JPS63136471A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS63136471A
JPS63136471A JP61281768A JP28176886A JPS63136471A JP S63136471 A JPS63136471 A JP S63136471A JP 61281768 A JP61281768 A JP 61281768A JP 28176886 A JP28176886 A JP 28176886A JP S63136471 A JPS63136471 A JP S63136471A
Authority
JP
Japan
Prior art keywords
gas
chamber
reaction chamber
electrodes
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61281768A
Other languages
Japanese (ja)
Other versions
JPH0622145B2 (en
Inventor
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61281768A priority Critical patent/JPH0622145B2/en
Publication of JPS63136471A publication Critical patent/JPS63136471A/en
Publication of JPH0622145B2 publication Critical patent/JPH0622145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to supply a gas having almost the same concentration onto the whole surface of an electrolyte by installing small holes in partitions between a gas supply chamber and a gas reaction chamber and between the gas reaction chamber and a gas exhaust chamber. CONSTITUTION:A gas reaction chamber R1 in which the electrode surface side is opened, a gas supply chamber R2 in which the gas supply side is opened, and a gas exhaust chamber R3 in which the gas exhaust side is opened are partitioned with a corrugated plate to form gas passages. The gas reaction chamber R1 and the gas supply chamber R2 are connected with plural small holes H1, and the gas reaction chamber R1 and the gas exhaust chamber R3 with plural small holes H2. The supplied gas flows to the gas reaction chamber R1 through the small holes H1, and after reaction, the gas is exhausted into the gas exhaust chamber R3 through the small holes H2. Therefore, the gas having almost the same concentration is supplied onto the whole surface of an electrolyte.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池の改良に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in fuel cells.

〔従来の技術〕[Conventional technology]

従来一般に採用されている燃料電池は、第12図に示す
ように一対の電極、すなわち燃料電極1と酸化剤電極2
があり、そしてこの両者電極の間に電解質マトリックス
3が介在され、またこの燃料電極1や酸化剤電極2部に
所定のガスを供給するために、これら電極の背後、すな
わち各電極の反型解質マトリックス側にはガス流通路4
.5が形成されているのが普通である。
A conventionally commonly used fuel cell has a pair of electrodes, a fuel electrode 1 and an oxidizer electrode 2, as shown in FIG.
An electrolyte matrix 3 is interposed between these two electrodes, and in order to supply a predetermined gas to the fuel electrode 1 and the oxidizer electrode 2, an electrolyte matrix 3 is provided behind these electrodes, that is, an inverse solution of each electrode. There is a gas flow passage 4 on the matrix side.
.. 5 is normally formed.

そしてその動作は、ガス流通路4に燃料ガス6が供給さ
れ、またガス流通路5に酸化剤ガス7が供給され、これ
らが夫々電極を介して電解質と反応し各電極より電力を
取り出すようにしている。
The operation is such that fuel gas 6 is supplied to the gas flow passage 4, and oxidizing gas 7 is supplied to the gas flow passage 5, and these react with the electrolyte through the respective electrodes, so that electric power is extracted from each electrode. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

したがってこの構成のものでは、この供給されたガスが
ガス流通路の入口付近では供給ガスと充分反応するが、
出口付近では充分行なわれない嫌いがある。すなわちガ
ス出口付近においてはガス流通路の入口付近で反応した
この反応後のガスが未反応ガスと混合した状態で供給さ
れることになり、その反応状態がガス出口付近とガス入
口付近では異なってしまう。したがって電極面の位置に
よって電流密度が異なり、またその温度にも差が生ずる
嫌いがあった。
Therefore, with this configuration, the supplied gas sufficiently reacts with the supplied gas near the entrance of the gas flow path;
I don't like that it's not done enough near the exit. In other words, in the vicinity of the gas outlet, the reacted gas that has reacted in the vicinity of the inlet of the gas flow passage is supplied in a mixed state with unreacted gas, and the reaction state is different in the vicinity of the gas outlet and in the vicinity of the gas inlet. Put it away. Therefore, the current density varies depending on the position of the electrode surface, and the temperature also tends to vary.

このことにより、従来から一方向よりガスを供給しても
各電極面全体に、すなわち電解質面全体にはほぼ同一の
濃度を有するガスが供給されるようなこの種燃料電池の
出現が望まれていた。
As a result, it has been desired to develop a fuel cell of this type in which gas having approximately the same concentration is supplied to the entire surface of each electrode, that is, the entire surface of the electrolyte, even if gas is supplied from one direction. Ta.

本発明はこれにかんがみなされたものでありその目的と
するところは、電解質面全体にほぼ同一の濃度を有する
ガスが供給されるようになしたこの種燃料電池を提供す
るにある。
The present invention has been conceived with this in mind, and its object is to provide a fuel cell of this type in which gas having approximately the same concentration is supplied to the entire electrolyte surface.

尚この種燃料電池に関連したものとしては、特開昭61
−24167号公報があげられる。
Regarding this type of fuel cell, Japanese Patent Application Laid-Open No. 61
-24167 publication is mentioned.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は電極の背面に形成されているガス流通路を、電
極表面側が開口したガス反応室と、ガス供給側が開口し
たガス供給室と、ガス排出側が開口したガス排出室とに
仕切り壁により仕切り、かつ前記ガス供給室とガス反応
室及びガス反応室とガス排出室間の仕切り壁に、夫々ガ
スの供給方向若しくはガスの排出方向に所定の間隔をも
って配置された複数個の小孔を設けるようになし所期の
目的を達成するようにしたものである。
In the present invention, the gas flow passage formed on the back surface of the electrode is partitioned by a partition wall into a gas reaction chamber that is open on the electrode surface side, a gas supply chamber that is open on the gas supply side, and a gas discharge chamber that is open on the gas discharge side. , and a plurality of small holes arranged at predetermined intervals in the gas supply direction or the gas discharge direction are provided in the partition walls between the gas supply chamber and the gas reaction chamber, and between the gas reaction chamber and the gas discharge chamber, respectively. It was designed to achieve the intended purpose without any problems.

〔作用〕[Effect]

このように構成すると、供給されたガスはガス供給室と
ガス反応室間の複数の小孔を介してガス反応室に夫々流
入、すなわちガス反応室全体にわたって平等なガス供給
が行なわれ、また反応後のガスはガス反応室内を長時間
流通していることなくガス排出室に排出されるので、電
解質面全体にほぼ同一の濃度を有するガスを供給するこ
とができるのである。
With this configuration, the supplied gas flows into the gas reaction chamber through the plurality of small holes between the gas supply chamber and the gas reaction chamber, that is, the gas is evenly supplied throughout the gas reaction chamber, and the reaction Since the remaining gas is discharged into the gas discharge chamber without flowing through the gas reaction chamber for a long time, it is possible to supply gas having approximately the same concentration to the entire electrolyte surface.

〔実施例〕〔Example〕

以下図示した実施例に基づいて本発明の詳細な説明する
The present invention will be described in detail below based on the illustrated embodiments.

第1図に一対の電極1,2、電解マトリックス3、電池
容器8,9を具備している燃料電池が断面で示されてい
る。一対の電極1,2の間には電解質マトリックス3が
介在され、また電極の反型解質マトリックス側、すなわ
ち電極1と容器8のジ間あ、い、よ1!t4i2□容器
、、)□。3よガオ流461’0,11が形成されてい
る。
In FIG. 1, a fuel cell is shown in cross section, comprising a pair of electrodes 1, 2, an electrolytic matrix 3, and a cell container 8, 9. An electrolyte matrix 3 is interposed between the pair of electrodes 1 and 2, and between the opposite electrolyte matrix side of the electrodes, that is, between the electrode 1 and the container 8. t4i2□ container, )□. 3-Yo Gao flow 461'0, 11 is formed.

特にこの場合このガス流通路は次のように3種類の室に
形成されている。すなわち第2図にその一部が拡大され
て示されているように、波板12により電極表面側(図
中下側)が開口しているガス反応室R1と、ガス供給側
、すなわちガス供給が行なわれる側が開口しているガス
供給室R2と、ガス排出側、すなわち反応後のガスが排
出される側が開口しているガス排出室R3とに仕切られ
ているのである。
Particularly in this case, the gas flow passages are formed into three types of chambers as follows. In other words, as shown in a partially enlarged view in FIG. 2, there is a gas reaction chamber R1 whose electrode surface side (lower side in the figure) is opened by the corrugated plate 12, and a gas reaction chamber R1 which is opened on the electrode surface side (lower side in the figure) by the corrugated plate 12; It is partitioned into a gas supply chamber R2 which is open on the side where the reaction is carried out, and a gas discharge chamber R3 which is open on the gas discharge side, that is, the side from which the gas after the reaction is discharged.

さらにまたこれらの室はある条件のもとで連通している
。すなわちガス反応室R1とガス供給室R2が複数個の
小孔H1にて連通し、またガス反応室R1とガス排出室
R3とが複数個の小孔H2にて連通している。この場合
この小孔H1,H2はガスの供給あるいは排出流通方向
に対しである一定の等間隔を保って配置されることが望
ましく。
Furthermore, these chambers communicate under certain conditions. That is, the gas reaction chamber R1 and the gas supply chamber R2 communicate with each other through a plurality of small holes H1, and the gas reaction chamber R1 and gas discharge chamber R3 communicate with each other through a plurality of small holes H2. In this case, it is desirable that the small holes H1 and H2 be arranged at a certain equal interval with respect to the gas supply or gas discharge flow direction.

また小孔の大きさの条件としては、ガス供給室R2に供
給されたガスが、その供給室全長にわたってほぼ平等に
この小孔よりガス反応室に流入する大きさであることは
いうまでもない。
It goes without saying that the size of the small hole is such that the gas supplied to the gas supply chamber R2 flows into the gas reaction chamber through the small hole almost equally over the entire length of the supply chamber. .

又図にも示されているようにこれらの小孔のうち、ガス
供給室R2とガス反応室R1間の仕切り壁に設けられる
小孔H1を電極側に近接集中配置し、ガス反応室R1と
ガス排出室R3間の仕切り壁に設けられる小孔H2を反
電極側に近接集中配置するとガスの流通の点から望まし
い形となる。
Also, as shown in the figure, among these small holes, the small hole H1 provided in the partition wall between the gas supply chamber R2 and the gas reaction chamber R1 is concentrated and arranged close to the electrode side, so that the gas reaction chamber R1 and If the small holes H2 provided in the partition wall between the gas discharge chambers R3 are arranged closely and concentrated on the opposite electrode side, a desirable shape is obtained from the viewpoint of gas circulation.

次にこのように形成された燃料電池の作用についてのべ
ると、まず外部よりマニホールド(図示はない)を介し
て供給されたガスはガス供給室R2に流入する。このガ
ス供給室R2は筒状状態であり特にここではガスが電解
マトリックスと接触することはないのでガス反応は生じ
ない。ガス供給室R2に流入したガスは次いでガス供給
室とガス反応室R1間に設けられている小孔H1を介し
てガス反応室R1に流入する。この場合ある間隔をもっ
て設けられている複数個の小孔より平等にガスの流入が
行なわれる。すなわち一方向にのびているガス反応室R
1のその長手方向全体にわたって平等なガス供給が行な
われ、したがってここで電解マトリックス面全体に一様
なガス反応が行なわれる。反応後のガスはガス反応室R
1とガス排出室R3間に設けられている小孔H2を介し
てガス排出室R3に排出される。この場合も前述同様小
孔H2がある間隔をもって設けられているので、ガス反
応室R1に流入したガスは反応後ただちに排出室R3に
排出されることになり、すなわち反応室R1にて反応し
たガスが未反応ガスと混合した状態でガス反応室をただ
ようことがないので電解質面全体にほぼ同一の濃度を有
するガス供給が行なわれるのである。
Next, the operation of the fuel cell formed in this manner will be described. First, gas supplied from the outside via a manifold (not shown) flows into the gas supply chamber R2. This gas supply chamber R2 has a cylindrical shape, and since the gas does not come into contact with the electrolytic matrix here, no gas reaction occurs. The gas that has flowed into the gas supply chamber R2 then flows into the gas reaction chamber R1 through a small hole H1 provided between the gas supply chamber and the gas reaction chamber R1. In this case, gas flows equally through the plurality of small holes provided at certain intervals. In other words, the gas reaction chamber R extends in one direction.
1, an equal gas supply takes place over its entire length, so that here a uniform gas reaction takes place over the entire surface of the electrolytic matrix. The gas after the reaction is in the gas reaction chamber R.
The gas is discharged to the gas discharge chamber R3 through a small hole H2 provided between the gas discharge chamber R3 and the gas discharge chamber R3. In this case as well, since the small holes H2 are provided at certain intervals as described above, the gas that has flowed into the gas reaction chamber R1 is immediately discharged to the discharge chamber R3 after the reaction, that is, the gas that has reacted in the reaction chamber R1 Since the gas does not pass through the gas reaction chamber in a state mixed with unreacted gas, the gas is supplied to the entire electrolyte surface at approximately the same concentration.

第3図はこのガスの流れを平面的に線図で表わしたもの
であり、ガスの供給から排出までの流れがより明らかと
なるであろう。
FIG. 3 is a two-dimensional diagram showing the flow of gas, and the flow from gas supply to discharge will become clearer.

尚以上の説明ではガス流通路を3種類のガス室、すなわ
ちガス供給室、ガス反応室、ガス排出室に仕切るにあた
り、一つの実施例をあげて説明してきたが、このような
室を形成するには他にも種々の構成が考えられよう。
In the above explanation, one example has been given and explained for partitioning the gas flow passage into three types of gas chambers, that is, a gas supply chamber, a gas reaction chamber, and a gas discharge chamber. Various other configurations may be considered.

第4図〜第8図にはもう一つの実施例をあげた。Another embodiment is shown in FIGS. 4 to 8.

尚、第1図あるいは第2図と同一部品には同一の符号を
付したので詳細説明は省略する。この実施例においては
第5図からも明らかなように2つの波板12a、12b
を心向配置させ1両波板間で形成される筒状空間をガス
供給室R2,電極側に形成される凹部空間をガス反応室
R1,反電極側に形成される凹部空間をガス排出室R3
とするのである。勿論前述の実施例同様ガス供給室R2
とガス反応室R1との間及びガス反応室R1とガス排出
室R3との間には夫々複類の小孔H1,H2が設けられ
ることはいうまでもない。
It should be noted that the same parts as in FIG. 1 or 2 are given the same reference numerals, so detailed explanations will be omitted. In this embodiment, as is clear from FIG. 5, two corrugated plates 12a and 12b are used.
The cylindrical space formed between both corrugated plates is called gas supply chamber R2, the recessed space formed on the electrode side is called gas reaction chamber R1, and the recessed space formed on the opposite electrode side is called gas discharge chamber. R3
That is to say. Of course, as in the previous embodiment, the gas supply chamber R2
Needless to say, multiple small holes H1 and H2 are provided between the gas reaction chamber R1 and the gas reaction chamber R1, and between the gas reaction chamber R1 and the gas discharge chamber R3, respectively.

このように形成すると、前述のものと同一の作用効果を
奏し、さらにガス反応室R1の両側がガス供給室となり
、ガス反応室R1へのガス供給が両側より行なわれるの
でさらに一様な濃度のガスを電解質部に供給することが
でき有効である。
When formed in this way, the same effects as those described above are obtained, and furthermore, both sides of the gas reaction chamber R1 become gas supply chambers, and gas is supplied to the gas reaction chamber R1 from both sides, so that a more uniform concentration can be achieved. This is effective because gas can be supplied to the electrolyte section.

尚この場合、第7図、第8図に示すようにこの波板の形
状は上下同一の波板のものでもよいが、各室の大きさの
関係で例えば第9図に示すようにガス排気室R3を大き
くしたり、あるいはその逆、すなわち、ガス供給室R2
が大きくなるような波板とすることも可能であろう。
In this case, the shape of the corrugated plates may be the same on the top and bottom as shown in Figs. 7 and 8, but due to the size of each chamber, for example, as shown in Fig. 9, the shape of the corrugated plates may be the same. Enlarge the chamber R3 or vice versa, i.e., increase the size of the gas supply chamber R2
It would also be possible to use a corrugated plate with a larger value.

またさらに第10図には他の実施例を示した。Further, FIG. 10 shows another embodiment.

この実施例は、改質装置が電池内に内蔵されている場合
の例で1図中R4は改質室を示し、また15は改質触媒
層を示す。特にこの場合ガス供給室R2と改質室R4と
は薄板16で仕切られるが。
This embodiment is an example in which a reforming device is built in a battery, and in FIG. 1, R4 indicates a reforming chamber, and 15 indicates a reforming catalyst layer. Particularly in this case, the gas supply chamber R2 and the reforming chamber R4 are separated by a thin plate 16.

この薄板にも複数の小孔H3を所定の等間隔をもって設
けるとガスの改質状態も良好となり有効であろう。
It would be effective to provide a plurality of small holes H3 at predetermined equal intervals in this thin plate as well, as this would improve the gas reforming state.

以上各室を形成するにあたり主として波板にて形成する
ようにしているが、その他にも平板を切削加工したり、
溶接したりあるいは管を組合わせて形成することも可能
であろう。
In forming each chamber above, we mainly use corrugated plates, but we can also cut flat plates,
It would also be possible to form it by welding or combining tubes.

次に第11図より、従来の燃料電池と本発明の燃料電池
とをその効果より比較してみる。
Next, referring to FIG. 11, the conventional fuel cell and the fuel cell of the present invention will be compared in terms of their effects.

この図はガスの流れ方向の電極位置と電気的出力の関係
を表わしたもので、ガスの流れ方向に対して複数個の電
池を組合わせて実験したものであノロ。
This figure shows the relationship between the electrode position in the gas flow direction and the electrical output, and is an experiment conducted by combining multiple batteries in the gas flow direction.

この図の鎖線よりなる曲線X1は従来一般に採用されて
いたもの、すなわち実験的には、複数個並設された電極
に、その並設方向に沿ってガス供給、ガス排出が行なわ
れるものである。この図より明らかなようにガスの流れ
に対して供給直後は電気的出力は大きくより有効である
が、ガス排出側に近づくに従い大きく低下していくこと
がわかる。
The curve X1 consisting of a chain line in this figure is the one that has been generally adopted in the past, that is, experimentally, gas is supplied to and discharged from a plurality of electrodes arranged in parallel along the direction in which they are arranged. . As is clear from this figure, the electrical output is larger and more effective immediately after the gas flow, but it decreases significantly as it approaches the gas discharge side.

この場合の平均的出力が点線X2で示しである。The average output in this case is shown by the dotted line X2.

これに対して図中実線Yで示されたのが本発明のもので
ある。これによると、平均値は従来のものに比し向上し
ていることがわかるであろう。
On the other hand, the one shown by the solid line Y in the figure is the one of the present invention. According to this, it can be seen that the average value is improved compared to the conventional one.

〔発明の効果〕〔Effect of the invention〕

以上種々述べてきたように本発明によれば、電極背部に
設けられているガス流通路を、電極表面側が開口したガ
ス供給室と、ガス供給側が開口したガス供給室と、ガス
排出側が開口したガス排出室とに仕切り、かつ前記ガス
供給室とガス反応室及びガス反応室とガス排出室間を夫
々複数個の小孔にて連通ずるようになしたから、供給さ
れたガスはガス供給室とガス反応室間の複数の小孔を介
してガス反応室に夫々流入、すなわちガス反応室全体に
わたって平等なガス供給が行なわれ、また反応後のガス
はガス反応室内を長時間流通していることなくガス排出
室に排出されるので、電解質面全体にほぼ同一の濃度を
有するガスを供給することができる。
As described above, according to the present invention, the gas flow passage provided at the back of the electrode is divided into a gas supply chamber with an open side on the electrode surface side, a gas supply chamber with an open side on the gas supply side, and a gas supply chamber with an open side on the gas discharge side. Since the gas supply chamber and the gas reaction chamber and the gas reaction chamber and the gas discharge chamber are communicated with each other through a plurality of small holes, the supplied gas is separated from the gas supply chamber. The gas flows into the gas reaction chamber through multiple small holes between the gas reaction chamber and the gas reaction chamber, that is, an equal gas supply is performed throughout the gas reaction chamber, and the gas after the reaction circulates within the gas reaction chamber for a long time. Since the gas is discharged into the gas discharge chamber without any oxidation, gas having approximately the same concentration can be supplied to the entire electrolyte surface.

4、 r’il動。1慮Jiえ川 第1図は本発明燃料電池の一実施例を示す縦断側面図、
第2図はそのガス流通路を拡大して示す一部破断斜視図
、第3図そのガス流通路におけるガスの流れを示す平面
線図、第4図は本発明の他の実施例を示す縦断側面図、
第5図はそのガス流通路部を拡大して示す縦断側面図、
第6図は第5図のA−A線に沿う断面図、第7図及び第
8@はそのガス流通路を形成する波板の斜視図、第9図
及び第10図はさらに本発明の他の実施例を示すガス通
風部の縦断側面図、第11図は電極部における電気的出
力とガスの流れとの関係を表わす曲線図、第12図は従
来の燃料電池を示す断面斜視図である。
4. r'il movement. Figure 1 is a longitudinal sectional side view showing one embodiment of the fuel cell of the present invention.
Fig. 2 is a partially cutaway perspective view showing an enlarged view of the gas flow passage, Fig. 3 is a plan view showing the flow of gas in the gas flow passage, and Fig. 4 is a longitudinal section showing another embodiment of the present invention. Side view,
FIG. 5 is a vertical sectional side view showing an enlarged view of the gas flow passage;
FIG. 6 is a sectional view taken along the line A-A in FIG. 5, FIGS. 7 and 8 are perspective views of the corrugated plate forming the gas flow passage, and FIGS. FIG. 11 is a curve diagram showing the relationship between electrical output and gas flow in the electrode section, and FIG. 12 is a cross-sectional perspective view showing a conventional fuel cell. be.

1.2・・・fl!極、3・・・電解マトリックス、8
,9・・・容器、12 、12 a 、 12 b ・
−・波板、R1−・・ガス反応室、R2・・・ガス供給
室、R3・・・ガス排出室、Hl、R2・・・小孔。
1.2...fl! Pole, 3... Electrolytic matrix, 8
, 9... Container, 12 , 12 a , 12 b ・
- Corrugated plate, R1-... Gas reaction chamber, R2... Gas supply chamber, R3... Gas discharge chamber, Hl, R2... Small hole.

Claims (1)

【特許請求の範囲】 1、一対の電極と、該電極の間に介在された電解質マト
リックスと、前記電極の反マトリックス側の面に夫々形
成されたガス流通路とを備え、該ガス流通路へ所定のガ
スを流通せしめて前記電極間より電力を取り出すように
なした燃料電池において、前記ガス流通路を、電極表面
側が開口し、かつガスの供給方向にのびたガス反応室と
、該ガス反応室に隣接配置されるとともに該ガス反応室
と同方向にのび、かつガス供給側が開口したガス供給室
と、前記ガス反応室に隣接配置され、ガス排出側が開口
したガス排出室とに仕切り壁により仕切り、かつ前記ガ
ス供給室とガス反応室及びガス反応室とガス排出室間の
仕切り壁に、夫々ガスの供給方向若しくはガスの排出方
向に所定の間隔をもつて配置された複数個の小孔を設け
たことを特徴とする燃料電池。 2、前記仕切り壁を、ガスの供給方向に対して直角方向
に波をうつ波形にて形成するようにしたことを特徴とす
る特許請求の範囲第1項記載の燃料電池。 3、前記ガス供給室とガス反応室間の仕切り壁に設けら
れる小孔を、電極側に近接集中配置するとともに、前記
ガス反応室とガス排出室間の仕切り壁に設けられる小孔
を、反電極側に近接集中配置するようにしたことを特徴
とする特許第1項記載の燃料電池。 4、一対の電極と、該電極の間に介在された電解質マト
リックスと、前記電極の反マトリックス側面に夫々形成
されたガス流通路とを備え、該ガス流通路へ所定のガス
を流通せしめて前記電極間より電力を取り出すようにな
した燃料電池において、前記ガス流通路を、電極表面側
が開口し、かつ電極に隣接して配置されたガス反応室と
、該ガス反応室に隣接配置され、かつ内部に改質触媒を
内蔵した密閉状の改質室と、該改質室に隣接して配置さ
れ、かつガス供給側が開口したガス供給室と、ガス排出
側が開口したガス排出室とに仕切り壁により仕切り、か
つ前記ガス供給室と改質室及び改質室と、ガス反応室及
びガス反応室とガス排出室間の仕切り壁に、夫々ガスの
供給方向若しくはガスの排出方向に所定の間隔をもつ配
置された複数個の小孔を設けたことを特徴とする燃料電
池。
[Claims] 1. A device comprising a pair of electrodes, an electrolyte matrix interposed between the electrodes, and gas flow passages formed on the opposite surface of the electrodes, and connecting the gas flow passages to the electrodes. A fuel cell configured to extract electric power from between the electrodes by flowing a predetermined gas, the gas reaction chamber having the gas flow path open on the electrode surface side and extending in the gas supply direction; and the gas reaction chamber. A partition wall partitions the gas supply chamber, which is arranged adjacent to the gas reaction chamber and extends in the same direction as the gas reaction chamber, and has an open gas supply side, and the gas discharge chamber, which is arranged adjacent to the gas reaction chamber and has an open gas discharge side. , and a plurality of small holes arranged at predetermined intervals in the gas supply direction or the gas discharge direction, respectively, in the partition wall between the gas supply chamber and the gas reaction chamber, and between the gas reaction chamber and the gas discharge chamber. A fuel cell characterized in that: 2. The fuel cell according to claim 1, wherein the partition wall is formed in a corrugated shape with waves extending in a direction perpendicular to the gas supply direction. 3. The small holes provided in the partition wall between the gas supply chamber and the gas reaction chamber are concentrated close to the electrode side, and the small holes provided in the partition wall between the gas reaction chamber and the gas discharge chamber are placed oppositely. The fuel cell described in Patent No. 1, characterized in that the fuel cell is arranged closely and concentrated on the electrode side. 4. A pair of electrodes, an electrolyte matrix interposed between the electrodes, and gas flow passages formed on the side opposite to the matrix of the electrodes, and a predetermined gas is caused to flow through the gas flow passages. In a fuel cell configured to extract electric power from between the electrodes, the gas flow passage includes a gas reaction chamber that is open on the electrode surface side and is disposed adjacent to the electrode, and a gas reaction chamber that is disposed adjacent to the gas reaction chamber, and A partition wall is provided between a closed reforming chamber containing a reforming catalyst therein, a gas supply chamber that is located adjacent to the reforming chamber and has an open gas supply side, and a gas discharge chamber that has an open gas discharge side. and partition walls between the gas supply chamber and the reforming chamber, the reforming chamber, the gas reaction chamber, and the gas reaction chamber and the gas discharge chamber, each having a predetermined interval in the gas supply direction or gas discharge direction. 1. A fuel cell characterized by having a plurality of small holes arranged in a plurality of holes.
JP61281768A 1986-11-28 1986-11-28 Fuel cell Expired - Lifetime JPH0622145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281768A JPH0622145B2 (en) 1986-11-28 1986-11-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281768A JPH0622145B2 (en) 1986-11-28 1986-11-28 Fuel cell

Publications (2)

Publication Number Publication Date
JPS63136471A true JPS63136471A (en) 1988-06-08
JPH0622145B2 JPH0622145B2 (en) 1994-03-23

Family

ID=17643701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281768A Expired - Lifetime JPH0622145B2 (en) 1986-11-28 1986-11-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0622145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122569A (en) * 1987-10-20 1989-05-15 Energy Res Corp Fuel cell
WO1999044248A1 (en) * 1998-02-27 1999-09-02 Forschungszentrum Jülich GmbH Gas distributor for a fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122569A (en) * 1987-10-20 1989-05-15 Energy Res Corp Fuel cell
WO1999044248A1 (en) * 1998-02-27 1999-09-02 Forschungszentrum Jülich GmbH Gas distributor for a fuel cell
US6455184B1 (en) 1998-02-27 2002-09-24 Forschungszentrum Jülich GmbH Gas distributor for a fuel cell

Also Published As

Publication number Publication date
JPH0622145B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
EP0369059B1 (en) Method of ameliorating temperature distribution of a fuel cell
JPH03105865A (en) Inside reformed type fuel cell and power plant using it
EP0585049A1 (en) Ion conducting device - module and tiered arrangement
JPS624833B2 (en)
US20100035108A1 (en) Fuel cell with triangular buffers
US5350642A (en) Solid-electrolyte fuel cell system
EP0627778A1 (en) Fuel cell system and fuel cells therefor
JPH0131668B2 (en)
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JPS63136471A (en) Fuel cell
JP2000090943A (en) Fuel cell
EP0230036B1 (en) Fuel cell apparatus with internal reforming
JPS6240831B2 (en)
JP4846951B2 (en) Fuel cell block
JP2000228207A (en) Separator for fuel cell, and fuel cell
JP2005158524A (en) Fuel cell assembly
JPS6223434B2 (en)
JPS5830074A (en) Fuel cell
JPH0377625B2 (en)
JP2928251B2 (en) Fuel cell with internal reforming
JPH04322062A (en) Separator of fuel cell and fuel cell using separator
JPH03216962A (en) Fuel cell
JP2002033097A (en) Sea water cell for underwater sailing body
EP0616380A1 (en) A gas distributor for fused carbonates-fuel cells
CA1308776C (en) Fuel cell and method of ameliorating temperature distribution thereof