JPH07226643A - Elastic wave element - Google Patents

Elastic wave element

Info

Publication number
JPH07226643A
JPH07226643A JP1682794A JP1682794A JPH07226643A JP H07226643 A JPH07226643 A JP H07226643A JP 1682794 A JP1682794 A JP 1682794A JP 1682794 A JP1682794 A JP 1682794A JP H07226643 A JPH07226643 A JP H07226643A
Authority
JP
Japan
Prior art keywords
electrode
elastic wave
electrode finger
interdigital
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1682794A
Other languages
Japanese (ja)
Other versions
JP3305475B2 (en
Inventor
Koichiro Misu
幸一郎 三須
Tomonori Kimura
友則 木村
Tsutomu Nagatsuka
勉 永塚
Shiyuuzou Wakou
修三 和高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01682794A priority Critical patent/JP3305475B2/en
Publication of JPH07226643A publication Critical patent/JPH07226643A/en
Application granted granted Critical
Publication of JP3305475B2 publication Critical patent/JP3305475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To prevent the crossing part of the same center frequency from continuing to provide required characteristics by providing an area where the ratio of an electrode finger width and the gap length of adjacent electrode fingers is changed in a part where the electrode fingers with different potentials of an interdigital electrode cross. CONSTITUTION:The electrode finger arraying gap of an input side interdigital electrode 1a is gradually made small towards an output side electrode 1b and the electrode 1b is turned to be in a shape symmetrical to the la as well. In the area 11 where the gap is small, the ratio of the width and the gap of the respective electrode fingers 2 is changed, the crossing part provided with the same constitution is eliminated in the entire crossing parts and the center frequencies of the respective crossing parts constituted of the adjacent electrode fingers 2 are made different. Since the propagation speeds of elastic waves in the electrode finger 2 and a gap part are different, by changing the ratio of the electrode finger width and the gap length, delay time between the electrode fingers 2 is changed and the center frequency is changed. Thus, by attaining such constitution, the delay time in respective crossing points is effectively made small and the degradation of the characteristics due to continuance in the crossing parts of the same delay time is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、弾性波を利用したフ
ィルタ、遅延線、分散型遅延線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter, a delay line and a dispersion type delay line using elastic waves.

【0002】[0002]

【従来の技術】弾性波素子は、圧電体材料の表面で弾性
波を発生することによって、アナログ信号のフィルタリ
ングや遅延等を行うものである。
2. Description of the Related Art An elastic wave element is one that filters an analog signal or delays it by generating an elastic wave on the surface of a piezoelectric material.

【0003】図36には、実開昭60−66118号公
報で開示された従来の広帯域型弾性波素子が示されてい
る。同図において、圧電体材料の上面には、一対のすだ
れ状(ないし、くし型)電極が互いに逆向きで形成さ
れ、すなわち、入力電極としてのすだれ状電極1a及び
出力電極としてのすだれ状電極1bが形成されている。
各すだれ状電極は、互いに所定間隔をもって平行に形成
された長方形の複数の電極指2と、それらの電極指2の
基端に共通接続された一対の取出し電極3と、で構成さ
れている。図示のように、一対の取り出し電極の内の一
方は電気端子4に接続され、他方は接地端子5に接続さ
れている。
FIG. 36 shows a conventional wide band type acoustic wave device disclosed in Japanese Utility Model Publication No. 60-66118. In the figure, a pair of interdigital (or comb-shaped) electrodes are formed on the upper surface of the piezoelectric material in opposite directions, that is, the interdigital electrode 1a as an input electrode and the interdigital electrode 1b as an output electrode. Are formed.
Each interdigital electrode is composed of a plurality of rectangular electrode fingers 2 formed in parallel with each other at a predetermined interval, and a pair of extraction electrodes 3 commonly connected to the base ends of the electrode fingers 2. As shown, one of the pair of extraction electrodes is connected to the electric terminal 4, and the other is connected to the ground terminal 5.

【0004】かかる弾性波素子において、例えば左側の
入力側すだれ状電極1aで弾性波が発生され、その弾性
波は右側の出力側すだれ状電極1bで受波される。具体
的に説明すると、電気端子4に印加された電気信号によ
り、電気端子4に接続された電極指2と接地端子5に接
続された電極指2とが交差する部分(以下、交差部と称
する)で電界が発生される。すだれ状電極1は、圧電体
材料の表面に形成されているため、上記電界により、上
記圧電体材料は歪みを生じ、これが弾性波となって励振
され、上記交差部に対し垂直な方向に伝搬する。そし
て、出力側すだれ状電極1bの側に伝搬してきた弾性波
は、励振と逆の過程を経て、再び電気信号に変換され、
電気端子4より電気信号として取り出される。
In such an elastic wave element, for example, an elastic wave is generated at the left input-side interdigital electrode 1a, and the elastic wave is received by the right output-side interdigital electrode 1b. More specifically, a portion where the electrode finger 2 connected to the electric terminal 4 and the electrode finger 2 connected to the ground terminal 5 intersect with each other by an electric signal applied to the electric terminal 4 (hereinafter, referred to as an intersecting portion). ) Generates an electric field. Since the interdigital transducer 1 is formed on the surface of the piezoelectric material, the piezoelectric material causes a strain in the piezoelectric material, which is excited as an elastic wave and propagates in a direction perpendicular to the intersection. To do. Then, the elastic wave propagating to the output-side interdigital transducer 1b is converted into an electric signal again through a process reverse to the excitation,
The electric signal is taken out from the electric terminal 4.

【0005】ここで、電極指の番号をiとし、電極指i
の幅をLi とし、電極指iと電極指i+1の中心間距離
をDi (以下、電極指配列間隔と称する)とし、電極指
iと電極指i+1との間隙の長さをSi とすると、これ
らの間には、図36から明らかなように以下の関係があ
る。
Here, the electrode finger number is i, and the electrode finger i
Is L i , the distance between the centers of the electrode fingers i and i + 1 is D i (hereinafter referred to as the electrode finger arrangement interval), and the length of the gap between the electrode fingers i and i + 1 is S i . Then, there is the following relationship between them, as is clear from FIG.

【0006】 Di =Si +(Li +Li+1 )/2 …(式1) 各交差部では、電極指配列間隔Di が2分の1波長とな
る周波数fi (以下、中心周波数と称する)になつた時
に最も弾性波が強く励振される。このため、すだれ状電
極1にて広い周波数範囲にわたって電気信号と弾性波と
の変換ができるように、図36のすだれ状電極1は、電
極指配列間隔Di を徐々に変化させている。つまり、こ
のようなすだれ状電極1を用いれば、広い周波数範囲に
わたる通過帯域を得られる。
D i = S i + (L i + L i + 1 ) / 2 (Equation 1) At each intersection, a frequency f i at which the electrode finger arrangement interval D i becomes a half wavelength (hereinafter referred to as the center The elastic wave is excited most strongly when it reaches the frequency. Therefore, the interdigital transducer 1 of FIG. 36 gradually changes the electrode finger arrangement interval D i so that the interdigital transducer 1 can convert an electric signal and an elastic wave over a wide frequency range. That is, if such a comb-shaped electrode 1 is used, a pass band over a wide frequency range can be obtained.

【0007】図37には、上記出力側すだれ状電極1b
における交差部の位置Xi と、各交差部iにおける中心
周波数fi と、の関係が例示されている。ここで、交差
部iは、電極指iと電極指i+1とで構成される交差部
を意味し、その位置Xi は、電極指iの中心位置と電極
指i+1の中心位置との中間とする。図中、横軸は交差
部iの位置Xi であり、縦軸は交差部iの中心周波数f
i である。
FIG. 37 shows the output-side interdigital transducer 1b.
The relationship between the position X i of the intersection and the center frequency f i at each intersection i is illustrated. Here, the intersecting portion i means an intersecting portion constituted by the electrode finger i and the electrode finger i + 1, and the position X i thereof is an intermediate position between the center position of the electrode finger i and the center position of the electrode finger i + 1. . In the figure, the horizontal axis is the position X i of the intersection i , and the vertical axis is the center frequency f of the intersection i.
i .

【0008】図37に示すように、位置Xi に対して、
中心周波数fi が線形に変化している。換言すれば、図
36の出力側すだれ状電極1bの左端を基準として、中
心周波数fi の弾性波が交差部iに至るまでの遅延時間
をτi とすると、中心周波数fi に対して、遅延時間τ
i は直線的に変化する。
As shown in FIG. 37, for position X i ,
The center frequency f i changes linearly. In other words, based on the left end of the output-side interdigital electrode 1b of FIG. 36, the delay time until the acoustic wave center frequency f i reaches the intersection i When tau i, with respect to the center frequency f i, Delay time τ
i changes linearly.

【0009】図36に示した弾性波素子は、入力側すだ
れ状電極1aと出力側すだれ状電極1bとは、互いに線
対称な形で配置されているので、周波数によって遅延時
間が変化する分散型遅延線として動作する。このときの
帯域幅ΔfIDT にわたる遅延時間τi の変化量が分散時
間であり、入出力すだれ状電極1のそれぞれの分散時間
の和が弾性波素子としての分散時間Δτとなる。
In the acoustic wave device shown in FIG. 36, the input-side interdigital transducer 1a and the output-side interdigital transducer 1b are arranged in line symmetry with each other, so that the delay time varies depending on the frequency. Operates as a delay line. The amount of change in the delay time τ i over the bandwidth Δf IDT at this time is the dispersion time, and the sum of the respective dispersion times of the input / output interdigital transducer 1 is the dispersion time Δτ as the acoustic wave device.

【0010】なお、図示していないが、入出力すだれ状
電極1の電極指配列間隔の変化が同じ方向になるように
同一向きで配置すると、入力側すだれ状電極1aでの分
散特性を出力側すだれ状電極1bで相殺するように動作
するので、弾性波素子は周波数によらず遅延時間一定の
広帯域フィルタ、あるいは、遅延線として動作する。さ
て、中心周波数fi が交差部の位置Xi に対して、以下
に示す式2の関係で変化するものとする。
Although not shown in the figure, if the input / output interdigital transducers 1 are arranged in the same direction so that the changes in the electrode finger arrangement intervals are in the same direction, the dispersion characteristics of the input interdigital transducer 1a will be changed to the output side. Since the interdigital transducers 1b operate so as to cancel each other, the acoustic wave device operates as a wide band filter having a constant delay time regardless of frequency or as a delay line. Now, it is assumed that the center frequency f i changes with respect to the position X i of the intersection in the relationship of the following Expression 2.

【0011】 fi =H(Xi ) …(式2) 例えば、通過帯域の周波数fL を励振する交差部の位置
をXL とすると、図37に示したような中心周波数fi
が位置Xi に対して直線的に変化する場合の関係は、次
の式3で示される。
F i = H (X i ) ... (Formula 2) For example, if the position of the crossing portion exciting the frequency f L of the pass band is X L , the center frequency f i as shown in FIG.
The relationship in the case where changes linearly with respect to the position X i is expressed by the following Expression 3.

【0012】 fi =fL +α(Xi −XL ) …(式3) ここで、αは定数であり、すだれ状電極の分散特性を決
定する量である。電極指配列間隔Di は、音速をVS
して中心周波数fi と次の式4に示す関係にある。
F i = f L + α (X i −X L ) (Equation 3) Here, α is a constant and is an amount that determines the dispersion characteristics of the interdigital transducer. The electrode finger arrangement interval D i has a relationship with the center frequency f i as shown in the following Expression 4 with the sound velocity being V S.

【0013】 fi =VS /(2Di ) …(式4) 電極指配列間隔Di と交差部iの位置Xi との関係は、
例えば上記式3が成り立つ場合には、次の式5のように
なり、図38のような変化を示す。
F i = V S / (2D i ) ... (Formula 4) The relationship between the electrode finger arrangement interval D i and the position X i of the intersection i is
For example, when the above Expression 3 is satisfied, the following Expression 5 is obtained, and a change as shown in FIG. 38 is shown.

【0014】 Di =(1/2)×VS /(FL +α(Xi −XL )) …(式5) 図37、38では、グラフを線として連続的に描いた
が、実際には、交差部の位置Xi と次の交差部の位置X
i+1 とは電極指配列間隔Di 離れており、各交差部の位
置Xi は離散的な量である。ここで、図36に示した弾
性波素子が良好な特性、すなわち、帯域内通過特性、お
よび、群遅延時間特性に不要なリップルがない特性を実
現するには、上記のような離散的な交差部の位置Xi
対する中心周波数fi や電極指配列間隔Di が、図3
7、38に示したような連続的なグラフとしてみなせる
状態であることが必要である。すなわち、各交差部iの
中心周波数fi や電極指配列間隔Di が徐々に変化する
ことが必要である。
D i = (1/2) × V S / (F L + α (X i −X L )) (Equation 5) In FIGS. 37 and 38, the graphs are continuously drawn as lines, but in reality, At the intersection X i and the next intersection X
i + 1 is separated from the electrode finger arrangement interval D i , and the position X i at each intersection is a discrete quantity. Here, in order to realize the favorable characteristics of the acoustic wave device shown in FIG. 36, that is, the characteristics in which there is no unnecessary ripple in the in-band pass characteristic and the group delay time characteristic, the discrete crossover as described above is performed. The center frequency f i and the electrode finger arrangement interval D i with respect to the position X i of the part are shown in FIG.
It is necessary that the graph can be regarded as a continuous graph as shown in Nos. 7 and 38. That is, it is necessary that the center frequency f i of each intersection i and the electrode finger arrangement interval D i gradually change.

【0015】その場合、弾性波素子として必要な分散時
間が小さいような、すだれ状電極1の電極指数が少ない
場合には、電極指配列間隔Di の変化量が大きくなり、
なめらかな分散特性を実現できない。
In this case, when the electrode index of the interdigital transducer 1 is small such that the dispersion time required for the acoustic wave element is small, the change amount of the electrode finger arrangement interval D i becomes large,
Smooth dispersion characteristics cannot be realized.

【0016】弾性波素子として必要な分散時間が大きい
場合には、すだれ状電極1の高い周波数を励振する領
域、すなわち、電極指配列間隔Di の小さい領域での隣
合う交差部iの間の電極指配列間隔Di の差が微小な構
造となる。しかし、実際に、弾性波素子を製造するとき
には、すだれ状電極の寸法は、一段に製造上の要請から
最小寸法単位Qの整数倍として設定され、その場合、上
記最小寸法単位Qを小さくすることは、より高精度な製
造工程を経ることであり、製造コスト上昇の原因となる
のでQには制限がある。
When the dispersion time required for the elastic wave element is long, the area where the high frequency of the interdigital transducer 1 is excited, that is, the area where the electrode finger arrangement interval D i is small, is provided between the adjacent intersections i. The structure has a small difference in the electrode finger arrangement interval D i . However, when manufacturing the acoustic wave device, the size of the interdigital transducer is set as an integral multiple of the minimum size unit Q due to manufacturing requirements. In that case, the minimum size unit Q should be reduced. Is a high-precision manufacturing process and causes an increase in manufacturing cost, so Q is limited.

【0017】例えば、図39は、最小寸法値Dmin を設
定した場合の電極指配列間隔Di を示している。図中、
横軸は電極指番号iであり、縦軸は各電極指iの電極指
配列間隔Di である。細線は、図38に示したような連
続的に変化させた電極指配列間隔Di 6であり、この電
極指配列間隔Di 6に近いほど、良好な特性を示す。階
段状の太線は、最小寸法値がDmin の場合の電極指配列
間隔Di 7である。図36に示すすだれ状電極1の場合
では、電極指幅Li 、および、電極指間の間隙Si が、
それぞれ、中心周波数fi の弾性波の波長λi の4分の
1であり、電極指配列間隔Di は波長λi の2分の1だ
から、電極についての最小寸法値Dminは、基本的には
最小寸法単位Qの2倍となる。
For example, FIG. 39 shows the electrode finger arrangement interval D i when the minimum dimension value D min is set. In the figure,
The horizontal axis represents the electrode finger number i, and the vertical axis represents the electrode finger arrangement interval D i of each electrode finger i. The thin line is the electrode finger arrangement interval D i 6 that is continuously changed as shown in FIG. 38, and the closer to the electrode finger arrangement interval D i 6, the better the characteristics. The step-like thick line is the electrode finger arrangement interval D i 7 when the minimum dimension value is D min . In the case of the interdigital electrode 1 shown in FIG. 36, the electrode finger width L i and the gap S i between the electrode fingers are
Since each of them is a quarter of the wavelength λ i of the elastic wave of the center frequency f i and the electrode finger arrangement interval D i is ½ of the wavelength λ i , the minimum dimension value D min for the electrode is basically Is twice the minimum size unit Q.

【0018】例えば、図49に示すように、隣合う各電
極指2の幅と電極指2間の間隙を同じとした場合に、電
極指配列間隔Di を6Qから8Qに変化させた時の電極
指幅、間隙長、電極指配列間隔の値の変化を考える。図
中に示すように、変化開始点のとり方によって配列A、
Bのように2通りの変化が考えられる。過渡的に、電極
指配列間隔が6Qと8Qの中間の値となる部位が存在
し、この部位では隣合う各電極指2の幅と間隙長との比
が他の部位と異なっているが、これは、電極指配列間隔
を徐々に変化させた場合には必然的に生じるのであり、
この部位が連続して存在することはない。すなわち、図
4に示すように、寸法最小単位を考慮しない場合の各電
極指配列間隔を6とした場合に、最小寸法単位Qを考慮
した場合の各電極指配列間隔は7のように値が2Q間隔
の階段状の値となる。P1 、P2 、P3 はそれぞれ同じ
電極指配列間隔が連続する領域であり、P1 からP2
よび、P2 からP3 へ移行する部位に、過渡的に、
1 、P2 、P3 と異なる電極指配列間隔が存在してい
る。例えば、P2 における電極指配列間隔が8Qである
とすると、P2 からP3 へ移行する部位での各寸法が、
図4に示した値となる。
For example, as shown in FIG. 49, when the width of each adjacent electrode finger 2 and the gap between the electrode fingers 2 are the same, when the electrode finger arrangement interval D i is changed from 6Q to 8Q. Consider changes in the values of the electrode finger width, the gap length, and the electrode finger arrangement interval. As shown in the figure, the array A,
There are two possible changes like B. Transiently, there is a portion where the electrode finger arrangement interval is an intermediate value between 6Q and 8Q, and in this portion, the ratio of the width and the gap length of each adjacent electrode finger 2 is different from the other portions. This inevitably occurs when the electrode finger arrangement interval is gradually changed,
This site does not exist continuously. That is, as shown in FIG. 4, when the electrode finger arrangement interval when the dimension minimum unit is not taken into consideration is 6, the electrode finger arrangement interval when the smallest dimension unit Q is taken into consideration has a value such as 7. It becomes a stepwise value at 2Q intervals. P 1 , P 2 , and P 3 are regions where the same electrode finger arrangement intervals are continuous, and transiently at the transition points from P 1 to P 2 and from P 2 to P 3 .
There is an electrode finger arrangement interval different from P 1 , P 2 , and P 3 . For example, assuming that the electrode finger arrangement interval at P 2 is 8Q, each dimension at the portion where P 2 moves to P 3 is
The values are shown in FIG.

【0019】図39を見ると、電極指配列間隔Di が小
さい領域ほど、同じ電極指配列間隔となる電極指数が多
くなっているのがわかる。電極指配列間隔Di が最小電
極指配列間隔Dmin に近いほど、ある電極指配列間隔D
i に最小電極指配列間隔Dmi n を加えたり、引いたりし
た場合の中心周波数fi の変化する割合が大きくなるた
めである。
It can be seen from FIG. 39 that the smaller the electrode finger arrangement interval D i, the larger the electrode index for the same electrode finger arrangement interval. As the electrode finger arrangement interval D i is closer to the minimum electrode finger arrangement interval D min , a certain electrode finger arrangement interval D
or adding a minimum electrode finger arrangement interval D mi n to i, because the rate of change in the center frequency f i in the case of pulling increases.

【0020】同じ電極指配列間隔Dが連続した電極指N
対、すなわち、電極指数2N+1本のすだれ状電極1
が、電気信号を弾性波に変換する効率G(f)は、文献
(以下、文献甲とする)“弾性表面波工学”、電子通信
学会発行、1985年6月、pp.62−66中にて述
べられているように、式6のようになる。
Electrode fingers N in which the same electrode finger arrangement interval D is continuous
A pair, that is, a comb-shaped electrode 1 having an electrode index of 2N + 1
However, the efficiency G (f) of converting an electric signal into an elastic wave is described in the literature (hereinafter referred to as the literature A) “Surface Acoustic Wave Engineering”, published by The Institute of Electronics and Communication Engineers, June 1985, pp. Equation 6 as described in 62-66.

【0021】[0021]

【数1】 ここで、f0 は中心周波数であり、式4を用いて電極指
配列間隔Di から求められる、Δfは周波数fと中心周
波数f0 との差であり、G0 は周波数fが中心周波数f
0 に等しいときの変換効率である。式6からわかるよう
に、同じ電極指配列周期Dが連続する領域を有するすだ
れ状電極1では、周期的に、電気信号と弾性波との変換
が行われない周波数が存在し、式7に示すように、電極
指数Nが多いほど、電気信号と弾性波との変換が行われ
ない周波数間隔Δfzが小さくなり、帯域も狭くなる。
[Equation 1] Here, f 0 is the center frequency, Δf is the difference between the frequency f and the center frequency f 0, which is obtained from the electrode finger arrangement interval D i using Equation 4, and G 0 is the center frequency f at the frequency f
The conversion efficiency when it is equal to 0 . As can be seen from Expression 6, in the interdigital transducer 1 having a region in which the same electrode finger arrangement period D is continuous, there is a frequency at which the electric signal and the elastic wave are not converted periodically, and is shown in Expression 7. Thus, the greater the electrode index N, the smaller the frequency interval Δfz in which the electric signal and the elastic wave are not converted, and the narrower the band.

【0022】 Δfz=f0 /N …(式7) 電極指配列間隔Di を連続的に変化させた場合のすだれ
状電極1の電気信号と弾性波との変換効率は、図40に
示すようになる。図中、横軸は周波数であり、縦軸は変
換効率である。8は電極指配列間隔Di の異なる各交差
部毎の変換効率であり、9は各交差部毎の変換効率8を
加算したすだれ状電極1全体の変換効率である。
Δfz = f 0 / N (Equation 7) The conversion efficiency between the electric signal of the interdigital transducer 1 and the elastic wave when the electrode finger arrangement interval D i is continuously changed is as shown in FIG. become. In the figure, the horizontal axis represents frequency and the vertical axis represents conversion efficiency. Reference numeral 8 is a conversion efficiency for each intersection where the electrode finger arrangement interval D i is different, and 9 is a conversion efficiency for the entire interdigital transducer 1 in which the conversion efficiency 8 for each intersection is added.

【0023】各交差部iの変換効率8は、式6から、そ
の交差部iの電極指配列間隔Di から求められる中心周
波数fi にて効率最大となる。また、各交差部i毎に電
極指配列間隔Di が異なるため、電極指対数Nを0.5
とした極めて広帯域な特性である。したがって、すだれ
状電極1全体の変換効率9は、中心周波数fi が僅かず
つ変化する各交差部iの変換効率8を全ての交差部につ
いて合計した特性であるので、適切な設計を行うことに
より、全体として所要帯域にわたり平坦な変換効率を実
現することができる。
The conversion efficiency 8 at each intersection i is maximized at the center frequency f i obtained from the electrode finger arrangement interval D i at the intersection i from the equation 6. Further, since the electrode finger arrangement interval D i is different for each intersection i, the number N of electrode finger pairs is set to 0.5.
It has an extremely wide band characteristic. Therefore, the conversion efficiency 9 of the entire interdigital transducer 1 is a characteristic obtained by summing up the conversion efficiencies 8 of the intersections i in which the center frequency f i changes little by little for all the intersections. As a whole, a flat conversion efficiency can be realized over the required band.

【0024】一方、例えば、高い周波数にて同じ電極指
配列間隔が連続するような場合(同一構成の交差部が連
続する場合)は、図41に示す特性となる。図中、横
軸、縦軸は図40の場合と同じである。8は図40と同
様に、電極指配列間隔Di が異なる各交差部の変換効率
であり、10は同じ電極指配列間隔が連続する交差部の
変換効率である。
On the other hand, for example, when the same electrode finger arrangement interval is continuous at a high frequency (when the intersections of the same structure are continuous), the characteristics shown in FIG. 41 are obtained. In the figure, the horizontal axis and the vertical axis are the same as in the case of FIG. Similar to FIG. 40, 8 is the conversion efficiency of each intersection where the electrode finger arrangement interval D i is different, and 10 is the conversion efficiency of the intersection where the same electrode finger arrangement interval is continuous.

【0025】同じ電極指配列間隔が連続する交差部の変
換効率10は帯域が狭く、また、同じ電極指配列間隔が
連続する交差部の中心周波数は、隣合う電極指配列間隔
iが異なる交差部の中心周波数との差が大きくなる。
この結果、各交差部の変換効率8、10を合計したすだ
れ状電極1全体の変換効率9は、帯域内に大きなリップ
ルを生じる。変換効率の変動は、直接、図36に示した
ような弾性波素子を構成した場合の通過特性に反映され
るため、帯域内リップルの大きい弾性波素子となってし
まう。
The conversion efficiency 10 at the intersection where the same electrode finger arrangement interval is continuous has a narrow band, and the center frequency of the intersection where the same electrode finger arrangement interval is continuous has a difference between adjacent electrode finger arrangement intervals D i. The difference from the center frequency of the part becomes large.
As a result, the conversion efficiency 9 of the interdigital transducer 1 as a whole, which is the sum of the conversion efficiencies 8 and 10 at each intersection, causes a large ripple in the band. Since the fluctuation of the conversion efficiency is directly reflected on the pass characteristic when the elastic wave element as shown in FIG. 36 is configured, the elastic wave element has a large in-band ripple.

【0026】実際は、図40、41に示した場合よりも
はるかに多くの電極指から構成されるため、例えば、図
36に示したような電極指配列間隔が徐々に変化するよ
うな弾性波素子の理想的な通過特性が図42であるとす
ると、電極指配列間隔にある最小値Dmin が存在し、図
43に示すような高周波数を励振する交差部11の電極
指配列間隔が同じであるような場合には、図44に示す
ような帯域内リップルが通過電力、群遅延時間の両方に
発生し、弾性波素子としての性能を劣化させる問題があ
った。
In practice, since the structure is composed of far more electrode fingers than in the case shown in FIGS. 40 and 41, for example, the elastic wave element in which the electrode finger arrangement interval as shown in FIG. 36 gradually changes. If the ideal passage characteristic of is as shown in FIG. 42, there is a minimum value D min in the electrode finger arrangement interval, and as shown in FIG. In some cases, in-band ripple as shown in FIG. 44 occurs in both the passing power and the group delay time, and there is a problem that the performance as the acoustic wave device is deteriorated.

【0027】よって、最小寸法値という制約の下で、各
交差部の中心周波数の一致等を回避できる構成が要望さ
れていた。
Therefore, there has been a demand for a structure capable of avoiding the coincidence of the center frequencies of the intersections under the constraint of the minimum dimension value.

【0028】従来のすだれ状電極としては、特開平3−
132208号公報に示された図45の構成や、特開昭
62−200811号公報に示された図46の構成があ
る。図45、および、図46は、すだれ状電極の一部の
中心周波数がf0 であり、中心周波数f0 のときの弾性
波の波長がλ0 である電極指2を示している。図45の
弾性波素子のすだれ状電極は、幅がλ0 /8の電極指2
と、幅がλ0 /4の電極指2とから構成され、λ0 間隔
を1周期として、幅がλ0 /8の電極指2と幅がλ0
4の電極指2のそれぞれ1本ずつが、同電位で互いに隣
合った位置となるように配列されている。図46のすだ
れ状電極は、幅がλ0 /8の電極指2から構成され、同
電位で互いに隣合った位置に配列されている3本の電極
指2のうちの2本が、接続電極12で接続されている。
A conventional interdigital electrode is disclosed in Japanese Patent Laid-Open No.
There is a configuration of FIG. 45 shown in Japanese Patent No. 132208 and a configuration of FIG. 46 shown in Japanese Patent Laid-Open No. 62-200811. 45 and 46 show the electrode finger 2 in which the center frequency of a part of the interdigital electrode is f 0 and the wavelength of the elastic wave at the center frequency f 0 is λ 0 . IDT acoustic wave device of FIG. 45, the electrode finger 2 with a width of lambda 0/8
When the width is composed of lambda 0/4 of the electrode fingers 2 which, as one cycle lambda 0 interval, the electrode fingers 2 and the width of the width of λ 0/8 λ 0 /
Each one of the four electrode fingers 2 is arranged at the same potential and adjacent to each other. Interdigital transducers of FIG. 46, the width is composed of the electrode fingers 2 of lambda 0/8, 2 present among the three electrode fingers 2 which are arranged in positions next to each other at the same potential, the connecting electrode Connected at 12.

【0029】図45、および、図46の弾性波素子は、
幅λ0 /8の電極指2を用いており、中心周波数f0
弾性波の波長λ0 を決めるのは、各電極指2の配列間隔
ではなく、弾性波の波長λ0 間隔内の4本の電極指2毎
の電極指配列周期である。この構造において、各電極指
2の寸法単位がQであるとき、電極指2配列周期の最小
値は6Qとなり、図36に示した従来のこの種の弾性波
素子の場合よりも、電極指2の最小寸法単位Qの影響を
より大きく受けるため、弾性波素子としての性能を劣化
させる。
The elastic wave elements shown in FIGS. 45 and 46 are
And using the electrode fingers 2 in the width lambda 0/8, determine the wavelength lambda 0 of the acoustic wave of the center frequency f 0 is not an array interval of the electrode fingers 2, 4 in the wavelength lambda 0 spacing elastic wave This is the electrode finger arrangement period for each electrode finger 2 of the book. In this structure, when the dimension unit of each electrode finger 2 is Q, the minimum value of the arrangement period of the electrode fingers 2 is 6Q, which is more than that of the conventional acoustic wave device of this type shown in FIG. The performance of the acoustic wave element is deteriorated because it is more affected by the minimum dimension unit Q of.

【0030】また、従来のすだれ状電極として、特開平
3−228418号公報や特開平1−166609号公
報に示された図47の構成がある。図中、13は同電位
の2本を1対とした電極指であり、各電極指対が交差す
る構造となっている。各電極指13の配列間隔の2倍が
1対の電極指13の中心間距離Di であり、この中心間
距離Di の2倍が中心周波数fi における弾性波の波長
λi となる。また、各電極指13対の交差部における弾
性波の励振強度を可変させるために、上記中心間距離D
i に対する電極指幅を可変させているが、電極指13の
中心間距離Diと上記中心間距離Di に対する電極指幅
の比とは無関係である。
Further, as a conventional interdigital electrode, there is a configuration shown in FIG. 47 shown in Japanese Patent Application Laid-Open No. 3-228418 and Japanese Patent Application Laid-Open No. 1-166609. In the figure, 13 is a pair of electrode fingers having the same potential, and each electrode finger pair has a structure intersecting. 2 times the arrangement spacing of the electrode fingers 13 is center distance D i of a pair of electrode fingers 13, twice this center distance D i is the wavelength lambda i of the acoustic wave at the center frequency f i. In addition, in order to vary the excitation intensity of the elastic wave at the intersection of each electrode finger 13 pair, the center distance D
Although the electrode finger width with respect to i is made variable, it is irrelevant to the center distance D i of the electrode finger 13 and the ratio of the electrode finger width to the center distance D i .

【0031】図47の弾性波素子では、電極指13の中
心間距離Di が弾性波の中心周波数fi を決定する。電
極指13の中心間距離Di の最小値は、電極指13の最
小寸法単位Qの4倍であり、これは、図36に示した弾
性波素子の場合よりも、電極指2の最小寸法単位Qの影
響をより大きく受けるため、弾性波素子としての性能を
劣化させる。
In the elastic wave device of FIG. 47, the center distance D i of the electrode fingers 13 determines the center frequency f i of the elastic wave. The minimum value of the center distance D i of the electrode fingers 13 is four times the minimum dimension unit Q of the electrode fingers 13, which is smaller than that of the acoustic wave device shown in FIG. 36. Since the unit Q is more affected, the performance as the acoustic wave device is deteriorated.

【0032】図48は、特開昭56−149817号公
報に示された従来の弾性波素子を示す図である。図48
では、すだれ状電極1の取り出し電極のうち、各入出力
すだれ状電極1から見て、外側の取り出し電極3aを電
気端子4に接続し、内側の取り出し電極3bを接地端子
に接続するものとする。電極指2が弾性波の伝搬経路1
4に垂直な方向にずらして配置された、いわゆるスラン
ト電極を用いているため、電極指2と内側の取り出し電
極3bとの境界15は、弾性波の伝搬経路14に対して
角度θIDT の傾斜を有する。このような傾斜構造とする
ことにより、任意の伝搬経路14を伝搬する弾性波が横
切る電極指2の数が低減され、電極指2における弾性波
の反射や、不要波の励振等の悪影響を低減することがで
きる。このとき、弾性波の任意の伝搬経路14と、出力
側すだれ状電極1bに最も近い入力側すだれ状電極1a
の電極指2から弾性波の伝搬経路14に下した垂線との
交点をAとし、電極指2と内側の取り出し電極3bとの
境界15との交点をBとし、内側の取り出し電極3bの
端面16との交点をCとすると、図48に示した従来の
この種の弾性波素子は、式8を満足するように、内側の
取り出し電極3bの端面16の形状を決めている。
FIG. 48 is a diagram showing a conventional acoustic wave device disclosed in Japanese Patent Laid-Open No. 56-149817. FIG. 48
Then, among the lead-out electrodes of the interdigital transducer 1, the outer lead-out electrode 3a is connected to the electric terminal 4 and the inner lead-out electrode 3b is connected to the ground terminal when viewed from each input / output interdigital intermediary electrode 1. . Electrode finger 2 is elastic wave propagation path 1
Since a so-called slant electrode, which is arranged so as to be displaced in a direction perpendicular to 4, is used, the boundary 15 between the electrode finger 2 and the inner extraction electrode 3b is inclined at an angle θ IDT with respect to the propagation path 14 of the elastic wave. Have. By adopting such an inclined structure, the number of electrode fingers 2 traversed by elastic waves propagating in an arbitrary propagation path 14 is reduced, and adverse effects such as reflection of elastic waves at the electrode fingers 2 and excitation of unnecessary waves are reduced. can do. At this time, an arbitrary propagation path 14 of the elastic wave and the input-side interdigital transducer 1a closest to the output-side interdigital transducer 1b.
The intersection point with the perpendicular line from the electrode finger 2 to the propagation path 14 of the elastic wave is A, the intersection point with the boundary 15 between the electrode finger 2 and the inner extraction electrode 3b is B, and the end surface 16 of the inner extraction electrode 3b is In the conventional acoustic wave device of this type shown in FIG. 48, the shape of the end face 16 of the inner extraction electrode 3b is determined so as to satisfy the expression 8.

【0033】 XBC/XAB=Vm /(Vf −Vm )×(Vf /VIDT −1) …(式8) ここで、XABは点AB間の距離、XBCは点BC間の距
離、Vf は弾性波の自由表面での伝搬速度、Vm は弾性
波の取り出し電極上での伝搬速度、VIDT は弾性波の電
極指2が配列されている領域での伝搬速度である。図4
8に示したように、電極指2と内側の取り出し電極3b
との境界15が直線的である場合には、内側の取り出し
電極3bの端面16は直線的な構造となる。式8を満足
するように、内側取り出し電極3bの端面16の形状を
決定することにより、弾性波の伝搬速度Vf 、Vm 、V
IDT が異なることによる弾性波の波面の乱れを防ぐこと
ができる。
X BC / X AB = V m / (V f −V m ) × (V f / V IDT −1) (Equation 8) where X AB is the distance between the points AB and X BC is the point The distance between BCs, V f is the propagation velocity of the elastic wave on the free surface, V m is the propagation velocity of the elastic wave on the extraction electrode, and V IDT is the propagation of the elastic wave in the region where the electrode fingers 2 are arranged. It's speed. Figure 4
As shown in FIG. 8, the electrode finger 2 and the inner extraction electrode 3b
When the boundary 15 between the and is linear, the end face 16 of the inner extraction electrode 3b has a linear structure. By determining the shape of the end face 16 of the inner extraction electrode 3b so as to satisfy Expression 8, the propagation velocities V f , V m , and V of the elastic wave are determined.
Disturbances in the wavefront of elastic waves due to different IDTs can be prevented.

【0034】従来のこの種の弾性波素子では、式8によ
り、弾性波の伝搬速度Vf 、Vm 、VIDT が異なること
による弾性波の波面の乱れを防いでいた。式8は、弾性
波の伝搬速度Vf 、Vm 、VIDT と、電極指2と内側の
取り出し電極3bとの境界15の形状を決定すれば、一
意的に、内側の取り出し電極3bの端面16の形状が決
定されていた。このため、弾性波の伝搬速度Vf
m 、VIDT 等が材料によって異なると、式8の右辺の
値に誤差が生じ、式8の条件が満足されなくなる。その
結果、弾性波の波面が乱れ、弾性波素子の特性が劣化し
ていた。
In the conventional elastic wave device of this type, the disturbance of the wavefront of the elastic wave due to the different propagation speeds V f , V m and V IDT of the elastic wave is prevented by the formula (8). Equation 8 is uniquely determined by determining the propagation velocities V f , V m , and V IDT of the elastic wave and the shape of the boundary 15 between the electrode finger 2 and the inner extraction electrode 3b, and uniquely the end surface of the inner extraction electrode 3b. Sixteen shapes have been determined. Therefore, the propagation velocity V f of the elastic wave,
If V m , V IDT and the like differ depending on the material, an error occurs in the value on the right side of Expression 8, and the condition of Expression 8 cannot be satisfied. As a result, the wavefront of the elastic wave is disturbed and the characteristics of the elastic wave element are deteriorated.

【0035】[0035]

【発明が解決しようとする課題】この発明は、上記の問
題を解決するためになされたもので、すだれ状電極の構
成に、製造コスト低減のため最小寸法単位を設定して
も、各交差部の特性の一致を回避して、素子全体の特性
を改善できる弾性波素子を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and even if the minimum dimension unit is set in the configuration of the interdigital electrode to reduce the manufacturing cost, each intersection is formed. It is an object of the present invention to provide an acoustic wave device capable of improving the properties of the entire device by avoiding the matching of the properties of 1.

【0036】また、この発明は、上記の問題を解決する
ためになされたもので、所要の分散特性を実現するため
の電極指数が多い場合でも、所要の特性を実現できる弾
性波素子を提供することにある。
Further, the present invention has been made to solve the above problems, and provides an acoustic wave device capable of achieving the required characteristics even when the electrode index for achieving the required dispersion characteristics is large. Especially.

【0037】また、この発明は、上記の問題を解決する
ためになされたもので、所要の分散特性を実現するため
の電極指数が少ない場合でも、所要の特性を実現できる
弾性波素子を提供することにある。
The present invention has been made to solve the above problems, and provides an acoustic wave device capable of achieving the required characteristics even when the electrode index for achieving the required dispersion characteristics is small. Especially.

【0038】また、この発明は、上記の問題を解決する
ためになされたもので、設計時に使用する弾性波の伝搬
速度に誤差があっても、所要の特性を実現できる弾性波
素子を提供することにある。
The present invention has been made to solve the above problems, and provides an elastic wave element which can realize the required characteristics even if there is an error in the propagation velocity of the elastic wave used at the time of design. Especially.

【0039】[0039]

【課題を解決するための手段】第1の発明に係る弾性波
素子では、すだれ状電極の電位の異なる電極指が交差す
る部位の一部あるいは全体に、上記電極指幅と隣合う電
極指の間隙長との比率を変えた領域を有するようにし
た。
In the acoustic wave device according to the first aspect of the present invention, the electrode finger width adjacent to the electrode finger width of the electrode finger adjacent to the electrode finger width is partially or wholly intersected with the electrode fingers of the interdigital electrode having different potentials. An area having a different ratio to the gap length was provided.

【0040】第2の発明に係る弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、すだれ状電極の電極指配列間隔が徐々に小
さくなる電極指順序の方向に、隣合う電極指の間隙長に
対する上記電極指幅の比率を徐々に小さくした。
In the acoustic wave device according to the second aspect of the invention, the electrode finger sequence in which the electrode finger arrangement intervals of the interdigital electrodes are gradually reduced is provided in a part or the whole of the portion where the electrode fingers of the interdigital electrodes having different potentials intersect. In the direction of, the ratio of the electrode finger width to the gap length between adjacent electrode fingers was gradually decreased.

【0041】第3の発明に係る弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、隣合う電極指の間隙長に対する上記電極指
幅の比率を乱数的に変化させた。
In the acoustic wave device according to the third aspect of the invention, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers is set to a random number in a part or the whole of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. Changed.

【0042】第4の発明に係る弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、隣合う電極指の間隙長に対する上記電極指
幅の比率が変化する段付き電極指を有するようにした。
In the acoustic wave device according to the fourth aspect of the present invention, the ratio of the electrode finger width to the gap length of adjacent electrode fingers changes at a part or the whole of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. It has a stepped electrode finger.

【0043】第5の発明に係る弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、隣合う電極指の間隙長に対する上記電極指
幅の比率が変化する段付き電極指を有し、すだれ状電極
の電極指配列間隔が徐々に小さくなる電極指順序の方向
に、上記各電極指における隣合う電極指の間隙長に対す
る上記電極指幅の比率の大きい領域の交差幅方向の長さ
の合計に対して、上記隣合う電極指の間隙長に対する上
記電極指の比率の小さい領域の交差幅方向の長さの合計
の比率を、徐々に大きくした。
In the acoustic wave device according to the fifth aspect of the present invention, the ratio of the electrode finger width to the gap length of adjacent electrode fingers changes in a part or the whole of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. In the direction of the electrode finger sequence in which the electrode finger arrangement interval of the interdigital electrode is gradually reduced, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each electrode finger is large. The ratio of the total length in the cross width direction of the region where the ratio of the electrode fingers to the gap length of the adjacent electrode fingers is small to the total length in the cross width direction of the regions is gradually increased.

【0044】第6の発明に係る弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、隣合う電極指の間隙長に対する上記電極指
幅の比率が変化する段付き電極指を有し、上記各電極指
における隣合う電指極の間隙長に対する上記電極指幅の
比率の大きい領域の交差幅方向の長さの合計と上記隣合
う電極指の間隔長に対する上記電極指幅の比率の小さい
領域の交差幅方向の長さの合計との比率を、乱数的に変
化させた。
In the acoustic wave device according to the sixth aspect of the present invention, the ratio of the electrode finger width to the gap length of adjacent electrode fingers changes at a part or the whole of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. Having a stepped electrode finger, the sum of the lengths in the cross width direction of the region having a large ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each of the electrode fingers and the interval length of the adjacent electrode fingers. The ratio with respect to the total of the lengths in the cross width direction of the region where the ratio of the electrode finger width is small was randomly changed.

【0045】第7の発明に係る弾性波素子では、圧電体
基板表面に弾性波が分散特性を有する非圧電性の薄膜を
少なくとも一層以上構成し、上記薄膜のうちの任意の薄
膜の表面あるいは上記薄膜と上記圧電体基板との境界面
に、電極指配列間隔を徐々に変化させた上記すだれ状電
極を設けた。
In the acoustic wave device according to the seventh aspect of the present invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any of the above thin films or the above thin film is formed. On the boundary surface between the thin film and the piezoelectric substrate, the interdigital electrode having the electrode finger arrangement interval gradually changed was provided.

【0046】第8の発明に係る弾性波素子では、圧電体
基板表面に弾性波が分散特性を有する非圧電性の薄膜を
少なくとも一層以上構成し、上記薄膜のうちの任意の薄
膜の表面あるいは上記薄膜と上記圧電体基板との境界面
に、電極指配列間隔を徐々に変化させた上記すだれ状電
極を設け、分散性のない圧電体基板上に構成した場合よ
りも、上記すだれ状電極の電極指数が少なくなるように
した。
In the acoustic wave device according to the eighth aspect of the present invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any thin film or the above thin film is formed. An electrode of the interdigital transducer is provided on the boundary surface between the thin film and the piezoelectric substrate, which is provided with the interdigital electrode with the electrode finger arrangement interval gradually changed, and is formed on a piezoelectric substrate having no dispersibility. Made the index smaller.

【0047】第9の発明に係る弾性波素子では、圧電体
基板表面に弾性波が分散特性を有する非圧電性の薄膜を
少なくとも一層以上構成し、上記薄膜のうちの任意の薄
膜の表面あるいは上記薄膜と上記圧電体基板との境界面
に、電極指配列間隔を徐々に変化させた上記すだれ状電
極を設け、分散性のない圧電体基板上に構成した場合よ
りも、上記すだれ状電極の電極指数が多くなるようにし
た。
In the elastic wave device according to the ninth aspect of the present invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any of the above thin films or the above thin film is formed. An electrode of the interdigital transducer is provided on the boundary surface between the thin film and the piezoelectric substrate, which is provided with the interdigital electrode with the electrode finger arrangement interval gradually changed, and is formed on a piezoelectric substrate having no dispersibility. Increased the index.

【0048】第10の発明に係る弾性波素子では、非圧
電体基板表面に弾性波が分散特性を有する圧電性の薄膜
を少なくとも一層以上構成し、上記薄膜のうちの任意の
薄膜の表面あるいは上記薄膜と上記非圧電体基板との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設けた。
In the elastic wave device according to the tenth aspect of the present invention, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and the surface of any thin film of the above thin films or the above thin film is formed. The interdigital electrodes having the electrode finger arrangement intervals gradually changed were provided on the boundary surface between the thin film and the non-piezoelectric substrate.

【0049】第11の発明に係る弾性波素子では、非圧
電体基板表面に弾性波が分散特性を有する圧電性の薄膜
を少なくとも一層以上構成し、上記薄膜のうちの任意の
薄膜の表面あるいは上記薄膜と上記非圧電体基板との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設け、分散性のない圧電体基板上に構成した場
合よりも、上記すだれ状電極の電極指数が少なくなるよ
うにした。
In the elastic wave element according to the eleventh aspect of the present invention, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and the surface of any thin film or the above thin film is formed. On the boundary surface between the thin film and the non-piezoelectric substrate, the interdigital electrode with the electrode finger array spacing gradually changed is provided, and the interdigital electrode has a more interleaved shape than that of the non-dispersive piezoelectric substrate. The electrode index was reduced.

【0050】第12の発明に係る弾性波素子では、非圧
電体基板表面に弾性波が分散特性を有する圧電性の薄膜
を少なくとも一層以上構成し、上記薄膜のうちの任意の
薄膜の表面あるいは上記薄膜と上記非圧電体基板との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設け、分散性のない圧電体基板上に構成した場
合よりも、上記すだれ状電極の電極指数が多くなるよう
にした。
In the acoustic wave device according to the twelfth aspect of the invention, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and the surface of any thin film or the above thin film is formed. On the boundary surface between the thin film and the non-piezoelectric substrate, the interdigital electrode with the electrode finger array spacing gradually changed is provided, and the interdigital electrode has a more interleaved shape than that of the non-dispersive piezoelectric substrate. The electrode index was increased.

【0051】第13の発明に係る弾性波素子では、弾性
波素子の通過帯域の下限周波数をf1 、上限周波数をf
2 とし、上記弾性波素子のすだれ状電極の交差幅をW0
とし、すだれ状電極における弾性波の伝搬速度をVIDT
とし、入力側すだれ状電極にて励振された弾性波が出力
側すだれ状電極の電極指と上記弾性波の波面とのなす角
度をθとしたときに、 f2 <VIDT /(W0 ・sinθ) …(式9) あるいは、nを整数として、 f2 /n<VIDT /(W0 ・sinθ)<f1 /(n−1) …(式10) を満足するように、取出し電極の対向する電極側の形状
を定めた。
In the elastic wave element according to the thirteenth invention, the lower limit frequency of the pass band of the elastic wave element is f 1 and the upper limit frequency is f 1 .
2 and the cross width of the interdigital electrodes of the acoustic wave device is W 0
And the propagation velocity of the elastic wave in the interdigital transducer is V IDT
And when the angle formed by the electrode fingers of the output-side interdigital transducer and the wavefront of the elastic wave excited by the input-side interdigital transducer is θ, then f 2 <V IDT / (W 0 · sin θ) (Equation 9) Alternatively, where n is an integer, the extraction electrode may satisfy f 2 / n <V IDT / (W 0 · sin θ) <f 1 / (n−1) (Equation 10) The shape of the electrodes facing each other was determined.

【0052】第14の発明に係る弾性波素子では、弾性
波素子の通過帯域の下限周波数をf1 、上限周波数をf
2 、とし、上記弾性波素子のすだれ状電極の交差幅をW
0 とし、すだれ状電極における弾性波の伝搬速度をV
IDT と、入力側ずたれ状電極にて励振された弾性波が出
力側すだれ状で電極に達したときの出力側すだれ状電極
の電極指と上記弾性波の波面とのなす角度をθとしたと
きに、式9で示される条件か、あるいは、nを整数とし
て、式10で示される条件を満足するように、上記シー
ルド電極の形状を定めた。
In the elastic wave element according to the fourteenth invention, the lower limit frequency of the pass band of the elastic wave element is f 1 and the upper limit frequency thereof is f 1 .
2 and the cross width of the interdigital electrodes of the above acoustic wave device is W
0, and the propagation velocity of the elastic wave in the interdigital transducer is V
The angle between the IDT and the electrode finger of the output-side interdigital electrode and the wavefront of the elastic wave when the elastic wave excited by the input-side offset electrode reaches the output-side interdigital electrode is θ. At this time, the shape of the shield electrode was determined so as to satisfy the condition represented by the formula 9 or the condition represented by the formula 10 with n being an integer.

【0053】[0053]

【作用】この第1の発明の弾性波素子では、電極指配列
間隔が同じ交差部グループにおいて、上記電極指幅と隣
合う電極指の間隙長との比率を変えた領域を有するよう
にした。電極指の部分と、電極指間の間隙の部分とで
は、弾性波の伝搬速度が異なるため、電極指配列間隔が
同じでも、上記電極指幅と隣合う電極指の間隙長との比
率を変えることにより、弾性波の中心周波数を変化させ
ることができる。また、上記電極指幅と隣合う電極指の
間隙長との比率を変えることにより、電極指の最小寸法
単位と同じ値の電極指配列間隔最小値にて電極指配列間
隔を変えることができる。このため、同じ中心周波数の
電極指配列間隔が連続するのを防ぎ、所要の特性を有す
る弾性波素子を得ることができる。
In the elastic wave device according to the first aspect of the present invention, the intersection group having the same electrode finger arrangement interval has the regions in which the ratio of the electrode finger width and the gap length of the adjacent electrode fingers is changed. Since the propagation speed of the elastic wave is different between the electrode finger portion and the gap portion between the electrode fingers, even if the electrode finger arrangement spacing is the same, the ratio between the electrode finger width and the gap length between adjacent electrode fingers is changed. As a result, the center frequency of the elastic wave can be changed. Further, by changing the ratio between the electrode finger width and the gap length between adjacent electrode fingers, the electrode finger arrangement interval can be changed at the minimum value of the electrode finger arrangement interval which is the same as the minimum dimension unit of the electrode finger. For this reason, it is possible to prevent the electrode finger arrangement intervals of the same center frequency from continuing, and to obtain an acoustic wave device having required characteristics.

【0054】この第2の発明の弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、すだれ状電極の電極指配列間隔が徐々に小
さくなる電極指順序の方向に、隣合う電極指の間隙長に
対する上記電極指幅の比率を徐々に小さくした。電極指
の部分は、電極指間の間隙の部分よりも、弾性波の伝搬
速度が遅いため、電極指配列間隔が同じでも、上記電極
指幅と隣合う電極指の間隙長との比率を小さくすること
により、等価的に、中心周波数を高くすることができ
る。電極指配列間隔が徐々に小さくなる電極指順序の方
向は、中心周波数が徐々に高くなる方向であるから、こ
れと同じ方向で、電極指配列間隔が同じ部分の中心周波
数を徐々に高くすることができ、同じ中心周波数の電極
指配列間隔が連続するのを防ぎ、所要の特性を有する弾
性波素子を得ることができる。
In the acoustic wave device according to the second aspect of the invention, the electrode finger sequence in which the electrode finger arrangement interval of the interdigital electrodes gradually decreases is partially or wholly at the portion where the electrode fingers of the interdigital electrodes having different potentials intersect. In the direction of, the ratio of the electrode finger width to the gap length between adjacent electrode fingers was gradually decreased. Since the propagation speed of the elastic wave is slower in the electrode finger portion than in the gap portion between the electrode fingers, even if the electrode finger arrangement spacing is the same, the ratio between the electrode finger width and the gap length between adjacent electrode fingers is small. By doing so, the center frequency can be equivalently increased. The direction of the electrode finger sequence in which the electrode finger arrangement interval gradually decreases is the direction in which the center frequency gradually increases. Therefore, in the same direction, gradually increase the center frequency of the portion where the electrode finger arrangement interval is the same. Therefore, it is possible to prevent the electrode finger arrangement intervals of the same center frequency from continuing, and it is possible to obtain an acoustic wave device having required characteristics.

【0055】この第3の発明に係る弾性波素子では、す
だれ状電極の電位の異なる電極指が交差する部位の一部
あるいは全体に、隣合う電極指の間隙長に対する上記電
極指幅の比率を乱数的に変化させた。電極指の部分と、
電極指間の間隙の部分とでは、弾性波の伝搬速度が異な
るため、電極指配列間隔が同じでも、上記電極指幅と隣
合う電極指の間隙長との比率を変えることにより、弾性
波の中心周波数を変化させることができる。このため、
隣合う電極指の間隙長に対する上記電極指幅の比率を乱
数的に変化させることにより、同じ中心周波数の電極指
配列間隔が連続するのを防ぎ、所要の特性を有する弾性
波素子を得ることができる。
In the acoustic wave device according to the third aspect of the present invention, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers is set to a part or the whole of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. It was changed randomly. Part of the electrode finger,
Since the propagation speed of the elastic wave is different from that of the gap between the electrode fingers, even if the electrode finger arrangement interval is the same, by changing the ratio between the electrode finger width and the gap length of the adjacent electrode fingers, the elastic wave The center frequency can be changed. For this reason,
By randomly changing the ratio of the electrode finger width to the gap length of adjacent electrode fingers, it is possible to prevent the electrode finger arrangement intervals of the same center frequency from continuing and obtain an acoustic wave device having the required characteristics. it can.

【0056】この第4の発明に係る弾性波素子では、す
だれ状電極の電位の異なる電極指が交差する部位の一部
あるいは全体に、隣合う電極指の間隙長に対する上記電
極指幅の比率が変化する電極指を有するようにした。電
極指の部分と電極指間の間隙の部分とでは、弾性波の伝
搬速度が異なるため、電極指配列間隔が同じでも、上記
電極指幅と隣合う電極指の間隙長との比率が変化する。
すなわち、電極指幅が変化する段付き電極指を用いる
と、等価的に、中心周波数の異なる交差部を並列接続し
たように動作する。このため、隣合う電極指の間隙長に
対する上記電極指幅の比率が変化する段付き電極指を用
いることにより、同じ中心周波数の電極指配列間隔が連
続するのを防ぎ、所要の特性を有する弾性波素子を得る
ことができる。
In the elastic wave device according to the fourth aspect of the present invention, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers is part or all of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. Having varying electrode fingers. Since the propagation speed of the elastic wave is different between the electrode finger portion and the gap portion between the electrode fingers, even if the electrode finger arrangement spacing is the same, the ratio between the electrode finger width and the gap length between adjacent electrode fingers changes. .
That is, when the stepped electrode fingers whose electrode finger widths change are used, they operate equivalently as if the intersecting portions having different center frequencies are connected in parallel. Therefore, by using the stepped electrode fingers in which the ratio of the electrode finger width to the gap length of the adjacent electrode fingers changes, it is possible to prevent the electrode finger arrangement intervals of the same center frequency from continuing and to achieve elasticity having the required characteristics. A wave element can be obtained.

【0057】この第5の発明の弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、隣合う電極指の間隙長に対する上記電極指
幅の比率が変化する段付き電極指を有し、すだれ状電極
の電極指配列間隔が徐々に小さくなる電極指順序の方向
に、上記各電極指における隣合う電極指の間隙長に対す
る上記電極指幅の比率の大きい領域の交差幅方向の長さ
の合計に対して、上記隣合う電極指の間隙長に対する上
記電極指幅の比率の小さい領域の交差幅方向の長さの合
計の比率を、徐々に大きくした。電極指の部分は、電極
指間の間隙の部分よりも、弾性波の伝搬速度が遅い。こ
のため、電極指配列間隔が同じでも、上記電極指幅と隣
合う電極指の間隙長との比率が小さい。すなわち、電極
指幅が狭い電極指を用いると、等価的に、中心周波数を
高くしたように動作する。このため、上記各電極指にお
ける隣合う電極指の間隙長に対する上記電極指幅の比率
の大きい領域の交差幅方向の長さの合計と上記隣合う電
極指の間隙長に対する上記電極指幅の比率の小さい領域
の交差幅方向の長さの合計との比率を、徐々に小さくす
ることにより、等価的に、中心周波数が徐々に高くな
る。この結果、同じ中心周波数の電極指配列間隔が連続
するのを防ぎ、所要の特性を有する弾性波素子を得るこ
とができる。
In the acoustic wave device of the fifth invention, the ratio of the electrode finger width to the gap length of adjacent electrode fingers changes at a part or the whole of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. In the direction of the electrode finger sequence in which the electrode finger arrangement interval of the interdigital electrode is gradually reduced, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each electrode finger is large. The ratio of the total length in the cross width direction of the region having a small ratio of the electrode finger width to the gap length of the adjacent electrode fingers to the total length in the cross width direction of the regions was gradually increased. The propagation speed of the elastic wave is slower in the electrode finger portion than in the gap portion between the electrode fingers. Therefore, even if the electrode finger arrangement intervals are the same, the ratio between the electrode finger width and the gap length between adjacent electrode fingers is small. That is, when an electrode finger having a narrow electrode finger width is used, the operation equivalently increases the center frequency. Therefore, the sum of the lengths in the cross width direction of the regions in which the ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each electrode finger is large and the ratio of the electrode finger width to the gap length of the adjacent electrode fingers. By gradually decreasing the ratio of the area of small area to the total length in the cross width direction, the center frequency is equivalently increased gradually. As a result, it is possible to prevent the electrode finger arrangement intervals of the same center frequency from continuing, and to obtain an acoustic wave device having required characteristics.

【0058】この第6の発明の弾性波素子では、すだれ
状電極の電位の異なる電極指が交差する部位の一部ある
いは全体に、隣合う電極指の間隙長に対する上記電極指
幅の比率が変化する段付き電極指を有し、上記各電極指
における隣合う電極指の間隙長に対する上記電極指幅の
比率の大きい領域の交差幅方向の長さの合計と上記隣合
う電極指の間隙長に対する上記電極指幅の比率の小さい
領域の交差幅方向の長さの合計の比率を、乱数的に変化
させた。電極指の部分と電極指間の間隙の部分とでは、
弾性波の伝搬速度が異なるため、電極指配列間隔が同じ
でも、上記電極指幅と隣合う電極指の間隙長との比率が
変化する。すなわち、電極指幅が変化する電極指を用い
ると、等価的に、中心周波数の異なる交差部を並列接続
したように動作する。このため、隣合う電極指の間隙長
に対する上記電極指幅の比率が乱数的に変化する電極指
を用いることにより、同じ中心周波数の電極指配列間隔
が連続するのを防ぎ、所要の特性を有する弾性波素子を
得ることができる。
In the acoustic wave device of the sixth aspect of the present invention, the ratio of the electrode finger width to the gap length of adjacent electrode fingers changes at a part or the whole of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. Having a stepped electrode finger, the total of the lengths in the cross width direction of the region having a large ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each of the electrode fingers and the gap length of the adjacent electrode fingers The total ratio of the lengths in the cross width direction of the region having a small electrode finger width ratio was randomly changed. In the part of the electrode finger and the part of the gap between the electrode fingers,
Since the propagation speeds of elastic waves are different, even if the electrode finger arrangement intervals are the same, the ratio between the electrode finger width and the gap length between adjacent electrode fingers changes. That is, when the electrode fingers whose electrode finger widths change are used, they operate equivalently as if the intersections having different center frequencies are connected in parallel. Therefore, by using the electrode fingers in which the ratio of the electrode finger width to the gap length of the adjacent electrode fingers changes randomly, it is possible to prevent the electrode finger arrangement intervals of the same center frequency from continuing and to have the required characteristics. An acoustic wave device can be obtained.

【0059】この第7の発明に係る弾性波素子では、圧
電体基板表面に弾性波が分散特性を有する非圧電性の薄
膜を少なくとも一層以上構成し、上記薄膜のうちの任意
の薄膜の表面あるいは上記薄膜と上記圧電体基板との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設けた。薄膜の分散特性により、弾性波の伝搬
路が周波数によって伝搬速度が異なる特性を有する。こ
のため、所要の特性を実現するのに必要なすだれ状電極
の電極指数が、少なすぎたり、多すぎたりして良好な特
性を実現できない場合でも、薄膜の分散特性を利用する
ことにより、弾性波素子の分散特性をすだれ状電極と薄
膜の分散特性の両方で分担することにより、所要の特性
を有する弾性波素子を得ることができる。さらに、電極
指の最小寸法単位によって同じ電極指配列間隔が連続す
る場合でも、薄膜の分散特性によって、群遅延特性は周
波数によって変化させることが可能なため、群遅延時間
のリップルを低減した弾性波素子を得ることができる。
In the acoustic wave device according to the seventh aspect of the present invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any thin film of the above thin films or On the boundary surface between the thin film and the piezoelectric substrate, the interdigital electrode having the electrode finger arrangement interval gradually changed was provided. Due to the dispersion characteristics of the thin film, the propagation path of the elastic wave has a characteristic that the propagation velocity varies depending on the frequency. Therefore, even if the electrode index of the drooping electrode required to achieve the required characteristics is too small or too large to achieve good characteristics, by using the dispersion characteristics of the thin film, By sharing the dispersion characteristics of the wave element with both the interdigital electrodes and the dispersion characteristics of the thin film, it is possible to obtain an acoustic wave element having the required characteristics. Further, even if the same electrode finger arrangement interval is continuous due to the minimum dimension unit of the electrode fingers, the group delay characteristics can be changed by the frequency due to the dispersion characteristics of the thin film. An element can be obtained.

【0060】この第8の発明の弾性波素子では、圧電体
基板表面に弾性波が分散特性を有する非圧電性の薄膜を
少なくとも一層以上構成し、上記薄膜のうちの任意の薄
膜の表面あるいは上記薄膜と上記圧電体基板との境界面
に、電極指配列間隔を徐々に変化させた上記すだれ状電
極を設け、分散性のない圧電体基板上に構成した場合よ
りも、上記すだれ状電極の電極指数が少なくなるように
した。このため、周波数が高い交差部において、隣合う
交差部間での所要の電極指配列間隔差の値を大きくする
ことができ、電極指寸法に最小寸法単位があっても、同
じ電極指配列間隔が連続するのを防ぎ、所要の特性を有
する弾性波素子を得ることができる。
In the elastic wave device of the eighth aspect of the invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any thin film or the above thin film is formed. An electrode of the interdigital transducer is provided on the boundary surface between the thin film and the piezoelectric substrate, which is provided with the interdigital electrode having the electrode finger arrangement interval gradually changed, and is formed on a piezoelectric substrate having no dispersibility. Made the index smaller. For this reason, at an intersection where the frequency is high, it is possible to increase the value of the required electrode finger arrangement interval difference between adjacent intersections, and even if the electrode finger dimension has the minimum dimension unit, the same electrode finger arrangement interval can be set. Can be prevented, and an acoustic wave element having required characteristics can be obtained.

【0061】この第9の発明に係る弾性波素子では、圧
電体基板表面に弾性波が分散特性を有する非圧電性の薄
膜を少なくとも一層以上構成し、上記薄膜のうちの任意
の薄膜の表面あるいは上記薄膜と上記圧電体基板との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設け、分散性のない圧電体基板上に構成した場
合よりも、上記すだれ状電極の電極指数が多くなるよう
にした。このため、電極指数が少ないことにより、隣合
う電極指配列間隔の変化量が大きくなり、なめらかな分
散特性を実現できなくなるのを防ぎ、所要の特性を有す
る弾性波素子を得ることができる。
In the elastic wave device according to the ninth aspect of the present invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any thin film of the above thin films or On the boundary surface between the thin film and the piezoelectric substrate, the interdigital electrode having the electrode finger array spacing gradually changed is provided, and the interdigital electrode is formed more than the case where the interdigital electrode is formed on the piezoelectric substrate having no dispersibility. The electrode index was increased. For this reason, since the electrode index is small, it is possible to prevent the amount of change in the adjacent electrode finger arrangement interval from becoming large, which makes it impossible to realize smooth dispersion characteristics, and it is possible to obtain an acoustic wave element having the required characteristics.

【0062】この第10の発明に係る弾性波素子では、
非圧電体基板表面に弾性波が分散特性を有する圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記非圧電体基板と
の境界面に、電極指配列間隔を徐々に変化させた上記す
だれ状電極を設けた。薄膜の分散特性により、弾性波の
伝搬路が周波数によって伝搬速度が異なる特性を有す
る。このため、所要の特性を実現するのに必要なすだれ
状電極の電極指数が、少なすぎたり、多すぎたりして良
好な特性を実現できない場合でも、薄膜の分散特性を利
用することにより、弾性波素子の分散特性をすだれ状電
極と薄膜の分散特性の両方で分担することにより、所要
の特性を有する弾性波素子を得ることができる。さら
に、電極指の最小寸法単位によって同じ電極指配列間隔
が連続する場合でも、薄膜の分散特性によって、群遅延
特性は周波数によって変化させることが可能なため、群
遅延時間のリップルを低減した弾性波素子を得ることが
できる。
In the elastic wave element according to the tenth invention,
At least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and an electrode is formed on the surface of any of the thin films or on the boundary surface between the thin film and the non-piezoelectric substrate. The above-mentioned interdigital electrodes in which the finger arrangement interval was gradually changed were provided. Due to the dispersion characteristics of the thin film, the propagation path of the elastic wave has a characteristic that the propagation velocity varies depending on the frequency. Therefore, even if the electrode index of the drooping electrode required to achieve the required characteristics is too small or too large to achieve good characteristics, by using the dispersion characteristics of the thin film, By sharing the dispersion characteristics of the wave element with both the interdigital electrodes and the dispersion characteristics of the thin film, it is possible to obtain an acoustic wave element having the required characteristics. Further, even if the same electrode finger arrangement interval is continuous due to the minimum dimension unit of the electrode fingers, the group delay characteristics can be changed by the frequency due to the dispersion characteristics of the thin film. An element can be obtained.

【0063】この第11の発明の弾性波素子では、非圧
電体基板表面に弾性波が分散特性を有する圧電性の薄膜
を少なくとも一層以上構成し、上記薄膜のうちの任意の
薄膜の表面あるいは上記薄膜と上記非圧電体基板との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設け、分散性のない圧電体基板上に構成した場
合よりも、上記すだれ状電極の電極指数が少なくなるよ
うにした。このため、周波数が高い交差部において、隣
合う交差部間での所要の電極指配列間隔差の値を大きく
することができ、電極指寸法に最小単位があっても、同
じ電極指配列間隔が連続するのを防ぎ、所要の特性を有
する弾性波素子を得ることができる。
In the elastic wave element of the eleventh aspect of the invention, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and the surface of any thin film or the above thin film is formed. On the boundary surface between the thin film and the non-piezoelectric substrate, the interdigital electrodes with the electrode finger arrangement interval gradually changed are provided, and the interdigital electrodes are arranged more than the case where the interdigital electrodes are formed on a non-dispersive piezoelectric substrate. The electrode index was reduced. Therefore, at an intersection where the frequency is high, it is possible to increase the value of the required electrode finger arrangement interval difference between adjacent intersections, and even if the electrode finger dimension has the minimum unit, the same electrode finger arrangement interval is maintained. It is possible to prevent continuous occurrence and obtain an acoustic wave device having required characteristics.

【0064】この第12の発明に係る弾性波素子では、
非圧電体基板表面に弾性波が分散特性を有する圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記非圧電体との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設け、分散性のない圧電体基板上に構成した場
合よりも、上記すだれ状電極の電極指数が多くなるよう
にした。このため、電極指数が少ないことにより、隣合
う電極指配列間隔の変化量が大きくなり、なめらかな分
散特性を実現できなくなるのを防ぎ、所要の特性を有す
る弾性波素子を得ることができる。
In the elastic wave element according to the twelfth invention,
At least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and an electrode finger is formed on the surface of any of the thin films or on the boundary surface between the thin film and the non-piezoelectric material. The interdigital electrodes having the arrangement intervals gradually changed were provided to increase the electrode index of the interdigital electrodes as compared with the case where the interdigital electrodes were formed on a non-dispersive piezoelectric substrate. For this reason, since the electrode index is small, it is possible to prevent the amount of change in the adjacent electrode finger arrangement interval from becoming large, which makes it impossible to realize smooth dispersion characteristics, and it is possible to obtain an acoustic wave element having the required characteristics.

【0065】この第13の発明に係る弾性波素子では、
弾性波素子の通過帯域の下限周波数をf1 、上限周波数
をf2 とし、上記弾性波素子のすだれ状電極の交差幅を
0とし、すだれ状電極における弾性波の伝搬速度をV
IDT とし、入力側すだれ状電極にて励振された弾性波が
出力側すだれ状電極に達したときの出力側すだれ状電極
の電極指と上記弾性波の波面とのなす角度をθとしたと
きに、式9で示される条件か、あるいは、nを整数とし
て、式10で示される条件を満足するように、取出し電
極端面の形状を定めた。出力側すだれ状電極の電極指と
上記弾性波の波面とのなす角θは、入力側すだれ状電極
の取り出し電極の構造と、出力側すだれ状電極の取り出
し電極の形状により一意的に決まるから、出力側すだれ
状電極の電極指と上記弾性波の波面とのなす角θの条件
が範囲を有するということは、上記入出力すだれ状電極
の各取り出し電極の形状に範囲を持つことが可能となる
ことである。このため、弾性波の伝搬速度が材料によっ
てばらつきを持っていても、そのばらつきの範囲に対応
した上記取り出し電極の形状を適切に決定することによ
り、所要の特性を有する弾性波素子を得ることができ
る。
In the elastic wave element according to the thirteenth invention,
The lower limit frequency of the pass band of the elastic wave element is f 1 , the upper limit frequency is f 2 , the cross width of the interdigital electrodes of the elastic wave element is W 0, and the propagation speed of the elastic wave in the interdigital electrode is V.
Let IDT be the angle between the electrode finger of the output-side interdigital electrode and the wavefront of the above-mentioned elastic wave when the elastic wave excited by the input-side interdigital electrode reaches the output-side interdigital electrode. The shape of the extraction electrode end face was determined so as to satisfy the condition represented by the formula 9 or the condition represented by the formula 10 with n being an integer. The angle θ formed by the electrode fingers of the output-side interdigital transducer and the wavefront of the elastic wave is uniquely determined by the structure of the extraction electrode of the input-side interdigital electrode and the shape of the extraction electrode of the output-side interdigital electrode. The condition of the angle θ formed by the electrode fingers of the output-side interdigital transducer and the wavefront of the elastic wave has a range, which allows the shape of each extraction electrode of the input / output interdigital transducer to have a range. That is. Therefore, even if the propagation velocity of the elastic wave varies depending on the material, it is possible to obtain the acoustic wave element having the required characteristics by appropriately determining the shape of the extraction electrode corresponding to the range of the variation. it can.

【0066】この第14の発明の弾性波素子では、弾性
波素子の通過帯域の下限周波数をf1 、上限周波数をf
2 、とし、上記弾性波素子のすだれ状電極の交差幅をW
0 とし、すだれ状電極における弾性波の伝搬速度をV
IDT とし、入力側すだれ状電極にて励振された弾性波が
出力側すだれ状で電極に達したときの出力側すだれ状電
極の電極指と上記弾性波の波面とのなす角をθとしたと
きに、式9で示される条件か、あるいは、nを整数とし
て、式10で示される条件を満足するように、上記シー
ルド電極の形状を定めた。出力側すだれ状電極の電極指
と上記弾性波の波面とのなす角θは、入出力すだれ状電
極の各取り出し電極の構造と、入出力すだれ状電極間に
配置されたシールド電極の形状により一意的に決まるか
ら、出力側すだれ状電極の電極指と上記弾性波の波面と
のなす角θの条件が範囲を有するということは、上記シ
ールド電極の形状に範囲を持つことが可能となることで
ある。このため、弾性波の伝搬速度が材料によってばら
つきを持っていても、そのばらつきの範囲に対応した上
記シールド電極の形状を適切に決定することにより、所
要の特性を有する弾性波素子を得ることができる。
In the elastic wave device of the fourteenth invention, the lower limit frequency of the pass band of the elastic wave device is f 1 , and the upper limit frequency thereof is f 1 .
2 and the cross width of the interdigital electrodes of the above acoustic wave device is W
0, and the propagation velocity of the elastic wave in the interdigital transducer is V
IDT , when the angle formed between the electrode finger of the output-side interdigital electrode and the wavefront of the elastic wave when the elastic wave excited by the input-side interdigital electrode reaches the electrode in the output-side interdigital shape is θ Further, the shape of the shield electrode was determined so as to satisfy the condition represented by the formula 9 or the condition represented by the formula 10 with n being an integer. The angle θ formed by the electrode fingers of the output-side interdigital transducer and the wavefront of the elastic wave is unique depending on the structure of each extraction electrode of the input / output interdigital transducer and the shape of the shield electrode arranged between the input / output interdigital transducer. Since the condition of the angle θ formed by the electrode finger of the output-side interdigital transducer and the wavefront of the elastic wave has a range, it means that the shape of the shield electrode can have a range. is there. Therefore, even if the propagation velocity of the elastic wave varies depending on the material, it is possible to obtain the acoustic wave element having the required characteristics by appropriately determining the shape of the shield electrode corresponding to the range of the variation. it can.

【0067】[0067]

【実施例】【Example】

実施例1.図1は、この発明の実施例1に係る弾性波素
子を示す図である。
Example 1. 1 is a diagram showing an acoustic wave device according to a first embodiment of the present invention.

【0068】圧電材料の上面には、入力側すだれ状電極
1a及び出力側すだれ状電極1bが形成され、各すだれ
状電極は、複数の電極指2と、それらの電極指2の基端
に共通接続された一対の取り出し電極3と、で構成され
ている。一方の取り出し電極には電気端子4が接続さ
れ、他方の取り出し電極には接地端子5が接続されてい
る。電気端子4に接続された複数の電極指2と接地端子
に接続された複数の電極指2とが互いに交差し、弾性波
は各交差部に垂直な方向に伝搬する。入力側すだれ状電
極1aの電極指配列間隔は、出力側すだれ状電極1bに
遠い方から近い方に向って、徐々に小さくなっており、
出力側すだれ状電極1bの電極指配列間隔は、入力側す
だれ状電極1aと対称になっている。ここで、隣合う各
電極指2の幅と電極指2間の間隙は、ほぼ同じとなるよ
うに構成しているのは、従来のこの種の弾性波素子と同
じである。
An input side interdigital electrode 1a and an output side interdigital electrode 1b are formed on the upper surface of the piezoelectric material, and each interdigital electrode is common to a plurality of electrode fingers 2 and the base ends of those electrode fingers 2. It is composed of a pair of extraction electrodes 3 connected to each other. The electric terminal 4 is connected to one of the extraction electrodes, and the ground terminal 5 is connected to the other extraction electrode. The plurality of electrode fingers 2 connected to the electric terminal 4 and the plurality of electrode fingers 2 connected to the ground terminal intersect each other, and the elastic wave propagates in a direction perpendicular to each intersection. The electrode finger arrangement interval of the input-side interdigital transducer 1a is gradually reduced from the far side to the output-side interdigital electrode 1b,
The electrode finger arrangement interval of the output-side interdigital transducer 1b is symmetrical with the input-side interdigital transducer 1a. Here, it is the same as the conventional acoustic wave element of this type that the width of each adjacent electrode finger 2 and the gap between the electrode fingers 2 are configured to be substantially the same.

【0069】ただし、従来の弾性波素子のように、電極
指配列間隔が小さいところで、隣合う各電極指2の幅と
電極指2間の間隙をほぼ同じとすると、電極指幅の最小
寸法値があるために、同じ電極指配列間隔が多くなるの
で、この発明の実施例1に係る弾性波素子では、領域1
1のように、隣合う各電極指2の幅と電極指2間の間隙
の比率に変化をもたせている。
However, as in the conventional acoustic wave device, if the width of each adjacent electrode finger 2 and the gap between the electrode fingers 2 are substantially the same at a place where the electrode finger arrangement interval is small, the minimum dimension value of the electrode finger width is obtained. Therefore, the same electrode finger arrangement interval increases, so that in the acoustic wave device according to the first embodiment of the present invention, the area 1
1, the width of each adjacent electrode finger 2 and the ratio of the gap between the electrode fingers 2 are changed.

【0070】すなわち、この実施例の弾性波素子では、
電極指幅及び電極指間隔がともに最小寸法単位の整数倍
に設定されることを前提として、同じ配列間隔のところ
において、各交差部における電極指幅及び電極指間隔の
大きさの組み合わせを相互に異ならせている。これによ
って、交差部全体の中で幾何学的に同一の構成を有する
交差部が生じるのを防止でき、隣接する電極指で構成さ
れる各交差部の中心周波数を相互に異ならせることが可
能となる。
That is, in the acoustic wave device of this embodiment,
Assuming that the electrode finger width and the electrode finger spacing are both set to an integral multiple of the minimum dimension unit, the combination of the electrode finger width and the size of the electrode finger spacing at each intersection at the same array spacing is mutually Different. As a result, it is possible to prevent the occurrence of intersecting portions having the same geometrical configuration in the entire intersecting portions, and it is possible to make the center frequencies of the intersecting portions formed by the adjacent electrode fingers different from each other. Become.

【0071】図2は、図1に示したこの発明の実施例1
に示した弾性波素子の入力側すだれ状電極1aの電極指
配列間隔が小さくなり、隣合う各電極指2の幅と電極指
2間の間隙の比率を変化させた領域11を拡大して示し
ている。図中、電極指番号をiとし、電極指番号iの電
極指2の幅をLi とし、電極指番号iと電極指番号i+
1間の電極指中心間距離をDi とし、電極指番号iと電
極指番号i+1間の間隙長をSi とする。電極指幅の最
小寸法単位をQとし、それが破線で示されている。各電
極指2は、上記破線上が端縁となる。
FIG. 2 shows a first embodiment of the present invention shown in FIG.
A region 11 in which the electrode finger arrangement interval of the input-side interdigital transducer 1a of the elastic wave element shown in FIG. 2 is reduced and the ratio of the width of each adjacent electrode finger 2 and the gap between the electrode fingers 2 is changed is enlarged. ing. In the figure, the electrode finger number is i, the width of the electrode finger 2 of the electrode finger number i is L i , and the electrode finger number i and the electrode finger number i +
The distance between the electrode finger centers between 1 is D i, and the gap length between the electrode finger number i and the electrode finger number i + 1 is S i . The minimum unit of the electrode finger width is Q, which is indicated by a broken line. Each electrode finger 2 has an edge on the broken line.

【0072】ここで、電極指配列間隔Di と、中心周波
数fi との関係を詳細に説明する。電極指2間の弾性波
の伝搬速度は、電極指2の部分と電極指間の間隙の部分
とで異なる。電極指2の部分での弾性波の伝搬速度をV
1 、電極指間の間隙の部分での弾性波の伝搬速度をV2
とすると、電極指配列間隔Di を伝搬するのに要する遅
延時間τi は、次の式11にて与えられる。
Here, the relationship between the electrode finger arrangement interval D i and the center frequency f i will be described in detail. The propagation velocity of the elastic wave between the electrode fingers 2 differs between the electrode finger 2 portion and the gap between the electrode fingers. The propagation velocity of the elastic wave at the electrode finger 2 is V
1 , the propagation velocity of the elastic wave in the gap between the electrode fingers is V 2
Then, the delay time τ i required to propagate the electrode finger arrangement interval D i is given by the following Expression 11.

【0073】 τi =1/2×((Li +Li+1 )/V1 )+Si /V2 …(式11) そして、電極指配列間隔Di を伝搬するのに要する遅延
時間がτi のときの中心周波数fi は、式12となる。
Τ i = 1/2 × ((L i + L i + 1 ) / V 1 ) + S i / V 2 (Equation 11) Then, the delay time required to propagate the electrode finger arrangement interval D i The center frequency f i when τ i is given by Expression 12.

【0074】 fi =1/(2τi ) …(式12) 式11、式12からわかるように、電極指2の部分での
弾性波の伝搬速度V1と電極指間の間隙の部分での弾性
波の伝搬速度V2 とが異なるために、電極指幅Li と間
隙長Si の比率を変えることにより、電極指2間の遅延
時間τi が変化し、中心周波数fi を変えることができ
る。電極指2の部分での弾性波の伝搬速度V1 が、導体
で基板表面を被った場合の伝搬速度Vm に等しく、電極
指間の間隙の部分での弾性波の伝搬速度V2 が、自由表
面での伝搬速度Vf に等しいとすると、伝搬速度V1
2 と、基板の電気機械結合係数k2 との間には、式1
3の関係があることが、上記文献甲にて示されている。
F i = 1 / (2τ i ) (Equation 12) As can be seen from Equations 11 and 12, the propagation velocity V 1 of the elastic wave at the electrode finger 2 and the gap between the electrode fingers are Since the propagation velocity V 2 of the elastic wave is different, the delay time τ i between the electrode fingers 2 is changed and the center frequency f i is changed by changing the ratio of the electrode finger width L i and the gap length S i. be able to. The propagation velocity V 1 of the elastic wave at the electrode finger 2 is equal to the propagation velocity V m when the surface of the substrate is covered with a conductor, and the propagation velocity V 2 of the elastic wave at the gap between the electrode fingers is If it is equal to the propagation velocity V f on the free surface, the propagation velocity V 1 ,
Between V 2 and the electromechanical coupling coefficient k 2 of the substrate, equation 1
It is shown in the above mentioned document A that there is a relationship of 3.

【0075】 k2 =2(V2 −V1 )/V2 …(式13) 式13を書き換えると、式14が得られる。K 2 = 2 (V 2 −V 1 ) / V 2 (Equation 13) When Equation 13 is rewritten, Equation 14 is obtained.

【0076】 V1 =(1−k2 /2)V2 …(式14) 式14を式11に代入して整理すると、式15を得る。[0076] When the V 1 = (1-k 2 /2) V 2 ... ( Equation 14) Equation 14 is organized into equation 11 to obtain an expression 15.

【0077】[0077]

【数2】 式15は、(Li +Li+1 )/2とSi との比率が変化
すれば、その和である電極指配列間隔Di が一定でも、
電極指間の遅延時間τi が変化することを示している。
したがって、電極指幅Li 、Li+1 と電極指L、L
i+1 間の間隙長Si との比率を変えることにより、その
交差部iの中心周波数fi を変化させることができるの
である。図1に示したように、例えば、入力側すだれ状
電極1aの電極指配列間隔が、出力側すだれ状電極1b
に近付くほど小さくなる場合に、最小寸法単位Qのため
に同じ電極指配列間隔が連続する領域11にて電極指幅
iと電極指間の間隙長Si との比率を、出力側すだれ
状電極1bに近い方ほど小さくすれば、実効的に、各交
差部での遅延時間τi を少しずつ小さくすることになる
ため、同じ遅延時間の交差部が連続することによる特性
の劣化を防ぐことができる。
[Equation 2] Equation 15 shows that if the ratio of (L i + L i + 1 ) / 2 and S i changes, the sum of the electrode finger arrangement intervals D i is constant,
It shows that the delay time τ i between the electrode fingers changes.
Therefore, the electrode finger widths L i and L i + 1 and the electrode fingers L i and L i
By changing the ratio with the gap length S i between i + 1, the center frequency f i of the intersection i can be changed. As shown in FIG. 1, for example, the electrode finger arrangement interval of the input-side interdigital transducer 1a is equal to the output-side interdigital transducer 1b.
In the area 11 where the same electrode finger arrangement interval is continuous due to the minimum dimension unit Q, the ratio of the electrode finger width L i and the gap length S i between the electrode fingers is set to the output side interdigital shape when If the distance is made closer to the electrode 1b, the delay time τ i at each intersection is effectively decreased little by little, so that the deterioration of the characteristics due to continuous intersections having the same delay time is prevented. You can

【0078】実施例2.(第1実施例の具体例) 図3は、この発明の実施例2の弾性波素子における電極
指配列間隔を示した例である。図3は、例として、電極
指配列間隔Di が8Qから6Qまでの選択可能な電極指
幅Li と電極指間の間隙長Si を示している。図中の数
値は、全て、最小寸法単位Qで割った値を示している。
図中、電極指幅は交差部をはさんだ2つの電極指幅の和
(Li +Li+1 )を示しており、例えば、電極指幅の和
(Li +Li+1 )が4のときのLi とLi+1 の組み合わ
せを(Li 、Li+1 )として表すと、電極指の和L
i+1 が4のときは、(1、3)、(2、2)、(3、
1)の3通りが考えられる。したがって、各電極指
i 、Li+1 と電極指Li 、Li+1 間の間隙長Si の組
み合わせは、図3に示した場合よりも多い。
Example 2. (Specific Example of First Embodiment) FIG. 3 is an example showing an electrode finger arrangement interval in an acoustic wave device of a second embodiment of the present invention. FIG. 3 shows, as an example, the selectable electrode finger width L i and the gap length S i between the electrode fingers when the electrode finger arrangement interval D i is from 8Q to 6Q. All the numerical values in the figure indicate values divided by the minimum dimension unit Q.
In the figure, the electrode finger width indicates the sum (L i + L i + 1 ) of two electrode finger widths across the intersection, and for example, the electrode finger width sum (L i + L i + 1 ) is 4. Denoting the combination of L i and L i + 1 when a (L i, L i + 1 ), the sum of the electrode finger L i +
When L i + 1 is 4, (1, 3), (2, 2), (3,
There are three possibilities of 1). Thus, the combination of the gap length S i between the electrode fingers L i, L i + 1 and the electrode finger L i, L i + 1 is greater than in the case shown in FIG.

【0079】図3に示したこの発明の実施例2の弾性波
素子で実現可能な電極指配列間隔の一例では、最小寸法
単位Qに対して、電極指配列間隔Di は、0.5Q間隔
の任意の間隔で設定可能である。これに対して、図49
に示した従来のこの種弾性波素子で実現可能な電極指配
列間隔では、過渡的に0.5Q間隔とすることはできる
が、この過渡的な電極指配列間隔を連続させることがで
きず、実際に実現可能な電極指配列間隔Di は2Qおき
の値となる。すなわち、この発明の実施例2の弾性波素
子では、幅の大きさと間隙長との比率変化を活用したの
で、従来のこの種の弾性波素子に比べ、4倍細かい間隔
で電極指配列間隔Di を設定することができる。
In the example of the electrode finger arrangement interval which can be realized by the acoustic wave device of the second embodiment of the present invention shown in FIG. 3, the electrode finger arrangement interval D i is 0.5 Q interval with respect to the minimum dimension unit Q. Can be set at any interval. On the other hand, FIG.
The electrode finger arrangement interval that can be realized by the conventional acoustic wave device shown in (1) can be transiently set to 0.5Q, but this transitional electrode finger arrangement interval cannot be made continuous, The actually realizable electrode finger arrangement interval D i is a value every 2Q. That is, in the elastic wave device of the second embodiment of the present invention, since the ratio change between the width size and the gap length is utilized, the electrode finger arrangement interval D is four times finer than the conventional elastic wave device of this type. i can be set.

【0080】図4は、例えば、この発明の実施例2の弾
性波素子を用いた場合の電極指配列間隔Di を示した図
である。図中、横軸は電極指番号iであり、縦軸は電極
指配列間隔Di である。6は最小寸法単位Qを設定しな
い場合の従来のこの種の弾性波素子の電極指配列間隔D
i であり、17はこの発明の第2の実施例の弾性波素子
に係る電極指配列間隔Di である。
FIG. 4 is a diagram showing the electrode finger arrangement interval D i when the acoustic wave device of the second embodiment of the present invention is used, for example. In the figure, the horizontal axis is the electrode finger number i, and the vertical axis is the electrode finger arrangement interval D i . 6 is the electrode finger arrangement interval D of the conventional acoustic wave device of this type when the minimum dimension unit Q is not set.
i is 17 and 17 is an electrode finger arrangement interval D i according to the acoustic wave device of the second embodiment of the present invention.

【0081】従来のこの種の弾性波素子の電極指配列間
隔Di 7に比べ、この発明の第2の実施例の弾性波素子
に係る電極指配列間隔Di 17は、電極指配列間隔Di
の変化量が小さく、より最小寸法単位Qを設定しない場
合の連続的な電極指配列間隔Di 6に近い変化を示す。
この結果、この発明の第2の実施例に係る弾性波素子
は、帯域内リップルの少ない良好な特性を得ることがで
きる。
Compared with the conventional electrode finger arrangement interval D i 7 of this type of acoustic wave device, the electrode finger arrangement interval D i 17 according to the elastic wave device of the second embodiment of the present invention is equal to the electrode finger arrangement interval D i. i
Shows a change close to the continuous electrode finger arrangement interval D i 6 when the minimum size unit Q is not set.
As a result, the acoustic wave device according to the second embodiment of the present invention can obtain good characteristics with less in-band ripple.

【0082】図5は、基板材料に、YカットZ伝搬ニオ
ブ酸リチウムを用いた場合に、図3に示した電極指配列
間隔における電極指間の遅延時間τi を示している。図
中、横軸は、図3に示した各電極指配列間隔Di であ
り、各電極指配列間隔Di の中での電極指幅の和(Li
+Li+1 )と電極指間の間隙長Si との各組み合わせの
場合について示している。縦軸は電極指間の遅延時間τ
i を示している。電気機械結合計数k2 は4.9%とし
た。黒い四角は従来この種の弾性波素子で実現可能な値
であり、白い四角はこの発明の実施例2の弾性波素子に
て実現可能な値である。
FIG. 5 shows the delay time τ i between the electrode fingers in the electrode finger arrangement interval shown in FIG. 3 when the Y-cut Z-propagating lithium niobate is used as the substrate material. Figure, the horizontal axis represents the respective electrode finger arrangement interval D i shown in FIG. 3, the electrode sum of finger width (L i of in each electrode finger arrangement interval D i
+ L i + 1 ) and the gap length S i between the electrode fingers are shown for each combination. The vertical axis shows the delay time τ between the electrode fingers
i is shown. The electromechanical coupling coefficient k 2 was set to 4.9%. The black squares are values that can be conventionally achieved by this type of acoustic wave device, and the white squares are values that can be achieved by the acoustic wave device of Example 2 of the present invention.

【0083】図3、図4でも示したように、この発明の
第2の実施例に係る弾性波素子では、電極指配列間隔D
i を最小寸法単位をQとしたときに、0.5Q間隔で設
定することが可能である。さらに、この発明の第1の実
施例に係る弾性波素子でも示したように、電極指におけ
る弾性波の伝搬速度と、電極指間の間隙における弾性波
の伝搬速度が異なるために、電極指幅の和(Li +L
i+1 )と電極指間の間隙長Si との比率を変えることに
より遅延時間τi を僅かずつ変化させることができる。
この僅かな変化を利用することにより、すだれ状電極1
内での電極指配列間隔Di の変化を従来のこの種の弾性
波素子よりもより連続的に変化させることが可能であ
る。例えば、電極指配列間隔Di が7Qのときは、電極
指幅の和(Li +Li+1 )を6、電極指間の間隙長Si
を1とすることにより、電極指配列間隔Di が7Qのと
きに最も遅延時間τi が長くなるようにし、電極指配列
間隔Di が7.5Qのときは、電極指幅の和(Li +L
i+1 )を1.5、電極指間の間隙長Si を6.5とする
ことにより、電極指配列間隔Di が7.5Qのときに最
も遅延時間τi が短くなるように設定することにより、
図5に示すように、遅延時間差を0.39Q/V2 とす
ることができる。従来のこの種の弾性波素子では、遅延
時間τi の差は2.03Q/V2 であるから、この発明
の実施例2の弾性波素子では、はるかに小さい遅延時間
差を実現できるように、電極指2を配列することが可能
である。
As shown in FIGS. 3 and 4, in the acoustic wave device according to the second embodiment of the present invention, the electrode finger arrangement interval D is set.
It is possible to set i at intervals of 0.5Q, where i is the minimum size unit. Further, as shown in the elastic wave element according to the first embodiment of the present invention, since the propagation speed of the elastic wave in the electrode fingers and the propagation speed of the elastic wave in the gap between the electrode fingers are different, Sum of (L i + L
The delay time τ i can be changed little by little by changing the ratio of ( i + 1 ) to the gap length S i between the electrode fingers.
By utilizing this slight change, the interdigital transducer 1
It is possible to change the electrode finger arrangement interval D i in the inside more continuously than in the conventional acoustic wave device of this type. For example, when the electrode finger arrangement interval D i is 7Q, the sum of the electrode finger widths (L i + L i + 1 ) is 6, and the gap length S i between the electrode fingers is S i.
With 1, the electrode finger arrangement interval D i is as most delay time tau i becomes longer when 7Q, when the electrode finger arrangement interval D i is 7.5Q, the sum of the electrode finger width (L i + L
i + 1 ) is set to 1.5 and the gap length S i between the electrode fingers is set to 6.5, so that the delay time τ i is set to be the shortest when the electrode finger arrangement interval D i is 7.5Q. By doing
As shown in FIG. 5, the delay time difference can be set to 0.39Q / V 2 . In the conventional acoustic wave device of this type, the difference in delay time τ i is 2.03Q / V 2 , so that the elastic wave device of the second embodiment of the present invention can realize a much smaller delay time difference. It is possible to arrange the electrode fingers 2.

【0084】実施例3.図6は、この発明の第3の実施
例に係る弾性波素子のすだれ状電極1の一部を示す図で
ある。図中、2は電極指であり、破線は最小単位Qの整
数倍となる寸法位置である。各電極指2は、配列間隔D
i で配列されている。
Example 3. FIG. 6 is a view showing a part of the interdigital transducer 1 of the acoustic wave device according to the third embodiment of the present invention. In the figure, 2 is an electrode finger, and a broken line is a dimensional position that is an integral multiple of the minimum unit Q. Each electrode finger 2 has an arrangement interval D
arranged by i .

【0085】図6に示したこの発明の第3の実施例に係
る弾性波素子は、最小寸法単位Qがあるために電極指配
列間隔Di が同じ値を連続してしまうような領域11に
おいて、電極指幅Li を乱数的に変化させている。電極
指幅Li と電極指間の間隙長Si との比率を変化させる
と、図5にて一例を示したように、電極指間の遅延時間
τi を変化させることができる。電極指間の遅延時間τ
i を乱数的に変化させることにより、各交差部での中心
周波数fi も乱数的に変化する。各交差部の変換効率の
和は、中心周波数fi が乱数的に変化した特性の和であ
り、変換効率が最大となる周波数が全て重なることがな
くなる。その結果、電極指間の遅延時間τi が同じ交差
部が連続する場合よりも、各交差部の変換効率の和の帯
域幅が広くなり、隣合う交差部との変換効率の重なりが
なめらかになり、すだれ状電極1の特性に生じるリップ
ルを小さくすることができ、良好な特性の弾性波素子を
得ることができる。
The elastic wave element according to the third embodiment of the present invention shown in FIG. 6 has a minimum dimension unit Q in the area 11 where the electrode finger arrangement intervals D i are the same. , The electrode finger width L i is randomly changed. By changing the ratio of the electrode finger width L i and the gap length S i between the electrode fingers, the delay time τ i between the electrode fingers can be changed as shown in an example in FIG. Delay time between electrode fingers τ
By changing i at random, the center frequency f i at each intersection also changes at random. The sum of the conversion efficiencies at the intersections is the sum of the characteristics in which the center frequency f i changes in a random number, and the frequencies at which the conversion efficiencies are maximum do not overlap. As a result, the bandwidth of the sum of the conversion efficiencies of each intersection becomes wider than that in the case where the intersections having the same delay time τ i between the electrode fingers are continuous, and the conversion efficiency of the adjacent intersections smoothly overlaps. Therefore, the ripples that occur in the characteristics of the interdigital transducer 1 can be reduced, and an acoustic wave device with excellent characteristics can be obtained.

【0086】実施例4.図7は、この発明の第4の実施
例に係る弾性波素子の動作を説明する図である。図中、
18は電極指幅を部分的に変化させた段付き電極指であ
り、19は電極指幅の太い部分でありその電極指幅をM
i とし、20は電極指幅の細い部分でありその電極指幅
をLi とする。W0 は電極指18の交差する部分の長さ
である。図7にて、破線は最小寸法単位Qの整数倍の位
置を示すものとする。
Example 4. FIG. 7 is a diagram for explaining the operation of the acoustic wave device according to the fourth embodiment of the present invention. In the figure,
Reference numeral 18 is a stepped electrode finger in which the electrode finger width is partially changed, 19 is a thick portion of the electrode finger width, and the electrode finger width is M
i is a portion having a narrow electrode finger width, and the electrode finger width is L i . W 0 is the length of the intersecting portion of the electrode fingers 18. In FIG. 7, the broken line indicates the position of an integral multiple of the minimum dimension unit Q.

【0087】電極指18間での特性は、電極指配列間隔
i を弾性波が伝搬する遅延時間τi で決まる。電極指
18の部分での伝搬速度と、電極指間の間隙での伝搬速
度は僅かに異なるから、電極指幅の細い部分20での遅
延時間と、電極指幅の太い部分19での遅延時間は異な
る値を有する。同じ電極指18に、電極指幅の細い部分
20と電極指幅の太い部分19とがある場合には、各電
極指18はそれぞれ同じ電位であるから、等価的に、電
極指幅の細い部分20と同じ電極指幅Li の電極指から
なる交差部と、電極指幅の太い部分19と同じ電極指幅
i の電極指からなる交差部が電気的に並列接続されて
いるとみなすことができる。すなわち、上記交差部の特
性は、電極指幅の細い部分20と同じ電極指幅Li の電
極指からなる交差部の特性と、電極指幅の太い部分19
と同じ電極指幅Mi の電極指からなる交差部の特性との
和とみなすことができる。したがって、各交差部につい
て、電極指幅の細い部分20が交差している部分の交差
幅の和と、電極指幅の太い部分19が交差している部分
の交差幅の和との比率によって、交差部の特性を変化さ
せることができ、電極指配列間隔Di が同じでも、等価
的に、異なる遅延時間の交差部を得ることができ、しか
も、交差幅W0 は、各電極指幅に比べて通常かなり大き
いから、電極指幅の細い部分20と太い部分19の比率
はほぼ連続的に設定することができるため、ある電極指
配列間隔Di のときに、電極指幅を限界まで細くした場
合の遅延時間から、電極指幅を限界まで太くした場合の
遅延時間までの間を、ほぼ連続的に設定することができ
る。その結果、リップルの少ない良好な特性の弾性波素
子を得ることができる。
The characteristic between the electrode fingers 18 is determined by the delay time τ i for the elastic wave to propagate through the electrode finger arrangement interval D i . Since the propagation velocity at the electrode finger 18 portion and the propagation velocity at the gap between the electrode fingers are slightly different, the delay time at the narrow electrode finger width portion 20 and the delay time at the thick electrode finger width portion 19 are increased. Have different values. When the same electrode finger 18 has a narrow electrode finger width portion 20 and a thick electrode finger width portion 19, each electrode finger 18 has the same potential, so that equivalently, the thin electrode finger width portion 20 and intersections made of the electrode fingers of the same electrode finger width L i and, be regarded as a cross-section consisting of electrode fingers of the same electrode finger width M i and the thick portion 19 of the electrode finger width is electrically connected in parallel You can That is, the characteristics of the intersections, and the characteristics of the cross-section consisting of electrode fingers of the same electrode finger width L i a narrow portion 20 of the electrode finger width, thick portion of the electrode finger width 19
Can be regarded as the sum of the characteristics of the intersection portion formed by the electrode fingers having the same electrode finger width M i . Therefore, for each intersection, by the ratio of the sum of the intersection widths of the portions where the thin electrode finger widths 20 intersect and the sum of the intersection widths of the portions where the thick electrode finger widths 19 intersect, The characteristics of the intersecting portion can be changed, and even if the electrode finger arrangement interval D i is the same, it is possible to equivalently obtain the intersecting portion having different delay times, and the intersecting width W 0 is equal to each electrode finger width. Since the ratio is usually considerably large, the ratio of the thin electrode finger width portion 20 to the thick electrode finger width portion 19 can be set almost continuously. Therefore, at a certain electrode finger arrangement interval D i , the electrode finger width is reduced to the limit. The delay time in the case of the above can be set almost continuously from the delay time in the case of widening the electrode finger width to the limit. As a result, it is possible to obtain an acoustic wave device having good characteristics with little ripple.

【0088】実施例5.図8は、この発明の実施例5に
係る弾性波素子を示す図である。図中、電極指番号をi
とし、電極指番号が大きいほど、電極指幅の太い部分1
9に対する電極指幅の細い部分20の比率が大きくなっ
ている。破線は、最小寸法単位Qの整数倍の位置を示す
ものとし、電極指iからi+2までは、幅4Qの電極指
18の一部が太くなっており、電極指i+4は、幅4Q
の電極指の一部が細くなっている。
Example 5. FIG. 8 is a diagram showing an acoustic wave device according to a fifth embodiment of the present invention. In the figure, the electrode finger number is i
The larger the electrode finger number, the thicker the electrode finger 1
The ratio of the narrow portion 20 of the electrode finger width to 9 is large. The broken line indicates a position that is an integral multiple of the minimum dimension unit Q, and a part of the electrode finger 18 having a width 4Q is thicker from the electrode finger i to i + 2, and the electrode finger i + 4 has a width 4Q.
Some of the electrode fingers are thin.

【0089】電極指幅の細い電極指からなる交差部は、
電極指幅の太い電極指18からなる交差部よりも、電極
指配列間隔Di を伝搬するときの遅延時間τi が小さ
い。すなわち、中心周波数fi が高くなる。したがっ
て、電極指幅の太い部分19に対する電極指幅の細い部
分20の比率が大きい方が、中心周波数が高くなる。図
8に示したこの発明の実施例5に係る弾性波素子の一例
では、電極指番号iが大きいほど、電極指幅の太い部分
19に対する電極指幅の細い部分20の比率が大きくな
っているので、電極指番号iが大きくなるのにしたがっ
て、各交差部での中心周波数fi が高くなっている。し
たがって、電極指番号iが大きくなるのにしたがって、
電極指配列間隔が小さくなっているようなすだれ状電極
1の一部、あるいは、全部に、図8に示したような電極
指番号iが大きいほど、電極指幅の太い部分19に対す
る電極指幅の細い部分20の比率が大きくなっている電
極指18を用いることにより、同じ値の電極指配列間隔
が連続する部位11でも、中心周波数を変化させること
ができ、リップルの少ない良好な弾性波素子を得ること
ができる。
The crossing portion composed of electrode fingers having a narrow electrode finger width is
Than intersections consisting thick electrode finger 18 of the electrode finger width, the delay time tau i when propagating through the electrode finger arrangement interval D i is small. That is, the center frequency f i becomes high. Therefore, the larger the ratio of the narrow electrode finger width portion 20 to the thicker electrode finger width portion 19 is, the higher the center frequency is. In the example of the acoustic wave device according to the fifth embodiment of the present invention shown in FIG. 8, the larger the electrode finger number i, the larger the ratio of the narrow electrode finger portion 20 to the thick electrode finger portion 19 is. Therefore, as the electrode finger number i increases, the center frequency f i at each intersection increases. Therefore, as the electrode finger number i increases,
As the electrode finger number i as shown in FIG. 8 increases in a part or the whole of the interdigital electrode 1 in which the electrode finger arrangement interval is small, the electrode finger width with respect to the thicker electrode finger width 19 is increased. By using the electrode fingers 18 in which the ratio of the narrow portion 20 of the electrode finger is large, the center frequency can be changed even in the portion 11 where the electrode finger arrangement intervals of the same value are continuous, and a good acoustic wave element with less ripples can be obtained. Can be obtained.

【0090】実施例6.図9は、この発明の実施例6に
係る弾性波素子を示す図である。図中、電極指番号をi
とし、電極指18によって、電極指幅の太い部分19に
対する電極指幅の細い部分20の比率を乱数的に変化さ
せている。破線は、最小寸法単位Qの整数倍の位置を示
す。
Example 6. FIG. 9 is a diagram showing an acoustic wave device according to Example 6 of the present invention. In the figure, the electrode finger number is i
Then, the ratio of the thin portion 20 of the electrode finger to the thick portion 19 of the electrode finger width is randomly changed by the electrode finger 18. The broken line indicates the position of an integral multiple of the minimum dimension unit Q.

【0091】電極指幅の太い部分19に対する電極指幅
の細い部分20の比率を変化させると、電極指間の遅延
時間τi を変化させることができる。電極指間の遅延時
間τi を乱数的に変化させることにより、各交差部での
中心周波数fi が乱数的に変化する。各交差部の変換効
率の和は、中心周波数fi が乱数的に変化した特性の和
であり、変換効率が最大となる周波数が全て重なること
がなくなる。その結果、電極指間の遅延時間τi が同じ
交差部が連続する場合よりも、各交差部の変換効率の和
の帯域幅が広くなり、隣合う交差部との変換効率の重な
りがなめらかになり、すだれ状電極1の特性に生じるリ
ップルを小さくすることができ、良好な特性の弾性波素
子を得ることができる。
The delay time τ i between the electrode fingers can be changed by changing the ratio of the narrow electrode finger width portion 20 to the wide electrode finger width portion 19. By randomly changing the delay time τ i between the electrode fingers, the center frequency f i at each intersection changes randomly. The sum of the conversion efficiencies at the intersections is the sum of the characteristics in which the center frequency f i changes in a random number, and the frequencies at which the conversion efficiencies are maximum do not overlap. As a result, the bandwidth of the sum of the conversion efficiencies of each intersection becomes wider than that in the case where the intersections having the same delay time τ i between the electrode fingers are continuous, and the conversion efficiency of the adjacent intersections smoothly overlaps. Therefore, the ripples that occur in the characteristics of the interdigital transducer 1 can be reduced, and an acoustic wave device with excellent characteristics can be obtained.

【0092】実施例7.図10、および、図11は、こ
の発明の実施例7に係る弾性波阻止を示す図である。図
10はこの発明の実施例7に係る弾性波素子の上面図、
図11は、図10に示したA−B間の断面図である。図
中、21は圧電体基板であり、22は分散性を有する非
圧電性の薄膜である。入力側すだれ状電極1aは、出力
側すだれ状電極1bに近くなるのにしたがって、電極指
配列間隔が大きくなり、出力側すだれ状電極1bは入力
側すだれ状電極1aと対称な形をしている。このため、
図10、および、図11に示した弾性波素子は、周波数
が高くなるのにしたがって遅延時間が大きくなる特性を
示す。図12は、図11に示した非圧電性薄膜22と圧
電基板21とからなる薄膜構成における弾性波の分散特
性を示す図である。図中、横軸は周波数であり、縦軸は
弾性波の伝搬速度である。薄膜22を有する場合には、
文献(以下、文献乙とする)“弾性表面波工学”、電子
通信学会発行、1985年6月、pp.82−90に示
されているように、周波数が高くなると、伝搬速度が小
さくなる特性となる。周波数に対する伝搬速度の値は、
使用する基板21材料や薄膜22材料、および、薄膜の
厚み等により決まる。
Example 7. 10 and 11 are diagrams showing elastic wave blocking according to the seventh embodiment of the present invention. FIG. 10 is a top view of an acoustic wave device according to Example 7 of the present invention,
FIG. 11 is a cross-sectional view taken along the line AB shown in FIG. In the figure, 21 is a piezoelectric substrate, and 22 is a non-piezoelectric thin film having dispersibility. As the input side interdigital transducer 1a is closer to the output side interdigital transducer 1b, the electrode finger arrangement interval increases, and the output side interdigital transducer 1b has a shape symmetrical to the input side interdigital transducer 1a. . For this reason,
The acoustic wave devices shown in FIGS. 10 and 11 show the characteristic that the delay time increases as the frequency increases. FIG. 12 is a diagram showing the dispersion characteristics of elastic waves in the thin film configuration including the non-piezoelectric thin film 22 and the piezoelectric substrate 21 shown in FIG. In the figure, the horizontal axis represents frequency and the vertical axis represents the propagation velocity of elastic waves. When the thin film 22 is provided,
Reference (hereinafter referred to as Reference B) "Surface Acoustic Wave Engineering", published by The Institute of Electronics and Communication Engineers, June 1985, pp. 82-90, the higher the frequency, the smaller the propagation velocity. The value of the propagation velocity with respect to frequency is
It is determined by the material of the substrate 21 and thin film 22 used, the thickness of the thin film, and the like.

【0093】図12に示すように、周波数fが高くなる
のにしたがって伝搬速度Vが小さくなるから、入出力す
だれ状電極1間の伝搬路でも周波数が高くなるのにした
がって遅延時間が大きくなる特性をもつので、すだれ状
電極1内で実現すべき遅延時間差は、上記伝搬路での遅
延時間差を差し引いたものになる。すなわち、すだれ状
電極1内にて、周波数がΔf変化したときの遅延時間の
変化量をΔτIDT とし、目標値をΔτとし、上記入出力
すだれ状電極1間の伝搬路での遅延時間の変化量をΔτ
dly とすると、式16の関係になる。
As shown in FIG. 12, since the propagation velocity V decreases as the frequency f increases, the delay time also increases in the propagation path between the input / output interdigital transducers 1 as the frequency increases. Therefore, the delay time difference to be realized in the interdigital transducer 1 is obtained by subtracting the delay time difference in the propagation path. That is, in the interdigital transducer 1, the change amount of the delay time when the frequency changes by Δf is Δτ IDT , the target value is Δτ, and the change in the delay time in the propagation path between the input / output interdigital transducer 1 is set. Δτ
If dly , the relation of Expression 16 is obtained.

【0094】 ΔτIDT =Δτ−Δτdly …(式16) 従来のこの種の弾性波素子では、入出力すだれ状電極1
間の伝搬路では周波数による遅延時間差はないから、こ
の発明の実施例7に係る弾性波素子のすだれ状電極1
は、上記伝搬路での遅延時間変化量Δτdly を引いた分
だけ、遅延時間変化量ΔτIDT を小さくすることができ
る。すだれ状電極1での遅延時間変化量ΔτIDT を小さ
くするということは、すだれ状電極1の電極指数を少な
くすることができることであり、隣合う各交差部間での
電極指配列間隔差が大きくなり、最小寸法単位Qがあっ
ても同じ電極指配列間隔が連続するのを防ぐことができ
る。その結果、従来のこの種の弾性波素子では、すだれ
状電極1の電極指数が多くなりすぎて、高周波数を励振
する領域で同じ電極指配列間隔が連続してしまうような
場合でも、同じ電極指配列間隔が連続してしまう領域の
範囲を小さくできるため、リップルの発生を低く抑える
ことができる。さらに、同じ電極指配列間隔が連続する
領域でも、遅延時間は周波数によって変化するから、従
来のこの種の弾性波素子よりも良好な遅延時間特性を実
現できる。
Δτ IDT = Δτ−Δτ dly (Equation 16) In the conventional elastic wave device of this type, the input / output interdigital transducer 1
Since there is no delay time difference due to the frequency in the propagation path between them, the interdigital transducer 1 of the acoustic wave device according to the seventh embodiment of the present invention.
Can reduce the delay time variation Δτ IDT by the amount obtained by subtracting the delay time variation Δτ dly on the propagation path. Reducing the delay time change amount Δτ IDT in the interdigital transducer 1 means that the electrode index of the interdigital electrode 1 can be reduced, and the difference in the electrode finger arrangement interval between adjacent crossing portions is large. Therefore, even if there is the minimum dimension unit Q, it is possible to prevent the same electrode finger arrangement interval from continuing. As a result, in the conventional acoustic wave device of this type, even when the electrode index of the interdigital transducer 1 becomes too large and the same electrode finger arrangement interval is continuous in the region where high frequency is excited, the same electrode fingers are arranged. Since the range of the region where the finger arrangement intervals are continuous can be reduced, it is possible to suppress the occurrence of ripples to a low level. Further, even in the region where the same electrode finger arrangement interval is continuous, the delay time changes depending on the frequency, so that a better delay time characteristic than that of the conventional acoustic wave device of this type can be realized.

【0095】実施例8.図13、図14は、この発明の
実施例8に係る弾性波素子を示す図である。図13はこ
の発明の実施例8に係る弾性波素子の上面図、図14
は、図13に示したA−B間の断面図である。図中、2
1は圧電基板であり、22は分散性を有する“非圧電
性”の薄膜である。入力側すだれ状電極1aは、出力側
すだれ状電極1bに近くなるのにしたがって、電極指配
列間隔が小さくなり、出力側すだれ状電極1bは入力側
すだれ状電極1aと対称な形をしている。このため、図
13、および、図14に示した弾性波素子は、周波数が
高くなるのにしたがって遅延時間が小さくなる特性を示
す。圧電基板21と非圧電性薄膜22からなる伝搬路の
特性は、図12に示したような、周波数が高くなると伝
搬速度が小さくなる特性である。
Example 8. 13 and 14 are views showing an acoustic wave device according to Example 8 of the present invention. 13 is a top view of an acoustic wave device according to Example 8 of the present invention, and FIG.
FIG. 14 is a cross-sectional view taken along the line AB shown in FIG. 13. 2 in the figure
Reference numeral 1 is a piezoelectric substrate, and 22 is a "non-piezoelectric" thin film having dispersibility. As the input side interdigital transducer 1a is closer to the output side interdigital transducer 1b, the electrode finger arrangement interval becomes smaller, and the output side interdigital transducer 1b is symmetrical to the input side interdigital transducer 1a. . For this reason, the elastic wave elements shown in FIGS. 13 and 14 show the characteristic that the delay time becomes smaller as the frequency becomes higher. The characteristic of the propagation path composed of the piezoelectric substrate 21 and the non-piezoelectric thin film 22 is such a characteristic that the propagation velocity decreases as the frequency increases, as shown in FIG.

【0096】図13、および、図14に示した弾性波素
子は、周波数が高くなると遅延時間が小さくなる特性だ
から、周波数を変化させた場合のすだれ状電極1の遅延
時間差ΔτIDT は、弾性波素子に要求される遅延時間差
Δτに、入出力すだれ状電極1間の伝搬路での遅延時間
差Δτdly を加えたものになる。この発明の実施例8に
係る弾性波素子のすだれ状電極1は、上記伝搬路での遅
延時間変化量Δτdlyを加えた分だけ、遅延時間変化量
ΔτIDT を大きくすることができる。すだれ状電極1で
の遅延時間変化量ΔτIDT を大きくするということは、
すだれ状電極1の数を多くすることができることであ
り、隣合う電極指配列間隔差を小さくして、各交差部の
特性がなめらかに変化するようにできる。その結果、従
来のこの種の弾性波素子では、すだれ状電極1の電極指
数が少なくなりすぎて、隣合う電極隣合う電極指配列間
隔差を小さくして、各交差部の特性がなめらかに変化す
るようにできるため、リップルの発生を低く抑えること
ができる。
Since the elastic wave elements shown in FIGS. 13 and 14 have the characteristic that the delay time decreases as the frequency increases, the delay time difference Δτ IDT of the interdigital transducer 1 when the frequency is changed is This is the delay time difference Δτ required for the element plus the delay time difference Δτ dly in the propagation path between the input / output interdigital transducers 1. The interdigital transducer 1 of the acoustic wave device according to the eighth embodiment of the present invention can increase the delay time change amount Δτ IDT by an amount corresponding to the addition of the delay time change amount Δτ dly in the propagation path. Increasing the delay time variation Δτ IDT at the interdigital transducer 1 means
It is possible to increase the number of the interdigital electrodes 1, and it is possible to reduce the difference between the adjacent electrode finger arrangement intervals so that the characteristics of each intersection smoothly change. As a result, in the conventional acoustic wave device of this type, the electrode index of the interdigital electrode 1 becomes too small, the adjacent electrode finger arrangement interval difference becomes small, and the characteristics of each intersection smoothly change. Therefore, it is possible to suppress the occurrence of ripples to a low level.

【0097】実施例9.図15、および、図16は、こ
の発明の実施例9に係る弾性波素子を示す図である。図
15はこの発明の実施例7に係る弾性波素子の上面図、
図16は、図15に示したA−B間の断面図である。図
中、23は非圧電性の基板であり、24は分散性を有す
る“圧電性”の薄膜である。入力側すだれ状電極1a
は、出力側すだれ状電極1bに近くなるのにしたがっ
て、電極指配列間隔が大きくなり、出力側すだれ状電極
1bは入力側すだれ状電極1aと対称な形をしている。
このため、図15、および、図16に示した弾性波素子
は、周波数が高くなるのにしたがって遅延時間が大きく
なる特性を示す。図16に示した圧電性薄膜24と非圧
電性の基板23とからなる薄膜構成における弾性波の分
散特性は、文献(以下、文献丙とする)“弾性表面波工
学”、電子通信学会発行、1985年6月、pp.69
−74に示されているように、周波数が高くなると、伝
搬速度が小さくなる特性となり、図12に示したような
特性である。周波数に対する伝搬速度の値は、使用する
基板23材料や薄膜24材料、および、薄膜の厚み等に
より決まる。
Example 9. 15 and 16 are diagrams showing an acoustic wave device according to a ninth embodiment of the present invention. FIG. 15 is a top view of an acoustic wave device according to Example 7 of the present invention,
16 is a cross-sectional view taken along the line AB shown in FIG. In the figure, 23 is a non-piezoelectric substrate, and 24 is a "piezoelectric" thin film having dispersibility. Input side interdigital transducer 1a
, The electrode finger arrangement interval becomes larger as it gets closer to the output-side interdigital transducer 1b, and the output-side interdigital transducer 1b is symmetrical with the input-side interdigital transducer 1a.
For this reason, the acoustic wave devices shown in FIGS. 15 and 16 show the characteristic that the delay time increases as the frequency increases. Dispersion characteristics of elastic waves in the thin film configuration including the piezoelectric thin film 24 and the non-piezoelectric substrate 23 shown in FIG. June 1985, pp. 69
As shown by -74, as the frequency becomes higher, the propagation velocity becomes smaller, which is the characteristic shown in FIG. The value of the propagation velocity with respect to the frequency is determined by the material of the substrate 23 and thin film 24 used, the thickness of the thin film, and the like.

【0098】この発明の実施例9に係る弾性波素子のす
だれ状電極1は、従来のこの種の弾性波素子に比べ、入
出力すだれ状電極1間の伝搬路での遅延時間変化量Δτ
dlyを引いた分だけ、すだれ状電極1の遅延時間変化量
ΔτIDT を小さくすることができる。すだれ状電極1で
の遅延時間変化量ΔτIDT を小さくするということは、
すだれ状電極1の電極指数を少なくることができること
であり、隣合う各交差部間での電極指配列間隔差が大き
くなり、最小寸法単位Qがあっても同じ電極指配列間隔
が連続するのを防ぐことができる。その結果、従来のこ
の種の弾性波素子では、すだれ状電極1の電極指数が多
くなりすぎて、高周波数を励振する領域で同じ電極指配
列間隔が連続してしまうような場合でも、同じ電極指配
列間隔が連続してしまう領域の範囲を小さくできるた
め、リップルの発生を低く抑えることができる。さら
に、同じ電極指配列間隔が連続する領域でも、遅延時間
は周波数によって変化するから、従来のこの種の弾性波
素子よりも良好な遅延時間特性を実現できる。
The interdigital transducer 1 of the acoustic wave device according to the ninth embodiment of the present invention has a delay time variation Δτ in the propagation path between the input / output interdigital transducers 1 as compared with the conventional acoustic wave device of this type.
The delay time change amount Δτ IDT of the interdigital transducer 1 can be reduced by the amount obtained by subtracting dly . Decreasing the delay time variation Δτ IDT at the interdigital transducer 1 means
Since the electrode index of the interdigital electrode 1 can be reduced, the difference in the electrode finger arrangement interval between adjacent crossing portions becomes large, and the same electrode finger arrangement interval is continuous even if the minimum dimension unit Q exists. Can be prevented. As a result, in the conventional acoustic wave device of this type, even when the electrode index of the interdigital transducer 1 becomes too large and the same electrode finger arrangement interval is continuous in the region where high frequency is excited, the same electrode fingers are arranged. Since the range of the region where the finger arrangement intervals are continuous can be reduced, it is possible to suppress the occurrence of ripples to a low level. Further, even in the region where the same electrode finger arrangement interval is continuous, the delay time changes depending on the frequency, so that a better delay time characteristic than that of the conventional acoustic wave device of this type can be realized.

【0099】実施例10.図17、および、図18は、
この発明の実施例10に係る弾性波素子を示す図であ
る。図17はこの発明の実施例10に係る弾性波素子の
上面図、図18は、図17に示したA−B間の断面図で
ある。図中、23は非圧電性の基板であり、24は分散
性を有する“圧電性”の薄膜である。入力側すだれ状電
極1aは、出力側すだれ状電極1bに近くなるのにした
がって、電極指配列間隔が小さくなり、出力側すだれ状
電極1bは入力側すだれ状電極1aと対称な形をしてい
る。このため、図17、および、図18に示した弾性波
素子は、周波数が高くなるのにしたがって遅延時間が小
さくなる特性を示す。非圧電性の基板23と圧電性薄膜
24からなる伝搬路の特性は、図12に示したような、
周波数が高くなると伝搬速度が小さくなる特性である。
Example 10. 17 and 18 show
It is a figure which shows the acoustic wave element which concerns on Example 10 of this invention. 17 is a top view of an acoustic wave device according to a tenth embodiment of the present invention, and FIG. 18 is a cross-sectional view taken along the line AB of FIG. In the figure, 23 is a non-piezoelectric substrate, and 24 is a "piezoelectric" thin film having dispersibility. As the input side interdigital transducer 1a is closer to the output side interdigital transducer 1b, the electrode finger arrangement interval becomes smaller, and the output side interdigital transducer 1b is symmetrical to the input side interdigital transducer 1a. . For this reason, the acoustic wave devices shown in FIGS. 17 and 18 show the characteristic that the delay time decreases as the frequency increases. The characteristics of the propagation path composed of the non-piezoelectric substrate 23 and the piezoelectric thin film 24 are as shown in FIG.
The characteristic is that the propagation velocity decreases as the frequency increases.

【0100】図17、および、図18に示した弾性波素
子は、周波数が高くなると遅延時間が小さくなる特性だ
から、周波数を変化させた場合のすだれ状電極1の遅延
時間差ΔτIDT は、弾性波素子に要求される遅延時間差
Δτに、入出力すだれ状電極1間の伝送路での遅延時間
差Δτdly を加えたものになる。この発明の実施例10
に係る弾性波素子のすだれ状電極1は、上記伝送路での
遅延時間変化量Δτdl y を加えた分だけ、遅延時間変化
寮ΔτIDT を大きくすることができる。すだれ状電極1
の電極指数を多くすることができることであり、隣合う
電極指配列間隔差を小さくして、各交差の特性がなめら
かに変化するようにできる。その結果、従来のこの種の
弾性波素子では、すだれ状電極1の電極指数が少なくな
りすぎて、隣合う電極隣合う電極指配列間隔差を小さく
して、各交差部の特性がなめらかに変化するようにでき
るため、リップルの発生を低く抑えることができる。
Since the elastic wave elements shown in FIGS. 17 and 18 have the characteristic that the delay time decreases as the frequency increases, the delay time difference Δτ IDT of the interdigital transducer 1 when the frequency is changed is It is the delay time difference Δτ required for the element plus the delay time difference Δτ dly in the transmission line between the input / output interdigital transducers 1. Embodiment 10 of the present invention
Interdigital transducer 1 of the acoustic wave element according to the amount corresponding to plus delay time variation .DELTA..tau dl y in the transmission path, it is possible to increase the delay time change dormitory .DELTA..tau IDT. Interdigital transducer 1
It is possible to increase the electrode index of, and it is possible to make the difference between the adjacent electrode finger arrangement intervals small so that the characteristics of each crossing change smoothly. As a result, in the conventional acoustic wave device of this type, the electrode index of the interdigital electrode 1 becomes too small, the adjacent electrode finger arrangement interval difference becomes small, and the characteristics of each intersection smoothly change. Therefore, it is possible to suppress the occurrence of ripples to a low level.

【0101】実施例11.図19は、この発明の実施例
11に係る弾性波素子を示す図である。図中、25は屈
折補正を行う取り出し電極3bの端面、26は弾性波の
波面に垂直な方向、27は屈折補正を行う取り出し電極
端面25の接線である。電極指2と内側の取り出し電極
3bとの境界面15は、弾性波の伝搬方向に対して、角
度θIDT の傾斜を有している。図20は、斜め入射した
弾性波が、電極指2交差部にて受信されるときの動作を
説明するための図である。図中、28は弾性波の波面で
あり、波長λの2分の1間隔にて示している。波面28
の垂線26は、伝搬方向であるX軸と角度θの傾斜を有
している。29はすだれ状電極状電極1の交差部を線波
源として示しており、この線波源29に沿って弾性波の
ポテンシャルを積分したものが上記線波源29にて受信
する電力に比例する。なお、波面28の垂線26と伝搬
方向であるX軸とのなす角度θは、波面28と線波源2
8とのなす角度と同じである。
Example 11. FIG. 19 is a diagram showing an acoustic wave device according to Example 11 of the present invention. In the figure, 25 is an end surface of the extraction electrode 3b for refraction correction, 26 is a direction perpendicular to the wavefront of the elastic wave, and 27 is a tangent line of the extraction electrode end surface 25 for refraction correction. A boundary surface 15 between the electrode finger 2 and the inner extraction electrode 3b has an inclination of an angle θ IDT with respect to the propagation direction of the elastic wave. FIG. 20 is a diagram for explaining the operation when an obliquely incident elastic wave is received at the intersection of the electrode fingers 2. In the figure, 28 is the wavefront of the elastic wave, which is shown at intervals of half the wavelength λ. Wavefront 28
The perpendicular line 26 has an inclination of an angle θ with the X axis which is the propagation direction. Reference numeral 29 shows the intersection of the interdigital electrode 1 as a line wave source, and the integrated potential of the elastic wave along the line wave source 29 is proportional to the electric power received by the line wave source 29. The angle θ formed by the perpendicular line 26 of the wavefront 28 and the X axis, which is the propagation direction, is determined by the wavefront 28 and the line wave source 2
It is the same as the angle formed by 8.

【0102】入力側すだれ状電極1aの各電極指2の交
差部にて励振された弾性波は、交差部に垂直な方向に伝
搬し、出力側すだれ状電極1bに達した弾性波は再び出
力側すだれ状電極1bの各電極指2の交差部にて電気信
号に変換される。このとき、電極指2と内側の取り出し
電極3bとの境界面15や、内側の取り出し電極3bの
端面25では、弾性波が斜め入射するために、電極指2
のある領域での伝搬速度VIDT 、取り出し電極3bでの
伝搬速度Vm 、自由表面での伝搬速度Vf の値に応じた
屈折が起きる。通常、屈折により弾性波は伝搬方向を変
えるが、YカットZ伝搬ニオブ酸リチウムのような圧電
材料の中には、伝搬方向は変えずに、弾性波の波面28
のみが向きを変えるものがある。図19にて示す角度θ
1 、θ2、θ3 、θ4 、θ5 、θ6 、θ7 、θ8 は、弾
性波の波面28の垂線と、点B、C、D、Eがある各境
界面の垂線とのなす角度である。これらの角度は、各点
B、C、D、Eにてスネルの法則を満足し、以下の4式
を満足する。
The elastic wave excited at the intersection of the electrode fingers 2 of the input-side interdigital electrode 1a propagates in the direction perpendicular to the intersection, and the elastic wave reaching the output-side interdigital electrode 1b is output again. It is converted into an electric signal at the intersection of each electrode finger 2 of the side-comb-shaped electrode 1b. At this time, elastic waves obliquely enter the boundary surface 15 between the electrode finger 2 and the inner extraction electrode 3b and the end surface 25 of the inner extraction electrode 3b.
Refraction occurs according to the values of the propagation velocity V IDT in a certain region, the propagation velocity V m at the extraction electrode 3b, and the propagation velocity V f at the free surface. Usually, the elastic wave changes its propagation direction by refraction, but in a piezoelectric material such as Y-cut Z-propagation lithium niobate, the wavefront of the elastic wave 28 is not changed in the propagation direction.
There are things that only turn. Angle θ shown in FIG.
1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 , θ 7 , and θ 8 are the normal line of the wavefront 28 of the elastic wave and the normal line of each boundary surface having points B, C, D, and E. It is an angle. These angles satisfy Snell's law at each point B, C, D, and E, and satisfy the following four expressions.

【0103】 sin(θ2 )/sin(θ1 )=Vm /VIDT …(式17) sin(θ4 )/sin(θ3 )=Vf /Vm …(式18) sin(θ6 )/sin(θ5 )=Vm /Vf …(式19) sin(θ8 )/sin(θ7 )=VIDT /Vm …(式20) また、すだれ状電極1と内側の取り出し電極3bとの境
界15の傾斜角θIDT、および、内側取り出し電極端面
25の弾性波の任意の伝搬経路における接線27の傾斜
角θpと、θ1 、θ2 、θ3 、θ4 、θ5 、θ6
θ7 、θ8 との間には、幾何学的に次式の関係がある。
Sin (θ 2 ) / sin (θ 1 ) = V m / V IDT (Equation 17) sin (θ 4 ) / sin (θ 3 ) = V f / V m (Equation 18) sin (θ) 6 ) / sin (θ 5 ) = V m / V f (Equation 19) sin (θ 8 ) / sin (θ 7 ) = V IDT / V m (Equation 20) In addition, the interdigital transducer 1 and the inside The inclination angle θ IDT of the boundary 15 with the extraction electrode 3b, the inclination angle θp of the tangent line 27 in an arbitrary propagation path of the elastic wave of the inner extraction electrode end surface 25, and θ 1 , θ 2 , θ 3 , θ 4 , θ. 5 , θ 6 ,
There is a geometrical relationship between θ 7 and θ 8 as follows.

【0104】 θ1 +θIDT =90° …(式21) θ2 −θ3 =θp −θIDT …(式22) θ4 +θ5 +2θp =180° …(式23) θ7 −θ6 =θp −θIDT …(式24) さらに、波面28の垂線と弾性波伝搬方向とのなす角度
θは、角度θ8 との間に式25の関係がある。
Θ 1 + θ IDT = 90 ° (Equation 21) θ 23 = θ pIDT (Equation 22) θ 4 + θ 5 +2 θ p = 180 ° (Equation 23) θ 76 = Θ p −θ IDT (Equation 24) Further, the angle θ formed by the perpendicular of the wavefront 28 and the elastic wave propagation direction has the relationship of Equation 25 between the angle θ 8 .

【0105】 θ=θ8 +θIDT −90° …(式25) 式17から式25を用いることにより、電極指2と内側
の取り出し電極3bとの境界面15の傾斜角θIDT 、お
よび、内側の取り出し電極端面25の接線の傾斜角θp
を決めれば、一意的に、出力側すだれ状電極1bに達し
た弾性波の波面28と線波源29とのなす角度θが決ま
る。これは、すなわち、電極指2と内側の取り出し電極
3bとの境界面15の傾斜角θIDT 、および、出力側す
だれ状電極1bに達した弾性波の波面28と線波源29
とのなす角度θを決めれば、一意的に、内側の取り出し
電極端面25の接線の傾斜角θp が決まることでもあ
る。従来のこの種の弾性波素子では、出力側すだれ状電
極1bに達した弾性波の波面28と線波源29とのなす
角度θが零となる条件のみを用いていた。
Θ = θ 8 + θ IDT −90 ° (Equation 25) By using Equation 17 to Equation 25, the inclination angle θ IDT of the boundary surface 15 between the electrode finger 2 and the inner extraction electrode 3b, and Inclination angle θp of the tangent to the extraction electrode end surface 25 of
Is determined, the angle θ between the wavefront 28 of the elastic wave reaching the output-side interdigital transducer 1b and the linear wave source 29 is uniquely determined. That is, the inclination angle θ IDT of the boundary surface 15 between the electrode finger 2 and the inner extraction electrode 3b, and the wavefront 28 and the line wave source 29 of the elastic wave reaching the output-side interdigital electrode 1b.
It is also possible to uniquely determine the inclination angle θ p of the tangent line of the end surface 25 of the inner extraction electrode by determining the angle θ formed by In the conventional elastic wave element of this type, only the condition that the angle θ formed by the wavefront 28 of the elastic wave reaching the output-side interdigital transducer 1b and the linear wave source 29 is zero is used.

【0106】次に、波面28と線波源29とが角度θを
もつときの影響について説明する。線波源29に平行な
方向をY軸とすると、弾性波のポテンシャルφ(X、
Y)は次式にて与えられる。
Next, the influence when the wavefront 28 and the linear wave source 29 have an angle θ will be described. Assuming that the direction parallel to the line wave source 29 is the Y axis, the potential φ (X, X,
Y) is given by the following equation.

【0107】 φ(X,Y)=φ0 j(ωt-k(Xcosθ-Ysin θ)) …(式26) こで、φ0 は伝搬する弾性波の振幅を示し、kは波数を
示すものとする。線波源29での受信電力Pi はφ
(X,Y)を交差幅Wに渡って積分したものだから、式
27の結果を得る。
Φ (X, Y) = φ 0 e j (ωt-k (Xcos θ-Y sin θ)) (Equation 26) Here, φ 0 indicates the amplitude of the propagating elastic wave, and k indicates the wave number. I shall. The received power P i at the line wave source 29 is φ
Since (X, Y) is integrated over the intersection width W, the result of Expression 27 is obtained.

【0108】[0108]

【数3】 ここで、θは式28で与えられる。[Equation 3] Here, θ is given by Equation 28.

【0109】 Θ=(kW/2)sinθ …(式28) すだれ状電極1の受信電力Pは交差部iにおける受信電
力Pi を全交差部について合計した式29となる。
Θ = (kW / 2) sin θ (Equation 28) The received power P of the interdigital transducer 1 is given by Equation 29 in which the received power P i at the intersection i is summed over all the intersections.

【0110】[0110]

【数4】 式29は、式30の条件を満足するときに零となる。こ
れは、弾性波素子の損失が極めて大きくなる零点に相当
する。
[Equation 4] Expression 29 becomes zero when the condition of Expression 30 is satisfied. This corresponds to the zero point where the loss of the acoustic wave element becomes extremely large.

【0111】 Θ=(kW/2)sinθ=nπ (nは整数) …(式30) 波数kは、弾性波の伝搬速度VIDT 周波数fとを用い
て、式31の関係があるから、弾性波素子の通過特性に
零点が生じる周波数fは、式32にて与えられる。
Θ = (kW / 2) sin θ = nπ (n is an integer) (Equation 30) Since the wave number k has the relationship of Equation 31 using the propagation velocity V IDT frequency f of the elastic wave, elasticity The frequency f at which the zero point occurs in the pass characteristic of the wave element is given by equation 32.

【0112】 k=2πf/VIDT …(式31) f=VIDT /(W・sinθ)×n (nは整数) …(式32) 式32より、弾性波の波面28が出力側すだれ状電極1
bに交差幅と角度θの傾斜を有して入射したとき、この
弾性波素子の通過特性は、式32を満足する周波数に零
点を生じる。ここで、弾性波素子の通過帯域の低い方の
周波数をf1 とし、高い方の周波数をf2 とすると、周
波数f2 よりも低い周波数に、上記零点を生じないよう
に、内側の取り出し電極3bの形状を決定することによ
り、弾性波の波面28が交差部に対して傾斜していて
も、その影響を少なくすることができる。
K = 2πf / V IDT (Equation 31) f = V IDT / (W · sin θ) × n (n is an integer) (Equation 32) From Equation 32, the wavefront 28 of the elastic wave is in the form of a comb on the output side. Electrode 1
When incident on b with a cross width and an inclination of an angle θ, the pass characteristic of this acoustic wave element causes a zero point at a frequency that satisfies Expression 32. Here, if the lower frequency of the pass band of the acoustic wave element is f 1 and the higher frequency thereof is f 2 , the inner extraction electrode is arranged so that the zero point does not occur at a frequency lower than the frequency f 2. By determining the shape of 3b, even if the wavefront 28 of the elastic wave is inclined with respect to the intersection, its influence can be reduced.

【0113】[0113]

【数5】 あるいは、整数nに対して、式34を満足するように内
側の取り出し電極3bの形状を決定することにより、弾
性波素子の通過帯域内に零点が生じないようにできる。
[Equation 5] Alternatively, by determining the shape of the inner extraction electrode 3b so as to satisfy Expression 34 with respect to the integer n, it is possible to prevent a zero point from occurring in the pass band of the acoustic wave device.

【0114】[0114]

【数6】 例えば、通過帯域が500MHzから1GHzの弾性波
素子で、自由表面での伝搬速度Vf を3500(m/s
ec)とし、取り出し電極3bでの伝搬速度Vm を34
14(m/sec)とし、電極指2のある領域での伝搬
速度VIDT を3500と3414の中間の値3457
(m/sec)一定とし、電極指2の交差幅Wを100
μmとし、傾斜角θIDT を30°として、式33の条件
を満足するための取り出し電極端面25の形状を求め
る。式33から、弾性波の波面28の傾斜角θは、式3
5を満足する必要がある。
[Equation 6] For example, in an acoustic wave device having a pass band of 500 MHz to 1 GHz, the propagation velocity V f on the free surface is 3500 (m / s
ec), and the propagation velocity V m at the extraction electrode 3b is 34
14 (m / sec), and the propagation velocity V IDT in the region where the electrode finger 2 is present is a value between 3500 and 3414, 3457.
(M / sec) constant, the cross width W of the electrode fingers 2 is 100
.mu.m, and the inclination angle .theta.IDT is 30.degree. From Equation 33, the inclination angle θ of the wavefront 28 of the elastic wave is calculated by Equation 3
It is necessary to satisfy 5.

【0115】[0115]

【数7】 一方、θp を変数として式17から式25を用いて、θ
を計算すると図21に示す結果を得る。図中、横軸は取
り出し電極3bの傾斜角θp であり、縦軸は出力側すだ
れ状電極1bに達した弾性波の波面28の傾斜角θであ
る。式35の条件を満足する取り出し電極3bの傾斜角
θp を求めると、 25°<θp <96° …(式36) となる。電極指2と内側の取り出し電極3bとの境界面
15が直線的であり、かつ、電極指2のある領域での伝
搬速度VIDT が一定の場合には、内側の取り出し電極3
bの端面25の形状は直線的となる。内側の取り出し電
極3bの形状を、式36を満足する範囲の傾斜角度θp
を有するようにすることにより、所要の特性の弾性波素
子を得ることができる。
[Equation 7] On the other hand, using Equation 17 to Equation 25 with θ p as a variable,
Is obtained, the result shown in FIG. 21 is obtained. In the figure, the horizontal axis is the inclination angle θ p of the extraction electrode 3b, and the vertical axis is the inclination angle θ of the wavefront 28 of the elastic wave reaching the output-side interdigital transducer 1b. When the inclination angle θ p of the extraction electrode 3b that satisfies the condition of Expression 35 is obtained, it becomes 25 ° <θ p <96 ° (Expression 36). When the boundary surface 15 between the electrode finger 2 and the inner extraction electrode 3b is linear and the propagation velocity V IDT in a certain area of the electrode finger 2 is constant, the inner extraction electrode 3
The shape of the end surface 25 of b is linear. The shape of the inner extraction electrode 3b is set to a tilt angle θ p within a range that satisfies Expression 36.
By having the above, it is possible to obtain an acoustic wave device having required characteristics.

【0116】図22は、電極指2のある領域の弾性波の
伝搬速度VIDT を変えて、θp を変数として式17から
式25を用いて計算した弾性波の波面28の傾斜角度θ
である。計算に用いた数値は、電極指のある領域の弾性
波の伝搬速度VIDT 以外は、図21の場合と同じであ
る。図22から、式35を満足する内側の取り出し電極
の傾斜角度θp の範囲を求めると、 29°<θp <86° …(式37) となる。仮に、電極指2のある領域の弾性波の伝搬速度
IDT のばらつきが3460±10(m/sec)あっ
ても、内側の取り出し電極端面25の形状を、式37を
満足するように設定することにより、弾性波素子は所要
の特性を実現できる。
FIG. 22 shows the inclination angle θ of the wavefront 28 of the elastic wave calculated by using Equations 17 to 25 with the propagation velocity V IDT of the elastic wave in a certain area of the electrode finger 2 changed and θ p as a variable.
Is. The numerical values used for the calculation are the same as those in the case of FIG. 21, except for the propagation velocity V IDT of the elastic wave in the region where the electrode finger is present. From FIG. 22, when the range of the inclination angle θ p of the extraction electrode on the inside which satisfies the expression 35 is obtained, it becomes 29 ° <θ p <86 ° (Expression 37). Even if the variation in the propagation velocity V IDT of the elastic wave in the region where the electrode finger 2 is present is 3460 ± 10 (m / sec), the shape of the inner extraction electrode end face 25 is set so as to satisfy Expression 37. As a result, the acoustic wave device can realize the required characteristics.

【0117】実施例12.図23は、この発明の実施例
12に係る弾性波素子を示す図である。図中、30は入
出力すだれ状電極1間に配置したシールド電極であり、
31は弾性波が入射する端面である。各端面31は、弾
性波伝搬方向に対して角度θs の傾斜を有する。角度θ
a 、θb 、θc 、θd は、それぞれ、弾性波の波面28
の垂線26と端面31の垂線とがなす角度である。点
E、Fは、点B、C、D、Eを経て伝搬する弾性波が通
過するシールド電極30の端面31上の点である。
Example 12. FIG. 23 is a diagram showing an acoustic wave device according to Example 12 of the present invention. In the figure, 30 is a shield electrode arranged between the input / output interdigital electrodes 1,
Reference numeral 31 is an end face on which the elastic wave is incident. Each end face 31 has an inclination of an angle θ s with respect to the elastic wave propagation direction. Angle θ
a , θ b , θ c , and θ d are the wavefronts 28 of the elastic waves, respectively.
Is the angle formed by the vertical line 26 and the vertical line of the end face 31. Points E and F are points on the end face 31 of the shield electrode 30 through which the elastic wave propagating through the points B, C, D, and E passes.

【0118】図23に示すこの発明の実施例12に係る
弾性波素子は、入出力すだれ状電極1間に配置したシー
ルド電極30の端面31での弾性波の屈折を用いて、所
要の特性の弾性波素子を得る。点B、C、D、Eにおけ
る弾性波の屈折の関係式は、式17から式20と同じで
ある。また、式21、22、24、25も同様に成り立
つ。点E、Fでの屈折の関係式、および、角度θa 、θ
b 、θc 、θd と、角度θ4 、θ5 、θs との関係式
は、式38から式42にて求められる。
The elastic wave element according to the twelfth embodiment of the present invention shown in FIG. 23 uses refraction of the elastic wave at the end face 31 of the shield electrode 30 arranged between the input / output interdigital transducers 1 to obtain the required characteristics. Obtain an acoustic wave device. The relational expressions of the refraction of the elastic wave at the points B, C, D and E are the same as the expressions 17 to 20. Further, the equations 21, 22, 24, and 25 are similarly established. Relational expression of refraction at points E and F and angles θ a and θ
The relational expressions of b , θ c and θ d and the angles θ 4 , θ 5 and θ s are obtained by the equations 38 to 42.

【0119】 sinθb /sinθa =Vm /Vf …(式38) sinθd /sinθc =Vf /Vm …(式39) θa =θ4 +θp −θs …(式40) θb +θc +2θs =180° …(式41) θ5 =θd +θs −θp …(式42) 式17から式20と式21、22、24、25、およ
び、式38から式42を用いると、図21や図22と同
様に、シールド電極端面31の傾斜角度θs と出力側す
だれ状電極1bに達した弾性波の波面28の傾斜角度θ
との関係を求めることができる。一方、弾性波素子の所
要の特性を得るための条件式は、式33、あるいは、式
34であるから、出力側すだれ状電極1bに達した弾性
波の波面28の傾斜角度θの範囲から、シールド電極端
面31の傾斜角度θs の範囲を決定することができる。
すなわち、式33、あるいは、式34を満足するように
シールド電極端面31の形状を決定することにより、弾
性波の伝搬速度にばらつきが生じても、所要の特性の弾
性波素子を得ることができる。
Sin θ b / sin θ a = V m / V f (Equation 38) sin θ d / sin θ c = V f / V m (Equation 39) θ a = θ 4 + θ p −θ s (Equation 40) θ b + θ c +2 θ s = 180 ° (Formula 41) θ 5 = θ d + θ s −θ p (Formula 42) Formula 17 to Formula 20, Formula 21, 22, 24, 25, and Formula 38 to Formula When 42 is used, the inclination angle θ s of the shield electrode end face 31 and the inclination angle θ of the wavefront 28 of the elastic wave reaching the output-side interdigital transducer 1b are used as in FIGS.
You can ask for a relationship with. On the other hand, since the conditional expression for obtaining the required characteristics of the elastic wave element is Expression 33 or Expression 34, from the range of the inclination angle θ of the wavefront 28 of the elastic wave reaching the output-side interdigital transducer 1b, The range of the tilt angle θ s of the shield electrode end face 31 can be determined.
That is, by determining the shape of the shield electrode end face 31 so as to satisfy Expression 33 or Expression 34, it is possible to obtain an elastic wave element having a required characteristic even if the propagation speed of the elastic wave varies. .

【0120】次に、変形例について説明する。Next, a modified example will be described.

【0121】この発明の実施例1から6にて示した弾性
波素子は、全て、電極指2の交差幅が同じであったが、
この発明はこれに限らず、電極指2の交差幅を変化させ
ても効果は同じである。また、この発明の実施例1から
6にて示した弾性波素子は、全て、電極指2を弾性波の
伝搬方向に沿って配列させているが、この発明はこれに
限らず、例えば、図24に示すような電極指2を弾性波
の伝搬方向に垂直な方向にずらしたスラント電極に適用
しても効果は同じである。さらに、この発明の実施例1
から6にて示した弾性波素子は、周波数が高くなるのに
したがって遅延時間が小さくなる場合に適用しても、周
波数が高くなるのにしたがって遅延時間が大きくなる場
合に適用しても、効果は同じである。また、図25に示
すように、入出力すだれ状電極1を同じ方向になるよう
に配列して、周波数によらず遅延時間が一定となるよう
な弾性波素子に適用しても効果は同じである。さらに、
電極指配列間隔Di に対する電極指幅Li の比率を変化
させる領域や、電極指毎に電極指幅を変える領域は、す
だれ状電極1の中で電極指幅の細い領域11に限定され
ることはなく、すだれ状電極1の中の任意の領域に適用
してもよい。
In all of the acoustic wave devices shown in Examples 1 to 6 of the present invention, the cross widths of the electrode fingers 2 were the same,
The present invention is not limited to this, and the same effect is obtained even if the cross width of the electrode fingers 2 is changed. Further, in all of the elastic wave elements shown in Examples 1 to 6 of the present invention, the electrode fingers 2 are arranged along the propagation direction of the elastic wave, but the present invention is not limited to this, and for example, as shown in FIG. The same effect can be obtained by applying the electrode finger 2 as shown in 24 to a slant electrode that is displaced in the direction perpendicular to the propagation direction of the elastic wave. Furthermore, Example 1 of the present invention
The elastic wave elements shown in 6 to 6 are effective even if they are applied when the delay time becomes shorter as the frequency becomes higher or when the delay time becomes longer as the frequency becomes higher. Are the same. Further, as shown in FIG. 25, the same effect can be obtained even if the input / output interdigital transducers 1 are arranged in the same direction and applied to an acoustic wave device having a constant delay time regardless of frequency. is there. further,
A region where the ratio of the electrode finger width L i to the electrode finger arrangement interval D i is changed and a region where the electrode finger width is changed for each electrode finger are limited to the narrow electrode finger region 11 in the interdigital transducer 1. However, it may be applied to any region in the interdigital transducer 1.

【0122】この発明の実施例7、実施例8に示した弾
性波素子は、圧電基板21上に1層の非圧電性薄膜22
を構成し、上記非圧電性薄膜22の上にすだれ状電極1
を構成しているが、この発明はこれに限らず、図26に
示すように、圧電体基板21と非圧電性薄膜22の境界
にすだれ状電極1を構成しても効果は同じである。さら
に、図27に示すように、圧電体基板21の上に非圧電
性薄膜22を構成し、その上にさらに薄膜32を構成し
てもよい。上記薄膜32は圧電性でも、非圧電性でも効
果は同じである。さらに、図28に示すように、薄膜3
2を例えば、すだれ状電極1の上のみに構成する等の領
域を限定した場合にも適用できる。さらに、上記薄膜3
2は、圧電体基板21と非圧電性薄膜22との間に構成
してもよい。すだれ状電極1の位置は、圧電体基板2
1、非圧電性薄膜22、薄膜32のどの境界、または、
表面に構成してもよい。
The elastic wave elements shown in Embodiments 7 and 8 of the present invention are composed of a single layer of non-piezoelectric thin film 22 on a piezoelectric substrate 21.
And the interdigital transducer 1 on the non-piezoelectric thin film 22.
However, the present invention is not limited to this, and as shown in FIG. 26, the effect is the same even if the interdigital electrode 1 is formed at the boundary between the piezoelectric substrate 21 and the non-piezoelectric thin film 22. Further, as shown in FIG. 27, the non-piezoelectric thin film 22 may be formed on the piezoelectric substrate 21, and the thin film 32 may be further formed on it. The thin film 32 has the same effect whether it is piezoelectric or non-piezoelectric. Further, as shown in FIG. 28, the thin film 3
2 can also be applied to the case where the region is limited, such as being formed only on the interdigital transducer 1. Further, the thin film 3
2 may be formed between the piezoelectric substrate 21 and the non-piezoelectric thin film 22. The position of the interdigital transducer 1 is the piezoelectric substrate 2
1, the boundary of the non-piezoelectric thin film 22, the thin film 32, or
It may be formed on the surface.

【0123】同様に、この発明の実施例9、実施例10
に示した弾性波素子は、非圧電性基板23上に1層の圧
電性薄膜24を構成し、上記圧電性薄膜24の上にすだ
れ状電極1を構成しているが、この発明はこれに限ら
ず、図29に示すように、非圧電性基板23と圧電性薄
膜24の境界にすだれ状電極1を構成しても効果は同じ
である。さらに、図30に示すように、非圧電性基板2
3の上に圧電性薄膜を構成し、その上にさらに薄膜32
を構成してもよい。上記薄膜32は、圧電性でも、非圧
電性でも効果は同じである。さらに、図31に示すよう
に、薄膜32を例えば、すだれ状電極1の上のみに構成
する等の領域を限定した場合にも適用できる。さらに、
上記薄膜32は、非圧電性基板23と圧電性薄膜24と
の間に構成してもよい。すだれ状電極1の位置は、非圧
電性基板23、圧電性薄膜24、薄膜32のどの境界、
または、表面に構成してもよい。
Similarly, the ninth and tenth embodiments of the present invention.
In the acoustic wave device shown in FIG. 1, one layer of the piezoelectric thin film 24 is formed on the non-piezoelectric substrate 23, and the interdigital electrode 1 is formed on the piezoelectric thin film 24. Not limited to this, as shown in FIG. 29, the same effect can be obtained even if the interdigital electrode 1 is formed at the boundary between the non-piezoelectric substrate 23 and the piezoelectric thin film 24. Further, as shown in FIG. 30, the non-piezoelectric substrate 2
3, a piezoelectric thin film is formed on top of which a thin film 32 is further formed.
May be configured. The thin film 32 has the same effect whether it is piezoelectric or non-piezoelectric. Furthermore, as shown in FIG. 31, the present invention can be applied to the case where the region is limited such that the thin film 32 is formed only on the interdigital transducer 1, for example. further,
The thin film 32 may be formed between the non-piezoelectric substrate 23 and the piezoelectric thin film 24. The position of the interdigital transducer 1 is at the boundary of the non-piezoelectric substrate 23, the piezoelectric thin film 24, and the thin film 32,
Alternatively, it may be formed on the surface.

【0124】この発明の実施例11に示した弾性波素子
は、電極指2と内側の取り出し電極3bとの境界15が
直線的であったが、この発明はこれに限らず、例えば、
図32に示すように、電極指2と内側の取り出し電極3
bとの境界15が曲線となる場合にも適用できる。この
場合は、各弾性波の伝搬経路について、電極指2と内側
の取り出し電極3bとの境界15の接線が弾性波伝搬方
向となす角度をθIDTとし、内側の取り出し電極端面2
5の接線27が弾性波伝搬方向となす角度θpを決定す
ればよい。このとき、内側の取り出し電極端面25も曲
線としてもよく、また、式33、あるいは、式34を満
足できれば、図32に示すように、内側の取り出し電極
端面25を直線的に構成してもよい。さらに、図33に
示すように、内側の取り出し電極端面25を複数の領域
に分割し、各領域内を直線的に構成してもよい。さら
に、実施例11では、式33を満足する場合について説
明したが、この発明はこれに限らず、式34を満足する
ように、内側の取り出し電極端面25を決定してもよ
い。さらに、電極指2と内側の取り出し電極3bとの境
界15や内側の取り出し電極端面25の形状を、入力側
すだれ状電極1aと出力側すだれ状電極1bとで変えて
も良い。
In the acoustic wave device according to the eleventh embodiment of the present invention, the boundary 15 between the electrode finger 2 and the inner extraction electrode 3b is linear, but the present invention is not limited to this, and, for example,
As shown in FIG. 32, the electrode finger 2 and the inner extraction electrode 3
It is also applicable when the boundary 15 with b is a curve. In this case, regarding the propagation path of each elastic wave, the angle formed by the tangent of the boundary 15 between the electrode finger 2 and the inner extraction electrode 3b and the elastic wave propagation direction is θ IDT , and the inner extraction electrode end surface 2
The angle θp formed by the tangent line 27 of 5 and the elastic wave propagation direction may be determined. At this time, the inner extraction electrode end surface 25 may also be a curve, and if the expression 33 or the expression 34 is satisfied, the inner extraction electrode end surface 25 may be linearly configured as shown in FIG. . Further, as shown in FIG. 33, the inner extraction electrode end surface 25 may be divided into a plurality of regions, and each region may be linearly configured. Furthermore, in the eleventh embodiment, the case where Expression 33 is satisfied has been described, but the present invention is not limited to this, and the inner extraction electrode end surface 25 may be determined so as to satisfy Expression 34. Further, the shape of the boundary 15 between the electrode finger 2 and the inner lead electrode 3b and the shape of the inner lead electrode end surface 25 may be changed between the input side interdigital electrode 1a and the output side interdigital electrode 1b.

【0125】この発明の実施例12に示した弾性波素子
は、電極指2と内側の取り出し電極3bとの境界15、
内側の取り出し電極端面25、シールド電極端面31の
形状が直線的であったが、この発明はこれに限らず、例
えば、図34に示すように、電極指2と内側の取り出し
電極3bとの境界15、内側の取り出し電極端面25、
シールド電極端面31のうち任意の部位の形状が曲線的
でもよい。この場合は、曲線的な形状となっている部位
の接線とのなす角度を用いて、上記曲線的となっている
部位の形状を決定すればよい。さらに、図35に示すよ
うに、シールド電極端面31を複数領域に分割し、分割
した各部位を直線的な構成としてもよい。
The elastic wave element according to the twelfth embodiment of the present invention has a boundary 15 between the electrode finger 2 and the inner extraction electrode 3b.
The shapes of the inner extraction electrode end surface 25 and the shield electrode end surface 31 are linear, but the present invention is not limited to this, and for example, as shown in FIG. 34, the boundary between the electrode finger 2 and the inner extraction electrode 3b. 15, the inner extraction electrode end surface 25,
The shape of any part of the shield electrode end face 31 may be curved. In this case, the shape of the curved portion may be determined using the angle formed by the tangent line of the curved portion. Further, as shown in FIG. 35, the shield electrode end face 31 may be divided into a plurality of regions, and each of the divided portions may have a linear configuration.

【0126】さらに、実施例11、実施例12に示した
弾性波素子は、周波数が高くなるにしたがって遅延時間
が小さくなる構成について示したが、この発明はこれに
限らず、周波数が高くなるにしたがって遅延時間が大き
くなる場合にも適用できる。また、内側の取り出し電極
端面25が弾性波伝搬方向となす角度や、シールド電極
端面31が弾性波伝搬方向となす角度は、鋭角である場
合について示したが、鈍角である場合でもよい。これら
の角度条件は、式33、および、式34の結果による。
さらに、内側の取り出し電極端面25とシールド電極端
面31の両方の形状によって、出力側すだれ状電極1b
に達した弾性波の波面を制御してもよい。
Further, although the elastic wave elements shown in the eleventh and twelfth embodiments have been shown to have a configuration in which the delay time becomes shorter as the frequency becomes higher, the present invention is not limited to this, and the frequency becomes higher. Therefore, it can be applied even when the delay time becomes large. Further, the angle formed by the inner extraction electrode end face 25 with the elastic wave propagation direction and the angle formed by the shield electrode end face 31 with the elastic wave propagation direction are shown as acute angles, but they may be obtuse angles. These angle conditions are based on the results of Expression 33 and Expression 34.
Further, the output side interdigital transducer 1b is formed by the shapes of both the lead-out electrode end face 25 and the shield electrode end face 31 on the inner side.
You may control the wavefront of the elastic wave which reached | attained.

【0127】実施例2、および、実施例11、実施例1
2に示した弾性波素子は、ニオブ酸リチウム基板の場合
について示したが、この発明はこれに限らず、電極指配
列間隔Di に対する電極指幅Li の比率を変えたり、電
極指毎に電極指幅を変える領域を有する構成のすだれ状
電極1は、任意の基板材料、および、薄膜構成の材料に
適用でき、内側の取り出し電極端面25やシールド電極
端面のみが傾斜し、弾性波伝搬方向がほとんど変化しな
い基板材料や薄膜構成の材料であれば、同様に適用でき
る。
Example 2, Example 11, and Example 1
The acoustic wave device shown in 2 is shown for the case of a lithium niobate substrate, but the present invention is not limited to this, and the ratio of the electrode finger width L i to the electrode finger arrangement interval D i is changed, or each electrode finger is changed. The interdigital electrode 1 having a structure having a region for changing the electrode finger width can be applied to any substrate material and thin film material, and only the inside extraction electrode end face 25 and the shield electrode end face are inclined, and the elastic wave propagation direction The same can be applied as long as it is a substrate material or a material having a thin film structure, in which is substantially unchanged.

【0128】[0128]

【発明の効果】以上のように、第1の発明によれば、す
だれ状電極の電位の異なる電極指が交差する部位の一部
あるいは全体に、上記電極指幅と隣合う電極指の間隙長
との比率を変えた領域を有するようにした。このため、
同じ中心周波数の交差部が連続するのを防ぎ、所要の特
性を有する弾性波素子を得ることができる。
As described above, according to the first aspect of the present invention, the electrode finger width and the gap length of the adjacent electrode finger are partially or entirely formed at the portion where the electrode fingers of the interdigital electrode having different potentials intersect. A region having a different ratio to is provided. For this reason,
It is possible to prevent continuous intersections having the same center frequency and obtain an acoustic wave device having required characteristics.

【0129】以上のように、第2の発明によれば、すだ
れ状電極の電位の異なる電極指が交差する部位の一部あ
るいは全体に、すだれ状電極の電極指配列間隔が徐々に
小さくなる電極指順序の方向に、隣合う電極指の間隙長
に対する上記電極指幅の比率を徐々に小さくした、この
ため、電極指配列間隔が同じ部分の中心周波数を徐々に
高くすることができ、同じ中心周波数の交差部が連続す
るのを防ぎ、所要の特性を有する弾性波素子を得ること
ができる。
As described above, according to the second aspect of the present invention, the electrode finger arrangement interval of the interdigital electrode gradually decreases in a part or the whole of the portion where the interdigital electrode fingers of the interdigital electrode cross each other. In the direction of the finger order, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers was gradually decreased. Therefore, the center frequency of the portion having the same electrode finger arrangement interval can be gradually increased, and the same center It is possible to prevent continuous frequency crossing portions and obtain an acoustic wave device having required characteristics.

【0130】以上のように、第3の発明によれば、すだ
れ状電極の電位の異なる電極指が交差する部位の一部あ
るいは全体に、隣合う電極指の間隙長に対する上記電極
指幅の比率を乱数的に変化させた。このため、隣合う電
極指の間隙長に対する上記電極指幅の比率を乱数的に変
化させることにより、同じ中心周波数の交差部が連続す
るのを防ぎ、所要の特性を有する弾性波素子を得ること
ができる。
As described above, according to the third aspect of the present invention, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers is part or all of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. Was randomly changed. Therefore, by randomly changing the ratio of the electrode finger width to the gap length of adjacent electrode fingers, it is possible to prevent the intersections of the same center frequency from continuing and obtain an acoustic wave device having the required characteristics. You can

【0131】以上のように、第4の発明によれば、すだ
れ状電極の電位の異なる電極指が交差する部位の一部あ
るいは全体に、隣合う電極指の間隙長に対する上記電極
指幅の比率が変化する段付き電極指を有するようにし
た。このため、隣合う電極指の間隙長に対する上記電極
指幅の比率が変化する段付き電極指を用いることによ
り、同じ中心周波数の交差部が連続するのを防ぎ、所要
の特性を有する弾性波素子を得ることができる。
As described above, according to the fourth aspect, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers is partly or wholly at the portion where the electrode fingers of the interdigital electrode having different potentials intersect. To have stepped electrode fingers that vary. Therefore, by using a stepped electrode finger in which the ratio of the electrode finger width to the gap length of adjacent electrode fingers changes, it is possible to prevent continuous intersections of the same center frequency from continuing and to provide an acoustic wave device having the required characteristics. Can be obtained.

【0132】以上のように、第5の発明によれば、すだ
れ状電極の電位の異なる電極指が交差する部位の一部あ
るいは全体に、隣合う電極指の間隙長に対する上記電極
指幅の比率が変化する段付き電極指を有し、すだれ状電
極の電極指配列間隔が徐々に小さくなる電極指順序の方
向に、上記各電極指における隣合う電極指の間隙長に対
する上記電極指幅の比率の大きい領域の交差幅方向の長
さの合計に対して、上記隣合う電極指の間隙長に対する
上記電極指幅の比率の小さい領域の交差幅方向の長さの
合計の比率を、徐々に大きくした。このため、上記各電
極指における隣合う電極指の間隙長に対する上記電極指
幅の比率の大きい領域の交差幅方向の長さの合計と上記
隣合う電極指の間隙長に対する上記電極指幅の比率の小
さい領域の交差幅方向の長さの合計との比率を、徐々に
小さくすることにより、等価的に、中心周波数が徐々に
高くなる。この結果、同じ中心周波数の交差部が連続す
るのを防ぎ、所要の特性を有する弾性波素子を得ること
ができる。
As described above, according to the fifth invention, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers is partly or wholly at the portion where the electrode fingers of the interdigital electrode having different potentials intersect. In the direction of the electrode finger sequence in which the electrode finger arrangement interval of the interdigital electrode gradually decreases, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each electrode finger. Of the total width in the cross width direction, the ratio of the total length in the cross width direction of the area having a small ratio of the electrode finger width to the gap length of the adjacent electrode fingers is gradually increased. did. Therefore, the sum of the lengths in the cross width direction of the regions in which the ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each electrode finger is large and the ratio of the electrode finger width to the gap length of the adjacent electrode fingers. By gradually decreasing the ratio of the area of small area to the total length in the cross width direction, the center frequency is equivalently increased gradually. As a result, it is possible to prevent continuous intersections having the same center frequency and obtain an acoustic wave device having desired characteristics.

【0133】以上のように、第6の発明によれば、すだ
れ状電極の電位の異なる電極指が交差する部位の一部あ
るいは全体に、隣合う電極指の間隙長に対する上記電極
指幅の比率が変化する段付き電極指を有し、上記各電極
指における隣合う電極指の間隙長に対する上記電極指幅
の比率の大きい領域の交差幅方向の長さの合計と上記隣
合う電極指の間隙長に対する上記電極指幅の比率の小さ
い領域の交差幅方向の長さの合計との比率を、乱数的に
変化させた。このため、隣合う電極指の間隙長に対する
上記電極指幅の比率が乱数的に変化する電極指を用いる
ことにより、同じ中心周波数の交差部が連続するのを防
ぎ、所要の特性を有する弾性波素子を得ることができ
る。
As described above, according to the sixth aspect of the present invention, the ratio of the electrode finger width to the gap length of the adjacent electrode fingers is part or all of the portion where the electrode fingers of the interdigital electrode having different potentials intersect. Has a stepped electrode finger that changes, the total of the lengths in the cross width direction of the region where the ratio of the electrode finger width to the gap length of the adjacent electrode finger in each electrode finger is large and the gap between the adjacent electrode fingers. The ratio of the region having a small ratio of the electrode finger width to the length to the total length in the cross width direction was randomly changed. Therefore, by using electrode fingers whose ratio of the electrode finger width to the gap length of adjacent electrode fingers changes in a random manner, it is possible to prevent continuous intersections of the same center frequency from continuing, and to obtain an elastic wave having the required characteristics. An element can be obtained.

【0134】以上のように、第7の発明によれば、圧電
体基板表面に弾性波が分散特性を有する非圧電性の薄膜
を少なくとも1層以上構成し、上記薄膜のうちの任意の
薄膜の表面あるいは上記薄膜と上記圧電体基板との境界
面に、電極指配列間隔を徐々に変化させた上記すだれ状
電極を設けた。このため、所要の特性を実現するのに必
要なすだれ状電極の電極指数が、少なすぎたり、多すぎ
たりして良好な特性を実現できない場合でも、薄膜の分
散特性を利用することにより、弾性波素子の分散特性を
すだれ状電極と薄膜の分散特性の両方で分担することに
より、所要の特性を有する弾性波素子を得ることができ
る。さらに、電極指の最小寸法単位によって同じ交差部
が連続する場合でも、薄膜の分散特性によって、群遅延
特性は周波数によって変化させることが可能なため、群
遅延時間のリップルを低減した弾性波素子を得ることが
できる。
As described above, according to the seventh aspect of the present invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and any one of the above thin films is formed. The interdigital electrodes with the electrode finger arrangement intervals gradually changed were provided on the surface or the boundary surface between the thin film and the piezoelectric substrate. Therefore, even if the electrode index of the drooping electrode required to achieve the required characteristics is too small or too large to achieve good characteristics, by using the dispersion characteristics of the thin film, By sharing the dispersion characteristics of the wave element with both the interdigital electrodes and the dispersion characteristics of the thin film, it is possible to obtain an acoustic wave element having the required characteristics. Further, even if the same crossing portion continues due to the minimum dimension unit of the electrode finger, the group delay characteristic can be changed depending on the frequency due to the dispersion characteristic of the thin film. Obtainable.

【0135】以上のように、第8の発明によれば、圧電
体基板表面に弾性波が分散特性を有する非圧電性の薄膜
を少なくとも1層以上構成し、上記薄膜のうちの任意の
薄膜の表面あるいは上記薄膜と上記圧電体基板との境界
面に、電極指配列間隔を徐々に変化させた上記すだれ状
電極を設け、分散性のない圧電体基板上に構成した場合
よりも、上記すだれ状電極の電極指数が少なくなるよう
にした。このため、周波数が高い交差部において、隣合
う交差部間での所要の交差部の特性の差の値を大きくす
ることができ、電極指寸法に最小寸法単位があっても、
同じ交差部が連続するのを防ぎ、所要の特性を有する弾
性波素子を得ることができる。
As described above, according to the eighth aspect of the present invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and any one of the above thin films is formed. On the surface or on the boundary surface between the thin film and the piezoelectric substrate, the interdigital electrodes having the electrode finger array spacing gradually changed are provided, and the interdigital pattern is formed on the piezoelectric substrate having no dispersibility. The electrode index of the electrode was reduced. Therefore, at a high frequency intersection, it is possible to increase the value of the required characteristic difference between the adjacent intersections, and even if the electrode finger dimension has a minimum dimension unit,
It is possible to prevent the same intersection from continuing and obtain an acoustic wave device having required characteristics.

【0136】以上のように、第9の発明によれば、圧電
体基板表面に弾性波が分散特性を有する非圧電性の薄膜
を少なくとも1層以上構成し、上記薄膜のうちの任意の
薄膜の表面あるいは上記薄膜と上記圧電体基板との境界
面に、電極指配列間隔を徐々に変化させた上記すだれ状
電極を設け、分散性のない圧電体基板上に構成した場合
よりも、上記すだれ状電極の電極指数が多くなるように
した。このため、電極指数が少ないことにより、隣合う
電極指配列間隔の変化量が大きくなり、なめらかな分散
特性を実現できなくなるのを防ぎ、所要の特性を有する
弾性波素子を得ることができる。
As described above, according to the ninth invention, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and any of the above thin films is formed. On the surface or on the boundary surface between the thin film and the piezoelectric substrate, the interdigital electrodes having the electrode finger array spacing gradually changed are provided, and the interdigital pattern is formed on the piezoelectric substrate having no dispersibility. The electrode index of the electrode was increased. For this reason, since the electrode index is small, it is possible to prevent the amount of change in the adjacent electrode finger arrangement interval from becoming large, which makes it impossible to realize smooth dispersion characteristics, and it is possible to obtain an acoustic wave element having the required characteristics.

【0137】以上のように、第10の発明によれば、非
圧電体基板表面に弾性波が分散特性を有する圧電性の薄
膜を少なくとも一層以上構成し、上記薄膜のうちの任意
の薄膜の表面あるいは上記薄膜と上記非圧電体基板との
境界面に、電極指配列間隔を徐々に変化させた上記すだ
れ状電極を設けた、このため、所要の特性を実現するの
に必要なすだれ状電極の電極指数が、少なすぎたり、多
すぎたりして良好な特性を実現できない場合でも、薄膜
の分散特性を利用することにより、弾性波素子の分散特
性をすだれ状電極と薄膜の分散特性の両方で分担するこ
とにより、所要の特性を有する弾性波素子を得ることが
できる。さらに、電極指の最小寸法単位によって同じ交
差部が連続する場合でも、薄膜の分散特性によって、群
遅延特性は周波数によって変化させることが可能なた
め、群遅延時間のリップルを低減した弾性波素子を得る
ことができる。
As described above, according to the tenth invention, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and the surface of any thin film among the above thin films is formed. Alternatively, the interdigital electrode having the electrode finger arrangement interval gradually changed is provided on the boundary surface between the thin film and the non-piezoelectric substrate. Therefore, the interdigital electrode required to realize the required characteristics is provided. Even when the electrode index is too small or too large to achieve good characteristics, the dispersion characteristics of the acoustic wave element can be used for both the interdigital electrode and thin film dispersion characteristics by utilizing the dispersion characteristics of the thin film. By sharing, it is possible to obtain an acoustic wave device having required characteristics. Further, even if the same crossing portion continues due to the minimum dimension unit of the electrode finger, the group delay characteristic can be changed depending on the frequency due to the dispersion characteristic of the thin film. Obtainable.

【0138】以上のように、第11の発明によれば、非
圧電体基板表面に弾性波が分散特性を有する圧電性の薄
膜を少なくとも1層以上構成し、上記薄膜のうちの任意
の薄膜の表面あるいは上記薄膜と上記非圧電体基板との
境界面に、電極指配列間隔を徐々に変化させた上記すだ
れ状電極を設け、分散性のない圧電体基板上に構成した
場合よりも、上記すだれ状電極の電極指数が少なくなる
ようにした。このため、周波数が高い交差部において、
隣合う交差部間での所要の電極指配列間隔差の値を大き
くすることができ、電極指寸法に最小寸法単位があって
も、同じ交差部が連続するのを防ぎ、所要の特性を有す
る弾性波素子を得ることができる。
As described above, according to the eleventh invention, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and any one of the above thin films is formed. On the surface or on the boundary surface between the thin film and the non-piezoelectric substrate, the interdigital electrodes in which the electrode finger arrangement interval is gradually changed are provided, and the above-mentioned interlace is more than the case where the interdigital electrode is formed on a non-dispersive piezoelectric substrate. The electrode index of the strip electrodes was reduced. Therefore, at intersections with high frequencies,
It is possible to increase the value of the required electrode finger arrangement interval difference between adjacent intersections, and prevent the same intersection from continuing even if there is a minimum dimension unit in the electrode finger dimension, and it has the required characteristics. An acoustic wave device can be obtained.

【0139】以上のように、第12の発明によれば、非
圧電体基板表面に弾性波が分散特性を有する圧電性の薄
膜を少なくとも1層以上構成し、上記薄膜のうちの任意
の薄膜の表面あるいは上記薄膜と上記非圧電体基板との
境界面に、電極指配列間隔を徐々に変化させた上記すだ
れ状電極を設け、分散性のない圧電体基板上に構成した
場合よりも、上記すだれ状電極の電極指数が多くなるよ
うにした。このため、電極指数が少ないことにより、隣
合う交差特性の変化量が大きくなり、なめらかな分散特
性を実現できなくなるのを防ぎ、所要の特性を有する弾
性波素子を得ることができる。
As described above, according to the twelfth invention, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and any one of the above thin films is formed. On the surface or on the boundary surface between the thin film and the non-piezoelectric substrate, the interdigital electrodes in which the electrode finger arrangement interval is gradually changed are provided, and the above-mentioned interlace is more than the case where the interdigital electrode is formed on a non-dispersive piezoelectric substrate. The electrode index of the electrode is increased. For this reason, it is possible to prevent the change amount of adjacent crossing characteristics from increasing due to a small electrode index, and it is possible to prevent a smooth dispersion characteristic from being realized, and it is possible to obtain an acoustic wave device having required characteristics.

【0140】以上のように、第13の発明によれば、弾
性波素子の通過帯域の下限周波数をf1 、上限周波数を
2 とし、上記弾性波素子のすだれ状電極の交差幅をW
0 とし、すだれ状電極における弾性波の伝搬速度をV
IDT とし、入力側すだれ状電極にて励振された弾性波が
出力側すだれ状電極に達したときの出力側すだれ状電極
の電極指と上記弾性波の波面とのなす角度をθとしたと
きに、式9で示される条件か、あるいは、nを整数とし
て、式10で示される条件を満足するように、取り出し
電極端面の形状を定めた。このため、弾性波の伝搬速度
が材料によってばらつきを持っていても、そのばらつき
の範囲に対応した上記取り出し電極の形状を適切に決定
することにより、所要の特性を有する弾性波素子を得る
ことができる。
As described above, according to the thirteenth invention, the lower limit frequency of the pass band of the elastic wave element is f 1 and the upper limit frequency is f 2, and the intersection width of the interdigital electrodes of the elastic wave element is W.
0, and the propagation velocity of the elastic wave in the interdigital transducer is V
Let IDT be the angle between the electrode finger of the output-side interdigital electrode and the wavefront of the above-mentioned elastic wave when the elastic wave excited by the input-side interdigital electrode reaches the output-side interdigital electrode. The shape of the lead-out electrode end face was determined so as to satisfy the condition expressed by Expression 9 or the condition expressed by Expression 10 with n being an integer. Therefore, even if the propagation velocity of the elastic wave varies depending on the material, it is possible to obtain the acoustic wave element having the required characteristics by appropriately determining the shape of the extraction electrode corresponding to the range of the variation. it can.

【0141】以上のように、第14の発明によれば、弾
性波素子の通過帯域の下限周波数をf1 、上限周波数を
2 とし、上記弾性波素子のすだれ状電極の交差幅をW
0 とし、すだれ状電極における弾性波の伝搬速度をV
IDT とし、入力側すだれ状電極にて励振された弾性波が
出力側すだれ状電極に達したときの出力側すだれ状電極
の電極指と上記弾性波の波面とのなす角度をθとしたき
とに、式9で示される条件か、あるいは、nを整数とし
て、式10で示される条件を満足するように、上記シー
ルド電極の形状を定めた。このため、弾性波の伝搬速度
が材料によってばらつきを持っていても、そのばらつき
の範囲に対応した上記シールド電極の形状を適切に決定
することにより、所要の特性を有する弾性波素子を得る
ことができる。
As described above, according to the fourteenth invention, the lower limit frequency of the pass band of the elastic wave element is f 1 and the upper limit frequency is f 2, and the intersection width of the interdigital electrodes of the elastic wave element is W.
0, and the propagation velocity of the elastic wave in the interdigital transducer is V
Let IDT be the angle between the electrode finger of the output-side interdigital electrode and the wavefront of the elastic wave when the elastic wave excited by the input-side interdigital electrode reaches the output-side interdigital electrode and θ. Further, the shape of the shield electrode was determined so as to satisfy the condition represented by the formula 9 or the condition represented by the formula 10 with n being an integer. Therefore, even if the propagation velocity of the elastic wave varies depending on the material, it is possible to obtain the acoustic wave element having the required characteristics by appropriately determining the shape of the shield electrode corresponding to the range of the variation. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】図1に示した弾性波素子の電極指の一部を示す
図である。
FIG. 2 is a diagram showing a part of electrode fingers of the acoustic wave device shown in FIG.

【図3】この発明の第2の実施例の弾性波素子の電極指
幅、電極指間の間隙、電極指配列間隔を示す図である。
FIG. 3 is a diagram showing an electrode finger width, a gap between electrode fingers, and an electrode finger arrangement gap of an acoustic wave device according to a second embodiment of the present invention.

【図4】この発明の第2の実施例の弾性波素子の電極指
配列間隔を示す図である。
FIG. 4 is a diagram showing electrode finger arrangement intervals of an acoustic wave device according to a second embodiment of the present invention.

【図5】この発明の第2の実施例の弾性波素子の遅延時
間の一例を示す図である。
FIG. 5 is a diagram showing an example of a delay time of the acoustic wave device according to the second embodiment of the present invention.

【図6】この発明の第3の実施例のすだれ状電極の一部
を示す図である。
FIG. 6 is a diagram showing a part of a comb-shaped electrode according to a third embodiment of the present invention.

【図7】この発明の第4の実施例の弾性波素子の動作を
説明する図である。
FIG. 7 is a diagram for explaining the operation of the acoustic wave device of the fourth embodiment of the present invention.

【図8】この発明の第5の実施例のすだれ状電極の一部
を示す図である。
FIG. 8 is a diagram showing a part of a comb-shaped electrode according to a fifth embodiment of the present invention.

【図9】この発明の第6の実施例のすだれ状電極の一部
を示す図である。
FIG. 9 is a diagram showing a part of a comb-shaped electrode according to a sixth embodiment of the present invention.

【図10】この発明の第7の実施例を示す上面図であ
る。
FIG. 10 is a top view showing a seventh embodiment of the present invention.

【図11】図10に示した弾性波素子の断面を示す図で
ある。
11 is a diagram showing a cross section of the acoustic wave device shown in FIG.

【図12】薄膜構成における弾性波の分散特性を示す図
である。
FIG. 12 is a diagram showing dispersion characteristics of elastic waves in a thin film configuration.

【図13】この発明の第8の実施例を示す上面図であ
る。
FIG. 13 is a top view showing an eighth embodiment of the present invention.

【図14】図13に示した弾性波素子の断面を示す図で
ある。
14 is a diagram showing a cross section of the acoustic wave device shown in FIG.

【図15】この発明の第9の実施例を示す上面図であ
る。
FIG. 15 is a top view showing a ninth embodiment of the present invention.

【図16】図15に示した弾性波素子の断面を示す図で
ある。
16 is a diagram showing a cross section of the acoustic wave device shown in FIG.

【図17】この発明の第10の実施例を示す上面図であ
る。
FIG. 17 is a top view showing a tenth embodiment of the present invention.

【図18】図17に示した弾性波素子の断面を示す図で
ある。
18 is a diagram showing a cross section of the acoustic wave device shown in FIG.

【図19】この発明の第11の実施例を示す図である。FIG. 19 is a diagram showing an eleventh embodiment of the present invention.

【図20】波面が傾斜した弾性波が交差部で受信される
ときの動作を説明する図である。
FIG. 20 is a diagram illustrating an operation when an elastic wave having an inclined wavefront is received at an intersection.

【図21】内側の取り出し電極端面の傾斜角度と出力側
すだれ状電極に達した弾性波の波面の傾斜角度との関係
の計算結果を示す図である。
FIG. 21 is a diagram showing the calculation result of the relationship between the inclination angle of the end surface of the inner extraction electrode and the inclination angle of the wavefront of the elastic wave reaching the output-side interdigital electrode.

【図22】電極指のある領域の弾性波の伝搬速度を変え
た場合の内側の取り出し電極端面の傾斜角度と出力側す
だれ状電極に達した弾性波の波面の傾斜角度との関係の
計算結果を示す図である。
FIG. 22 is a calculation result of the relationship between the inclination angle of the end surface of the extraction electrode on the inner side and the inclination angle of the wave surface of the elastic wave reaching the output-side interdigital electrode when the propagation speed of the elastic wave in the region with the electrode finger is changed. FIG.

【図23】この発明の第12の実施例を示す図である。FIG. 23 is a diagram showing a twelfth embodiment of the present invention.

【図24】この発明の他の実施例を示す図である。FIG. 24 is a diagram showing another embodiment of the present invention.

【図25】この発明の他の実施例を示す図である。FIG. 25 is a diagram showing another embodiment of the present invention.

【図26】この発明の他の実施例を示す図である。FIG. 26 is a diagram showing another embodiment of the present invention.

【図27】この発明の他の実施例を示す図である。FIG. 27 is a diagram showing another embodiment of the present invention.

【図28】この発明の他の実施例を示す図である。FIG. 28 is a diagram showing another embodiment of the present invention.

【図29】この発明の他の実施例を示す図である。FIG. 29 is a diagram showing another embodiment of the present invention.

【図30】この発明の他の実施例を示す図である。FIG. 30 is a diagram showing another embodiment of the present invention.

【図31】この発明の他の実施例を示す図である。FIG. 31 is a diagram showing another embodiment of the present invention.

【図32】この発明の他の実施例を示す図である。FIG. 32 is a diagram showing another embodiment of the present invention.

【図33】この発明の他の実施例を示す図である。FIG. 33 is a diagram showing another embodiment of the present invention.

【図34】この発明の他の実施例を示す図である。FIG. 34 is a diagram showing another embodiment of the present invention.

【図35】この発明の他の実施例を示す図である。FIG. 35 is a diagram showing another embodiment of the present invention.

【図36】従来のこの種の弾性波素子を示す図である。FIG. 36 is a diagram showing a conventional acoustic wave device of this type.

【図37】図36に示した出力側すだれ状電極の交差部
の位置と各交差部における中心周波数を示す図である。
37 is a diagram showing positions of intersections of the output-side interdigital transducers shown in FIG. 36 and center frequencies at the respective intersections.

【図38】図37に示した出力側すだれ状電極の交差部
の位置と各電極指の電極指配列間隔を示す図である。
38 is a diagram showing positions of intersections of the output-side interdigital transducers shown in FIG. 37 and electrode finger arrangement intervals of the respective electrode fingers.

【図39】図37に示した各電極指の電極指配列間隔
に、最小寸法単位を設定した場合の電極指配列間隔を示
す図である。
39 is a diagram showing electrode finger arrangement intervals when the minimum dimension unit is set to the electrode finger arrangement intervals of the electrode fingers shown in FIG. 37.

【図40】電極指配列間隔を徐々に変化させた場合のす
だれ状電極の変換効率を示す図である。
FIG. 40 is a diagram showing conversion efficiency of a comb-shaped electrode when the electrode finger arrangement interval is gradually changed.

【図41】同じ電極指配列間隔が連続する交差部がある
場合のすだれ状電極の変換効率を示す図である。
FIG. 41 is a diagram showing conversion efficiency of a comb-shaped electrode in the case where there are intersections where the same electrode finger arrangement intervals are continuous.

【図42】電極指配列間隔が徐々に変化する弾性波素子
の通過特性の一例を示す図である。
FIG. 42 is a diagram showing an example of the pass characteristics of an acoustic wave device in which the electrode finger arrangement interval gradually changes.

【図43】同じ電極指配列間隔が連続する交差部がある
弾性波素子を示す図である。
FIG. 43 is a diagram showing an acoustic wave device having an intersection where the same electrode finger arrangement intervals are continuous.

【図44】同じ電極指配列間隔が連続する交差部がある
弾性波素子通過特性の一例を示す図である。
FIG. 44 is a diagram showing an example of an acoustic wave element passage characteristic having an intersection where the same electrode finger arrangement intervals are continuous.

【図45】従来のこの種の弾性波素子の電極指を示す図
である。
FIG. 45 is a diagram showing electrode fingers of a conventional acoustic wave device of this type.

【図46】従来のこの種の弾性波素子の電極指を示す図
である。
FIG. 46 is a diagram showing electrode fingers of a conventional acoustic wave device of this type.

【図47】従来のこの種の弾性波素子の電極指を示す図
である。
FIG. 47 is a diagram showing electrode fingers of a conventional acoustic wave device of this type.

【図48】従来のこの種の弾性波素子の電極指を示す図
である。
FIG. 48 is a diagram showing electrode fingers of a conventional acoustic wave device of this type.

【図49】電極指配列間隔を変化させた時の電極指幅、
電極指間の間隙長、電極指配列間隔の一例を示す図であ
る。
FIG. 49 shows the electrode finger width when the electrode finger arrangement interval is changed,
It is a figure which shows an example of the gap length between electrode fingers, and an electrode finger arrangement | positioning space | interval.

【符号の説明】[Explanation of symbols]

1 すだれ状電極 2 電極指 3 取り出し電極 3a 外側の取り出し電極 3b 内側の取り出し電極 4 電気端子 5 接地端子 21 圧電基板 22 非圧電性の薄膜 23 非圧電性の基板 24 圧電性の薄膜 30 シールド電極 31 シールド電極端面 32 薄膜 33 電極指のある領域 1 interdigital electrode 2 electrode finger 3 extraction electrode 3a outer extraction electrode 3b inner extraction electrode 4 electrical terminal 5 ground terminal 21 piezoelectric substrate 22 non-piezoelectric thin film 23 non-piezoelectric substrate 24 piezoelectric thin film 30 shield electrode 31 Shield electrode end face 32 Thin film 33 Area with electrode fingers

フロントページの続き (72)発明者 和高 修三 神奈川県鎌倉市大船五丁目1番1号 三菱 電機株式会社電子システム研究所内Continued Front Page (72) Inventor Shuzo Waka, 1-1 1-1 Ofuna, Kamakura-shi, Kanagawa Electronic Systems Research Center, Mitsubishi Electric Corporation

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】電気信号と弾性波との変換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させた構成を有する弾性波素子において、 すだれ状電極の電位の異なる電極指が交差する部位の一
部あるいは全体に、上記電極指幅と隣り合う電極指との
間隙長との比率を変えた領域を有することを特徴とした
弾性波素子。
1. An acoustic wave device having a configuration in which at least one of the interdigital electrodes for converting an electric signal and an elastic wave is configured such that the electrode finger arrangement interval is gradually changed, and the interdigital electrodes have different potentials. An acoustic wave device characterized in that it has a region where the ratio of the electrode finger width and the gap length between adjacent electrode fingers is changed, in a part or the whole of the portion where the electrode fingers intersect.
【請求項2】電気信号と弾性波との交換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させた構成を有する弾性波素子において、 すだれ状電極の電位の異なる電極指が交差する部位の一
部あるいは全体に、すだれ状電極の電極指配列間隔が徐
々に小さくなる電極指順序の方向に、隣り合う電極指の
間隙長に対する上記電極指幅の比率を徐々に小さくした
ことを特徴とする弾性波素子。
2. An elastic wave device having a configuration in which at least one of the interdigital electrodes for exchanging an electric signal and an elastic wave is configured such that the electrode finger arrangement interval is gradually changed, and the interdigital electrodes have different potentials. The ratio of the electrode finger width to the gap length of the adjacent electrode fingers is gradually increased in the direction of the electrode finger order in which the electrode finger arrangement interval of the interdigital electrode gradually decreases over a part or the whole of the area where the electrode fingers intersect. An acoustic wave device characterized by being made smaller.
【請求項3】電気信号と弾性波との交換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させた構成を有する弾性波素子において、 すだれ状電極の電位の異なる電極指が交差する部位の一
部あるいは全体に、隣り合う電極指の間隙長に対する上
記電極指幅の比率を乱数的に変化させたことを特徴とす
る弾性波素子。
3. An acoustic wave device having a configuration in which at least one of the interdigital electrodes for exchanging an electric signal and an elastic wave is configured such that the electrode finger arrangement interval is gradually changed, and the interdigital electrodes have different potentials. An acoustic wave device characterized in that the ratio of the electrode finger width to the gap length of adjacent electrode fingers is randomly changed in a part or the whole of the portion where the electrode fingers intersect.
【請求項4】電気信号と弾性波との変換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させた構成を有する弾性波素子において、 すだれ状電極の電位の異なる電極指が交差する部位の一
部あるいは全体に、隣り合う電極指の間隙長に対する上
記電極指幅の比率が変化する段付き電極指を有すること
を特徴とする弾性波素子。
4. In an acoustic wave device having a configuration in which at least one of the interdigital electrodes for converting an electric signal and an elastic wave is gradually changed in electrode finger arrangement interval, the interdigital electrodes have different potentials. An acoustic wave device comprising a stepped electrode finger in which the ratio of the electrode finger width to the gap length of adjacent electrode fingers changes in a part or the whole of the portion where the electrode fingers intersect.
【請求項5】電気信号と弾性波との交換を行うすだれ状
の電極の少なくとも一つ以上に、電極指配列間隔を徐々
に変化させた構成を有する弾性波素子において、 すだれ状電極の電位の異なる電極指が交差する部位の一
部あるいは全体に、隣り合う電極指の間隙長に対する上
記電極指幅の比率が変化する段付き電極指を有し、すだ
れ状電極の電極配列間隔が徐々に小さくなる電極指順序
の方向に、上記各電極指における隣り合う電極指の間隙
長に対する上記電極指幅の比率の大きい領域の交差幅の
方向の長さの合計に対して、上記隣り合う電極指の間隙
長に対する上記電極指の比率の小さい領域の交差幅方向
の長さの合計の比率を、徐々に大きくしたことを特徴と
する弾性波素子。
5. An acoustic wave device having a configuration in which an electrode finger arrangement interval is gradually changed to at least one of interdigital electrodes for exchanging an electric signal and an elastic wave. Part or all of the portion where the different electrode fingers intersect has stepped electrode fingers in which the ratio of the electrode finger width to the gap length of the adjacent electrode fingers changes, and the electrode arrangement interval of the interdigital electrode gradually decreases. In the direction of the electrode finger sequence, the total length of the adjacent electrode fingers in the direction of the cross width of the region having a large ratio of the electrode finger width to the gap length of the adjacent electrode fingers in each of the electrode fingers is An acoustic wave device characterized in that the ratio of the total length in the cross width direction of the region where the ratio of the electrode fingers to the gap length is small is gradually increased.
【請求項6】電気信号と弾性波との変換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させた構成を有する弾性波素子において、 すだれ状電極の電位の異なる電極指が交差する部位の一
部あるいは全体に、隣り合う電極指の間隙長に対する上
記電極指幅の比率が変化する段付き電極指を有し、上記
各電極指における隣り合う電極の間隙長に対する上記電
極幅の比率の小さい領域の交差幅方向の長さの合計の比
率を、乱数的に変化させたことを特徴とする弾性波素
子。
6. An acoustic wave device having a configuration in which at least one of the interdigital electrodes for converting an electric signal and an elastic wave is configured such that the electrode finger arrangement interval is gradually changed, and the interdigital electrodes have different potentials. A part or the whole of the portion where the electrode fingers intersect has stepped electrode fingers in which the ratio of the electrode finger width to the gap length of the adjacent electrode fingers changes, and the gap length of the adjacent electrodes in each of the electrode fingers corresponds to the gap length. An elastic wave device, wherein the ratio of the total lengths in the cross width direction of the region having a small electrode width ratio is randomly changed.
【請求項7】電気信号と弾性波との変換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させた構成を有する弾性波素子において、 圧電体基板表面に弾性波が分散特性を有する非圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記圧電体基板との
境界面に、電極指配列間隔を徐々に変化させた上記すだ
れ状電極を設け、分散性の無い圧電体基板上に構成した
場合よりも、上記すだれ状電極の電極指数が少なくなる
ようにしたことを特徴とする弾性波素子。
7. An acoustic wave device having a configuration in which at least one of interdigital electrodes for converting an electric signal and an elastic wave is configured such that an electrode finger arrangement interval is gradually changed. Comprises at least one non-piezoelectric thin film having dispersion characteristics, and gradually changes the electrode finger arrangement interval on the surface of any thin film among the above thin films or on the boundary surface between the above thin film and the piezoelectric substrate. An elastic wave device characterized in that the electrode index of the interdigital transducer is smaller than that in the case where the interdigital transducer is provided on a piezoelectric substrate having no dispersibility.
【請求項8】電気信号と弾性波との変換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させて、周波数が高くなるのにしたがって群遅延時
間が大きくなるような構成とした弾性波素子において、 圧電体基板表面に弾性波が分散特性を有する非圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記圧電体との境界
面に、電極指配列間隔を徐々に変化させた上記すだれ状
電極を設け、分散性のない圧電体基板上に構成した場合
よりも、上記すだれ状電極の電極指数が少なくなるよう
にしたことを特徴とする弾性波素子。
8. An electrode finger arrangement interval is gradually changed to at least one of the interdigital electrodes for converting an electric signal and an elastic wave so that the group delay time increases as the frequency increases. In the elastic wave device having the above-mentioned structure, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any thin film among the above thin films or the above thin film and the above piezoelectric film are formed. On the boundary surface between and, the interdigital electrodes with the electrode finger arrangement intervals gradually changed are provided, so that the electrode index of the interdigital electrodes becomes smaller than that in the case where the interdigital electrodes are formed on a non-dispersive piezoelectric substrate. An elastic wave device characterized by the above.
【請求項9】電気信号と弾性波との変換を行うすだれ状
電極の少なくとも一つ以上に、電極指配列間隔を徐々に
変化させて、周波数が高くなるのに従って遅延時間が小
さくなるような構成とした弾性波素子において、 圧電体基板表面に弾性波が分散特性を有する非圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記圧電体基板との
境界面に、電極指配列間隔を徐々に変化させた上記すだ
れ状電極を設け、分散性のない圧電体基板上に構成した
場合よりも、上記すだれ状電極の電極指数が多くなるよ
うにしたことを特徴とする弾性波素子。
9. A structure in which the electrode finger arrangement interval is gradually changed to at least one of the interdigital electrodes for converting an electric signal and an elastic wave so that the delay time becomes smaller as the frequency becomes higher. In the elastic wave device described above, at least one non-piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the piezoelectric substrate, and the surface of any thin film among the thin films or the thin film and the piezoelectric substrate At the boundary surface of the interdigital transducer, the interdigital electrodes with the electrode finger array spacing gradually changed were provided, and the interdigitated electrode index of the interdigital electrodes was set to be larger than that in the case where the interdigital electrodes were formed on the non-dispersive piezoelectric substrate. An elastic wave device characterized by the above.
【請求項10】電気信号と弾性波との変換を行うすだれ
状電極の少なくとも一つ以上に、電極指配列間隔を徐々
に変化させた構成の弾性波素子において、 非圧電体基板表面に弾性波が分散特性を有する圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記非圧電体基板と
の境界面に、電極指配列間隔を徐々に変化させた上記す
だれ状電極を設けたことを特徴とする弾性波素子。
10. An elastic wave device having a configuration in which an electrode finger arrangement interval is gradually changed to at least one of interdigital electrodes for converting an electric signal and an elastic wave, and the elastic wave is formed on a surface of a non-piezoelectric substrate. Comprises at least one piezoelectric thin film having dispersion characteristics, and gradually changes the electrode finger arrangement interval on the surface of any of the thin films or on the boundary surface between the thin film and the non-piezoelectric substrate. An acoustic wave device comprising the interdigital transducer.
【請求項11】電気信号と弾性波との変換を行うすだれ
状電極の少なくとも一つ以上に、電極指配列間隔を徐々
に変化させて、周波数が高くなるのに従って遅延時間が
大きくなるような構成とした弾性波素子において、 非圧電体基板表面に弾性波が分散特性を有する圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記非圧電体基板と
の境界面に、電極指配列間隔を徐々に変化させた上記す
だれ状電極を設け、分散性のない圧電体基板上に構成し
た場合よりも、上記すだれ上電極の電極指数が少なくな
るようにしたことを特徴とする弾性波素子。
11. A configuration in which an electrode finger arrangement interval is gradually changed on at least one or more interdigital electrodes for converting an electric signal and an elastic wave, and a delay time increases as the frequency increases. In the elastic wave device described above, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and the surface of any of the thin films or the thin film and the non-piezoelectric substrate are formed. On the boundary surface between the and the interdigital electrodes, the interdigital electrodes with the electrode finger arrangement intervals gradually changed are provided, so that the electrode index of the interdigital electrodes becomes smaller than that in the case where the interdigital electrodes are formed on a non-dispersive piezoelectric substrate. An elastic wave device characterized by the above.
【請求項12】電気信号と弾性波との変換を行うすだれ
状の少なくとも一つ以上に、電極指配列間隔を徐々に変
化させて、周波数が高くなるのにしたがって遅延時間が
小さくなるような構成とした弾性波素子において、 非圧電体基板表面に弾性波が分散特性を有する圧電性の
薄膜を少なくとも一層以上構成し、上記薄膜のうちの任
意の薄膜の表面あるいは上記薄膜と上記非圧電体との境
界面に、電極指配列間隔を徐々に変化させた上記すだれ
状電極を設け、分散性のない圧電体基板上に構成した場
合よりも、上記すだれ状電極の電極指数が多くなるよう
にしたことを特徴とする弾性波素子。
12. A structure in which the electrode finger arrangement interval is gradually changed to at least one interdigital transducer for converting an electric signal and an elastic wave so that the delay time becomes smaller as the frequency becomes higher. In the elastic wave device described above, at least one piezoelectric thin film having elastic wave dispersion characteristics is formed on the surface of the non-piezoelectric substrate, and the surface of any of the thin films or the thin film and the non-piezoelectric material are formed. At the boundary surface of the interdigital transducer, the interdigital electrodes with the electrode finger arrangement interval gradually changed are provided, and the electrode index of the interdigital electrodes is made larger than that in the case where the interdigital electrodes are formed on the non-dispersive piezoelectric substrate. An elastic wave device characterized by the above.
【請求項13】電気信号と弾性波との変換を行うすだれ
状電極の電極指を弾性波伝搬方向と垂直な方向にずらし
て、任意の弾性波伝搬径路上の弾性波が横切る電極指数
の低減を図ったスラント電極を入出力電極のうちの少な
くとも一つ以上用い、上記スラント電極と上記スラント
電極の信号取出し電極との境界部や、上記信号取出し電
極の対向する電極側の端面での屈折により、弾性波の波
面や伝搬方法が所要の方向からずれるのを、上記取出し
電極の対向する電極側の形状によって補正する弾性波素
子において、 弾性波素子の通過帯域の下限周波数をf1 、上限周波数
をf2 とし、上記弾性は素子のすだれ状電極の交差幅を
0 とし、すだれ状電極における弾性波の伝搬速度をV
IDT とし、入力側すだれ状電極にて励振された弾性波が
出力側すだれ状電極の電極指と上記弾性波の波面とのな
す角度をθとしたときに、 f2 < VIDT /(W0 ・sinθ) あるいは、nを整数として、 f2 /n < VIDT /(W0 ・sinθ) < f1
/(n−1) を満足するように、上記取出し電極の対向する電極側の
形状を定めたことを特徴とする弾性波素子。
13. The electrode index of a comb-shaped electrode for converting an electric signal and an elastic wave is shifted in a direction perpendicular to the elastic wave propagation direction to reduce the electrode exponent traversed by the elastic wave on an arbitrary elastic wave propagation path. Using at least one of the input and output electrodes of the slant electrode, the boundary between the slant electrode and the signal extraction electrode of the slant electrode, or by refraction at the end surface of the signal extraction electrode facing the electrode side. , The elastic wave element that corrects the deviation of the wavefront and propagation method of the elastic wave from the required direction by the shape of the electrode side facing the extraction electrode, the lower limit frequency of the pass band of the elastic wave element is f 1 , the upper limit frequency. Is f 2 , and the elasticity is the crossing width of the interdigital transducer of the element is W 0, and the propagation velocity of the elastic wave in the interdigital electrode is V 2.
And IDT, an angle between the wavefront of the input-side interdigital acoustic wave excited by the electrodes is output interdigital electrode fingers of the electrode and the acoustic wave is taken as θ, f 2 <V IDT / (W 0 · sin [theta) or, where n is an integer, f 2 / n <V IDT / (W 0 · sinθ) <f 1
An elastic wave element, characterized in that the shape of the extraction electrode on the opposite electrode side is determined so as to satisfy / (n-1).
【請求項14】電気信号と弾性波との変換を行うすだれ
状電極の電極指を弾性波伝搬方向と垂直な方向にずらし
て、任意の弾性波伝搬径路上の弾性波が横切る電極指数
の低減を図ったスラント電極を入出力電極のうちの少な
くとも一つ以上用い、上記スラント電極と上記スラント
電極の信号取出し電極の境界部や、上記取出し電極の対
向する電極側での端面での屈折により、弾性波の波面や
伝搬方法が所要の方向からずれるのを、上記すだれ状電
極の間に配置したシールド電極側の形状によって補正す
る弾性波素子において、 弾性波素子の通過帯域の下限周波数をf1 、上限周波数
をf2 とし、上記弾性波素子のすだれ状電極の交差幅を
0 とし、すだれ状電極における弾性波の伝搬速度をV
IDT とし、入力側すだれ状電極にて励振された弾性波が
出力側すだれ状で電極に達したときの出力側すだれ状電
極の電極指と上記弾性波の波面とのなす角をθとしたと
きに、 f2 < VIDT /(W0 ・sinθ) あるいは、nを整数として、 f2 /n < VIDT /(W0 ・sinθ) < f1
/(n−1) を満足するように、上記シールド電極の形状を定めたこ
とを特徴とする弾性波素子。
14. The electrode index of a comb-shaped electrode for converting an electric signal and an elastic wave is shifted in a direction perpendicular to the elastic wave propagation direction to reduce the electrode index crossed by the elastic wave on an arbitrary elastic wave propagation path. Using at least one of the input and output electrodes slant electrode aimed at, the boundary portion of the signal extraction electrode of the slant electrode and the slant electrode, by refraction at the end face on the opposite electrode side of the extraction electrode, In the elastic wave element that corrects the deviation of the wavefront and propagation method of the elastic wave from the required direction by the shape on the shield electrode side placed between the interdigital electrodes, the lower limit frequency of the pass band of the elastic wave element is f 1 , The upper limit frequency is f 2 , the cross width of the interdigital electrodes of the elastic wave element is W 0, and the propagation velocity of the elastic wave in the interdigital electrode is V
IDT , when the angle formed between the electrode finger of the output-side interdigital electrode and the wavefront of the elastic wave when the elastic wave excited by the input-side interdigital electrode reaches the electrode in the output-side interdigital shape is θ And f 2 <V IDT / (W 0 · sin θ) or, where n is an integer, f 2 / n <V IDT / (W 0 · sin θ) <f 1
An elastic wave device characterized in that the shape of the shield electrode is determined so as to satisfy / (n-1).
JP01682794A 1994-02-10 1994-02-10 Elastic wave element Expired - Lifetime JP3305475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01682794A JP3305475B2 (en) 1994-02-10 1994-02-10 Elastic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01682794A JP3305475B2 (en) 1994-02-10 1994-02-10 Elastic wave element

Publications (2)

Publication Number Publication Date
JPH07226643A true JPH07226643A (en) 1995-08-22
JP3305475B2 JP3305475B2 (en) 2002-07-22

Family

ID=11927025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01682794A Expired - Lifetime JP3305475B2 (en) 1994-02-10 1994-02-10 Elastic wave element

Country Status (1)

Country Link
JP (1) JP3305475B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541893B2 (en) * 2000-02-02 2003-04-01 Rutgers, The State University Of New Jersey Programmable surface acoustic wave (SAW) filter
US7078787B1 (en) 2002-01-18 2006-07-18 National Semiconductor Corporation Design and operation of gate-enhanced junction varactor with gradual capacitance variation
KR100609965B1 (en) * 2001-04-16 2006-08-04 가부시키가이샤 무라타 세이사쿠쇼 Surface acoustic wave apparatus and communication apparatus
US7235862B2 (en) * 2001-07-10 2007-06-26 National Semiconductor Corporation Gate-enhanced junction varactor
WO2014192756A1 (en) * 2013-05-29 2014-12-04 株式会社村田製作所 Acoustic wave device
JP2017126862A (en) * 2016-01-13 2017-07-20 太陽誘電株式会社 Acoustic wave resonator, filter, and duplexer
CN114726335A (en) * 2022-06-09 2022-07-08 深圳新声半导体有限公司 Interdigital transducer, surface acoustic wave resonator and preparation method
CN116633307A (en) * 2023-05-23 2023-08-22 无锡市好达电子股份有限公司 Elastic wave device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541893B2 (en) * 2000-02-02 2003-04-01 Rutgers, The State University Of New Jersey Programmable surface acoustic wave (SAW) filter
KR100609965B1 (en) * 2001-04-16 2006-08-04 가부시키가이샤 무라타 세이사쿠쇼 Surface acoustic wave apparatus and communication apparatus
US7235862B2 (en) * 2001-07-10 2007-06-26 National Semiconductor Corporation Gate-enhanced junction varactor
US7579642B1 (en) 2001-07-10 2009-08-25 National Semiconductor Corporation Gate-enhanced junction varactor
US7078787B1 (en) 2002-01-18 2006-07-18 National Semiconductor Corporation Design and operation of gate-enhanced junction varactor with gradual capacitance variation
US7081663B2 (en) 2002-01-18 2006-07-25 National Semiconductor Corporation Gate-enhanced junction varactor with gradual capacitance variation
WO2014192756A1 (en) * 2013-05-29 2014-12-04 株式会社村田製作所 Acoustic wave device
US10009009B2 (en) 2013-05-29 2018-06-26 Murata Manufacturing Co., Ltd. Elastic wave device including electrode fingers with elongated sections
JP2017126862A (en) * 2016-01-13 2017-07-20 太陽誘電株式会社 Acoustic wave resonator, filter, and duplexer
US10476474B2 (en) 2016-01-13 2019-11-12 Taiyo Yuden Co., Ltd. Acoustic wave resonator, filter, and duplexer
CN114726335A (en) * 2022-06-09 2022-07-08 深圳新声半导体有限公司 Interdigital transducer, surface acoustic wave resonator and preparation method
CN116633307A (en) * 2023-05-23 2023-08-22 无锡市好达电子股份有限公司 Elastic wave device

Also Published As

Publication number Publication date
JP3305475B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US5838217A (en) Longitudinally coupling acoustic surface wave double mode filter utilizing end-face reflecting waves
US5485052A (en) Three electrode type saw longitudinal coupling filter
US7728698B2 (en) Surface acoustic wave resonator filter with longitudinally coupled transducers
US4484160A (en) Electronic component operating with acoustic waves
JP2703891B2 (en) Surface acoustic wave filter
US7138890B2 (en) Surface acoustic wave (SAW) resonator SAW filter and SAW antenna duplexer using the SAW resonator
EP0184508A2 (en) Surface acoustic wave transducer
JP4284175B2 (en) Surface wave transducer with improved suppression of fault excitation
WO2023202597A1 (en) Surface acoustic wave resonator
US7023300B2 (en) Surface wave devices with low passband ripple
JPH10261938A (en) Surface acoustic wave filter
CN114710134A (en) Surface acoustic wave resonator and surface acoustic wave filter
JP3414373B2 (en) Surface acoustic wave device
CN114268294B (en) SAW device including hybrid weighting type reflection grating and hybrid weighting type reflection grating
JP3305475B2 (en) Elastic wave element
US6710683B2 (en) Surface acoustic wave filter and communications apparatus using the same
JP4014630B2 (en) Surface acoustic wave device
JP3484237B2 (en) Surface acoustic wave device
JP3379383B2 (en) Surface acoustic wave device
JP3154402B2 (en) SAW filter
US4602183A (en) Surface acoustic wave device with a 3-phase unidirectional transducer
JPH10173467A (en) Transversal saw filter
JPH03132208A (en) Surface elastic wave element
JP2001326555A (en) Surface acoustic wave element and its design method
JP2561454B2 (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100510

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

EXPY Cancellation because of completion of term