reflectivity apodized surface acoustic transducer with means to prevent wavefront distortion
US4205285A (en) Acoustic surface wave device
US3801937A (en) Acoustic pulse compression weighting filter transducer
JPS63136706A (en) Surface acoustic wave transducer
JPH07226643A (en) Elastic wave element
JPS5844808A (en) Surface acoustic wave device
JP2685537B2 (en) Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
US5977846A (en) Unidirectional surface acoustic wave filter
JPS5937723A (en) Surface acoustic wave resonator type filter device
JPH03132208A (en) Surface elastic wave element
US4965480A (en) Surface acoustic wave convolver with two output electrodes of different lengths
JPS6134755Y2 (en)
JP2619364B2 (en) Surface acoustic wave filter
JPS61202511A (en) Surface acoustic wave filter
JP2000223991A (en) Surface acoustic wave filter
JPH02170711A (en) Surface acoustic wave device