JPH0622145B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0622145B2
JPH0622145B2 JP61281768A JP28176886A JPH0622145B2 JP H0622145 B2 JPH0622145 B2 JP H0622145B2 JP 61281768 A JP61281768 A JP 61281768A JP 28176886 A JP28176886 A JP 28176886A JP H0622145 B2 JPH0622145 B2 JP H0622145B2
Authority
JP
Japan
Prior art keywords
gas
chamber
gas supply
electrode
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61281768A
Other languages
Japanese (ja)
Other versions
JPS63136471A (en
Inventor
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61281768A priority Critical patent/JPH0622145B2/en
Publication of JPS63136471A publication Critical patent/JPS63136471A/en
Publication of JPH0622145B2 publication Critical patent/JPH0622145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in fuel cells.

〔従来の技術〕[Conventional technology]

従来一般に採用されている燃料電池は、第12図に示す
ように一対の電極、すなわち燃料電極1と酸化剤電極2
があり、そしてこの両者電極の間に電解質マトリツクス
3が介在され、またこの燃料電極1や酸化剤電極2部に
所定のガスを供給するために、これら電極の背後、すな
わち各電極の反電解質マトリツクス側にはガス流通路
4,5が形成されているのが普通である。
As shown in FIG. 12, a fuel cell generally used in the past has a pair of electrodes, that is, a fuel electrode 1 and an oxidizer electrode 2.
And an electrolyte matrix 3 is interposed between the two electrodes, and in order to supply a predetermined gas to the fuel electrode 1 and the oxidizer electrode 2, the antielectrolyte matrix of these electrodes, that is, the antielectrolyte matrix of each electrode is provided. Usually, gas flow passages 4 and 5 are formed on the side.

そしてその動作は、ガス流通路4に燃料ガス6が供給さ
れ、またガス流通路5に酸化剤ガス7が供給され、これ
らが夫々電極を介して電解質と反応し各電極より電力を
取り出すようにしている。
The operation is such that the fuel gas 6 is supplied to the gas flow passage 4 and the oxidant gas 7 is supplied to the gas flow passage 5, and these react with the electrolyte through the electrodes to take out electric power from each electrode. ing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

したがつてこの構成のものでは、この供給されたガスが
ガス流通路の入口付近では供給ガスと充分反応するが、
出口付近では充分行なわれない嫌いがある。すなわちガ
ス出口付近においてはガス流通路の入口付近で反応した
この反応後のガスが未反応ガスと混合した状態で供給さ
れることになり、その反応状態がガス出口付近とガス入
口付近では異なつてしまう。したがつて電極面の位置に
よつて電流密度が異なり、またその温度にも差が生ずる
嫌いがあつた。
Therefore, in this structure, the supplied gas reacts sufficiently with the supply gas near the inlet of the gas flow passage,
I hate that it is not done near the exit. That is, in the vicinity of the gas outlet, the gas after the reaction that has reacted near the inlet of the gas flow passage is supplied in a state of being mixed with the unreacted gas, and the reaction state is different near the gas outlet and near the gas inlet. I will end up. Therefore, the current density differs depending on the position of the electrode surface, and the temperature also varies.

このことにより、従来から一方向よりガスを供給しても
各電極面全体に、すなわち電解質面全体にはほぼ同一の
濃度を有するガスが供給されるようなこの種燃料電池の
出現が望まれていた。
Therefore, it has been desired to develop a fuel cell of this type in which gas having a substantially same concentration is supplied to the entire electrode surface, that is, the entire electrolyte surface even if gas is supplied from one direction. It was

本発明はこれにかんがみなされたものでありその目的と
するところは、電解質面全体にほぼ同一の濃度を有する
ガスが供給されるようになしたこの種燃料電池を提供す
るにある。
The present invention has been conceived in view of this, and an object of the present invention is to provide a fuel cell of this kind in which a gas having substantially the same concentration is supplied to the entire electrolyte surface.

尚この種燃料電池に関連したものとしては、特開昭61−
24167 号公報があげられる。
Incidentally, one related to this type of fuel cell is disclosed in Japanese Patent Laid-Open No. 61-
No. 24167 is cited.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はガス流路を、電極表面側が開口し、ガス供給側
及びガス排出側が隔絶されているとともに、ガス供給側
からガス排出側に伸びた複数のガス反応室と該ガス反応
室と同方向に伸びて隣接配置され、ガス供給側が開口
し、かつガス排出側が隔絶されているとともに、電極側
と隔絶されたガス供給室と、前記ガス反応室と同方向に
伸びて隣接配置され、ガス排出側が開口し、かつガス供
給側が隔絶されているとともに、電極側と隔絶されたガ
ス排出室とに仕切り壁により仕切り、かつ、前記ガス供
給室とガス反応室及びガス反応室とガス排出室間の仕切
り壁に、夫々ガスの供給方向若しくはガスの排出方向に
複数個の小孔を設けたことにより所期の目的を達成する
ものである。
According to the present invention, a gas flow path is opened on the electrode surface side, the gas supply side and the gas discharge side are isolated, and a plurality of gas reaction chambers extending from the gas supply side to the gas discharge side and in the same direction as the gas reaction chambers. The gas supply side is open and the gas discharge side is isolated, and the gas supply chamber isolated from the electrode side and the gas reaction chamber extend in the same direction as the gas reaction chamber and are adjacently arranged to discharge the gas. The side is open and the gas supply side is isolated, and the electrode side and the isolated gas discharge chamber are partitioned by a partition wall, and between the gas supply chamber and the gas reaction chamber and between the gas reaction chamber and the gas discharge chamber. The intended purpose is achieved by providing a plurality of small holes in the partition wall in the gas supply direction or the gas discharge direction, respectively.

〔作用〕[Action]

このように構成すると、供給されたガスはガス供給室と
ガス反応室間の複数の小孔を介して直角方向にガス反応
室に夫々流入、すなわちガス反応室全体にわたつて平等
なガス供給が行なわれ、また反応後のガスはガス反応室
内を長時間流通していることなくガス排出室に排出、す
なわち、反応後のガスと未反応のガスとが混合すること
がなく排出されるので、電解質面全体には常に高濃度で
均一なガスを供給することができるのである。
According to this structure, the supplied gas flows into the gas reaction chamber at right angles through the plurality of small holes between the gas supply chamber and the gas reaction chamber, that is, a uniform gas supply is provided over the entire gas reaction chamber. The reaction is performed, and the gas after the reaction is discharged to the gas discharge chamber without being circulated in the gas reaction chamber for a long time, that is, since the gas after the reaction and the unreacted gas are discharged without being mixed, A high concentration and uniform gas can always be supplied to the entire surface of the electrolyte.

〔実施例〕〔Example〕

以下図示した実施例に基づいて本発明を詳細に説明す
る。
The present invention will be described in detail based on the illustrated embodiments.

第1図に一対の電極1,2、電解質マトリツクス3、電
池容器8,9を具備している燃料電池が断面で示されて
いる。一対の電極1,2の間には電解質マトリツクス3
が介在され、また電極の反電解質マトリツクス側、すな
わち電極1と容器8の間あるいは電極2と容器9の間に
はガス流通路10,11が形成されている。
FIG. 1 shows a cross section of a fuel cell including a pair of electrodes 1 and 2, an electrolyte matrix 3, and cell containers 8 and 9. An electrolyte matrix 3 is provided between the pair of electrodes 1 and 2.
And the gas flow passages 10 and 11 are formed on the anti-electrolyte matrix side of the electrode, that is, between the electrode 1 and the container 8 or between the electrode 2 and the container 9.

特にこの場合このガス流通路は次のように3種類の室に
形成されている。すなわち第2図にその一部が拡大され
て示されているように、波板12により電極表面側(図
中下側)が開口しているガス反応室R1と、ガス供給
側、すなわちガス供給が行なわれる側が開口しているガ
ス供給室R2と、ガス排出側、すなわち反応後のガスが
排出される側が開口しているガス排出室R3とに仕切ら
れているのである。
Particularly, in this case, the gas flow passage is formed in three types of chambers as follows. That is, as shown in a partially enlarged view of FIG. 2, the gas reaction chamber R1 having the electrode surface side (lower side in the figure) opened by the corrugated plate 12 and the gas supply side, that is, the gas supply It is partitioned into a gas supply chamber R2 that is open on the side on which is performed and a gas discharge chamber R3 that is open on the side from which the gas is discharged, that is, the side from which the gas after the reaction is discharged.

さらにまたこれらの室はある条件のもとで連通してい
る。すなわちガス反応室R1とガス供給室R2が複数個
の小孔H1にて連通し、またガス反応室R1とガス排出
室R3とが複数個の小孔H2にて連通している。この場
合この小孔H1,H2はガスの供給あるいは排出流通方
向に対してある一定の等間隔を保つて配置されることが
望ましく、また小孔の大きさの条件としては、ガス供給
室R2に供給されたガスが、その供給室全長にわたつて
ほぼ平等にこの小孔よりガス反応室に流入する大きさで
あることはいうまでもない。
Furthermore, these chambers communicate under certain conditions. That is, the gas reaction chamber R1 and the gas supply chamber R2 communicate with each other through a plurality of small holes H1, and the gas reaction chamber R1 and the gas discharge chamber R3 communicate with each other through a plurality of small holes H2. In this case, it is desirable that the small holes H1 and H2 are arranged at a certain constant interval in the gas supply or discharge circulation direction. The condition of the size of the small holes is that the gas supply chamber R2 is provided. It goes without saying that the supplied gas is of a size that flows into the gas reaction chamber through the small holes substantially evenly over the entire length of the supply chamber.

又図にも示されているようにこれらの小孔のうち、ガス
供給室R2とガス反応室R1間の仕切り壁に設けられる
小孔H1を電極側に近接集中配置し、ガス反応室R1と
ガス排出室R3間の仕切り壁に設けられる小孔H2を反
電極側に近接集中配置するとガスの流通の点から望まし
い形となる。
Also, as shown in the figure, among these small holes, small holes H1 provided in the partition wall between the gas supply chamber R2 and the gas reaction chamber R1 are closely arranged on the electrode side, and If the small holes H2 provided in the partition wall between the gas discharge chambers R3 are arranged in close proximity to each other on the side opposite to the electrode, a desirable shape will be obtained in terms of gas flow.

次にこのように形成された燃料電池の作用についてのべ
ると、まず外部よりマニホールド(図示はない)を介し
て供給されたガスはガス供給室R2に流入する。このガ
ス供給室R2は筒状状態であり特にここではガスが電解
マトリツクスと接触することはないのでガス反応は生じ
ない。ガス供給室R2に流入したガスは次いでガス供給
室とガス反応室R1間に設けられている小孔H1を介し
てガス反応室R1にガス供給方向に対して直角方向に流
入する。この場合ある間隔をもつて設けられている複数
個の小孔より平等にガスの流入が行なわれる。すなわち
一方向にのびているガス反応室R1のその長手方向全体
にわたつて平等なガス供給が行なわれ、したがつてここ
で電解マトリツクス面全体に一様なガス反応が行なわれ
る。反応後のガスはガス反応室R1とガス排出室R3間
に設けられている小孔H2を介してガス排出室R3に排
出される。この場合も前述同様小孔H2がある間隔をも
つて設けられているので、ガス反応室R1に流入したガ
スは反応後ただちに排出室R3に排出されることにな
り、すなわち反応室R1にて反応したガスが未反応ガス
と混合した状態でガス反応室をただようことがないので
電解質面全体には常に高濃度で均一なガス供給が行なわ
れるのである。
Next, referring to the operation of the fuel cell thus formed, first, the gas supplied from the outside through the manifold (not shown) flows into the gas supply chamber R2. The gas supply chamber R2 is in a tubular state, and in particular, here, the gas does not come into contact with the electrolytic matrix, so that the gas reaction does not occur. The gas flowing into the gas supply chamber R2 then flows into the gas reaction chamber R1 at right angles to the gas supply direction through a small hole H1 provided between the gas supply chamber and the gas reaction chamber R1. In this case, the gas is evenly introduced through the plurality of small holes provided at a certain interval. That is, a uniform gas supply is performed over the entire length of the gas reaction chamber R1 extending in one direction, and therefore, a uniform gas reaction is performed here over the entire electrolytic matrix surface. The gas after the reaction is discharged into the gas discharge chamber R3 through a small hole H2 provided between the gas reaction chamber R1 and the gas discharge chamber R3. In this case as well, since the small holes H2 are provided with a certain interval as described above, the gas flowing into the gas reaction chamber R1 is discharged to the discharge chamber R3 immediately after the reaction, that is, in the reaction chamber R1. Since the generated gas does not leave the gas reaction chamber in the state of being mixed with the unreacted gas, a high concentration and uniform gas is always supplied to the entire electrolyte surface.

第3図はこのガスの流れを平面的に線図で表わしたもの
であり、ガスの供給室から排出室までガスの流れが、ガ
スの供給若しくは排出方向に対して直角方向に流れるこ
とがより明確にわかるであろう。
FIG. 3 is a plan view showing this gas flow, and it is better that the gas flow from the gas supply chamber to the discharge chamber flows at a right angle to the gas supply or discharge direction. You will see clearly.

また、第1図および第2図には図示されていないが、第
3図では、ガス反応室R1が隔離板17により複数個に
分割し、小室を形成している。これにより、ガス反応室
R1のガスの流れがガスの供給方向若しくは排出方向に
対してより直角方向に流れ、ガス供給側で反応したガス
と、供給ガスとの混合が防げ、より均一で高濃度なガス
が供給できる。
Although not shown in FIGS. 1 and 2, in FIG. 3, the gas reaction chamber R1 is divided into a plurality of parts by a separator plate 17 to form a small chamber. As a result, the gas flow in the gas reaction chamber R1 flows in a direction more perpendicular to the gas supply direction or the gas discharge direction, and the gas reacted on the gas supply side can be prevented from mixing with the supply gas, resulting in a more uniform and high concentration. Gas can be supplied.

尚以上の説明ではガス流通路を3種類のガス室、すなわ
ちガス供給室,ガス反応室,ガス排出室に仕切るにあた
り、一つの実施例をあげて説明してきたが、このような
室を形成するには他にも種々の構成が考えられよう。
In the above description, the gas flow passage is divided into three kinds of gas chambers, that is, a gas supply chamber, a gas reaction chamber, and a gas discharge chamber, but one embodiment has been described, but such a chamber is formed. There may be various other configurations.

第4図〜第8図にはもう一つの実施例をあげた。尚、第
1図あるいは第2図と同一部品には同一の符号を付した
ので詳細説明は省略する。この実施例においては第4図
の発明部分を拡大した第5図からも明らかなように第7
図及び第8図に示す2つの波板12a,12bを小向配
置させ、両波板間で形成される筒状空間をガス供給室R
2,電極側に形成される凹部空間をガス反応室R1,反
電極側に形成される凹部空間をガス排出室R3とするの
である。勿論前述の実施例同様ガス供給室R2とガス反
応室R1との間及びガス反応室R1とガス排出室R3と
の間には夫々複類の小孔H1,H2が設けられることは
いうまでもない。
Another embodiment is shown in FIGS. The same parts as those in FIG. 1 or 2 are designated by the same reference numerals, and detailed description thereof will be omitted. In this embodiment, as is apparent from FIG. 5 which is an enlarged view of the invention portion of FIG.
The two corrugated plates 12a and 12b shown in FIGS. 8 and 9 are arranged in a small direction, and a cylindrical space formed between the corrugated plates is formed in the gas supply chamber R.
2. The recessed space formed on the electrode side is defined as the gas reaction chamber R1, and the recessed space formed on the counter electrode side is defined as the gas discharge chamber R3. Needless to say, similar to the above-described embodiment, a plurality of small holes H1 and H2 are provided between the gas supply chamber R2 and the gas reaction chamber R1 and between the gas reaction chamber R1 and the gas discharge chamber R3, respectively. Absent.

第6図は第5図のA−A断面を示した図面である。ガス
反応室R1が第7図の波板12Bにより、第3図のガス
反応室同様、複数個に分割されている。
FIG. 6 is a drawing showing an AA cross section of FIG. Like the gas reaction chamber shown in FIG. 3, the gas reaction chamber R1 is divided into a plurality of parts by the corrugated plate 12B shown in FIG.

このように形成すると、前述のものと同一の作用効果を
奏し、さらにガス反応室R1の両側がガス供給室とな
り、ガス反応室R1へのガス供給が両側より行なわれる
のでさらに一様な濃度のガスを電解質部に供給すること
ができ有効である。
If formed in this way, the same effects as those described above can be obtained, and both sides of the gas reaction chamber R1 become gas supply chambers, and gas is supplied to the gas reaction chamber R1 from both sides, so that a more uniform concentration can be obtained. It is effective because gas can be supplied to the electrolyte part.

尚この場合、第7図,第8図に示すようにこの波板の形
状は上下同一の波板のものでもよいが、各室を流れるガ
スの流量条件によつて各室の大きさの関係で例えば第9
図に示すようにガス排出室R3を大きくしたり、あるい
はその逆、すなわち、ガス供給室R2が大きくなるよう
な波板とすることも可能であろう。
In this case, as shown in FIGS. 7 and 8, the shape of the corrugated plate may be the same as the upper and lower corrugated plates, but the relationship of the size of each chamber depends on the flow rate condition of the gas flowing through each chamber. For example, the ninth
It would also be possible to make the gas discharge chamber R3 larger as shown, or vice versa, i.e. a corrugated plate such that the gas supply chamber R2 becomes larger.

またさらに第10図には他の実施例を示した。この実施
例は、改質装置が電池内に内蔵されている場合の例で、
図中R4は改質室を示し、改質触媒層15が内壁に配置
されている。また改質室R4は、ガス反応室R1と同
様、ガス供給側及び排出側が閉塞されており、電解質に
よる触媒劣化が防げる。特にこの場合ガス供給室R2と
改質室R4とは薄板16で仕切られるが、この薄板にも
複数の小孔H3を所定の等間隔をもつて設けるとガスの
改質状態も良好となり有効であろう。
Further, another embodiment is shown in FIG. In this example, the reformer is built in the battery.
In the figure, R4 indicates a reforming chamber, and the reforming catalyst layer 15 is arranged on the inner wall. Further, in the reforming chamber R4, like the gas reaction chamber R1, the gas supply side and the discharge side are closed, and catalyst deterioration due to the electrolyte can be prevented. In particular, in this case, the gas supply chamber R2 and the reforming chamber R4 are partitioned by a thin plate 16. However, if a plurality of small holes H3 are provided in this thin plate at a predetermined equal interval, the reformed state of the gas will be good and effective. Ah

以上各室を形成するにあたり主として波板にて形成する
ようにしているが、その他にも平板を切削加工したり、
溶接したりあるいは管を組合わせて形成することも可能
であろう。
In forming each chamber as described above, the corrugated plate is mainly formed, but in addition to this, a flat plate is cut,
It would be possible to weld or form a combination of tubes.

次に第11図より、従来の燃料電池と本発明の燃料電池
とをその効果より比較してみる。
Next, referring to FIG. 11, the conventional fuel cell and the fuel cell of the present invention will be compared based on their effects.

この図はガスの流れ方向の電極位置と電気的出力の関係
を表わしたもので、ガスの流れ方向に対して複数個の電
池を組合わせて実験したものである。
This figure shows the relationship between the electrode position and the electrical output in the gas flow direction, and is an experiment conducted by combining a plurality of batteries in the gas flow direction.

この図の鎖線よりなる曲線X1は従来一般に採用されて
いたもの、すなわち実験的には、複数個並設された電極
に、その並設方向に沿つてガス供給、ガス排出が行なわ
れるものである。この図より明らかなようにガスの流れ
に対して供給直後は電気的出力は大きくより有効である
が、ガス排出側に近づくに従い大きく低下していくこと
がわかる。
A curved line X1 shown by a chain line in this figure is one that has been generally adopted in the past, that is, experimentally, a plurality of electrodes arranged in parallel are supplied with gas and discharged along the parallel direction. . As is clear from this figure, the electrical output is large and more effective immediately after the supply with respect to the gas flow, but it is found that the electrical output decreases greatly as it approaches the gas discharge side.

この場合の平均的出力が点線X2で示してある。これに
対して図中実線Yで示されたのが本発明のものである。
これによると、平均値は従来のものに比し向上している
ことがわかるであろう。
The average output in this case is shown by the dotted line X2. On the other hand, what is indicated by a solid line Y in the figure is that of the present invention.
From this, it can be seen that the average value is improved compared to the conventional one.

〔発明の効果〕〔The invention's effect〕

本発明によれば、ガス通路を、電極表面側が開口したガ
ス反応室と、ガス供給側が開口するとともに、電極側と
隔絶されたガス供給室と、ガス排出側が開口するととも
に、電極側と隔絶された排出室とに仕切り、かつ前記ガ
ス供給室とガス反応室及びガス反応室とガス排出室間を
夫々複数個の小孔にて連通するようになしたので、ガス
反応室全体にわたつて平等なガス供給が行なわれ、また
反応後のガスはガス反応室内を長時間流通していること
なくガス排出室に排出されるので、電解質面全体にほぼ
同一の濃度を有するガスを供給することができる。
According to the present invention, the gas passage is opened on the electrode surface side, the gas supply side is opened, the gas supply chamber is isolated from the electrode side, and the gas discharge side is opened, and is isolated from the electrode side. The gas supply chamber and the gas reaction chamber and the gas reaction chamber and the gas discharge chamber are communicated with each other by a plurality of small holes, so that the gas reaction chamber is evenly distributed over the entire gas reaction chamber. Gas is supplied, and the gas after the reaction is discharged to the gas discharge chamber without flowing through the gas reaction chamber for a long time.Therefore, it is possible to supply the gas having almost the same concentration to the entire electrolyte surface. it can.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明燃料電池の一実施例を示す縦断側面図、
第2図はそのガス流通路を拡大して示す一部破断斜視
図、第3図そのガス流通路におけるガスの流れを示す平
面線図、第4図は本発明の他の実施例を示す縦断側面
図、第5図はそのガス流通路部を拡大して示す縦断側面
図、第6図は第5図のA−A線に沿う断面図、第7図及
び第8図はそのガス流通路を形成する波板の斜視図、第
9図及び第10図はさらに本発明の他の実施例を示すガ
ス通風部の縦断側面図、第11図は電極部における電気
的出力とガスの流れとの関係を表わす曲線図、第12図
は従来の燃料電池を示す断面斜視図である。 1,2……電極、3……電解マトリツクス、8,9……
容器、12,12a,12b……波板、R1……ガス反
応室、R2……ガス供給室、R3……ガス排出室、H
1,H2……小孔。
FIG. 1 is a vertical sectional side view showing an embodiment of the fuel cell of the present invention,
FIG. 2 is a partially cutaway perspective view showing the gas flow passage in an enlarged manner, FIG. 3 is a plan view showing a gas flow in the gas flow passage, and FIG. 4 is a vertical section showing another embodiment of the present invention. A side view, FIG. 5 is a longitudinal side view showing the gas flow passage portion in an enlarged manner, FIG. 6 is a cross-sectional view taken along the line AA of FIG. 5, and FIGS. 7 and 8 are the gas flow passages. 9 is a perspective view of a corrugated sheet forming a groove, FIG. 9 and FIG. 10 are vertical side views of a gas ventilation section showing another embodiment of the present invention, and FIG. 11 is an electrical output and gas flow in the electrode section. And FIG. 12 is a sectional perspective view showing a conventional fuel cell. 1, 2 ... Electrode, 3 ... Electrolytic matrix, 8, 9 ...
Container, 12, 12a, 12b ... corrugated plate, R1 ... gas reaction chamber, R2 ... gas supply chamber, R3 ... gas discharge chamber, H
1, H2 ... small holes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一対の電極と、該電極の間に介在された電
解質マトリックスと、前記電極の反マトリックス側の面
に夫々形成されたガス流路とを備え、該ガス流路へ所定
のガスを流通せしめて前記電極間より電力を取り出すよ
うになした燃料電池において、 前記ガス流路を、電極表面側が開口し、ガス供給側及び
ガス排出側が隔絶されているとともに、ガス供給側から
ガス排出側に伸びた複数のガス反応室と、 該ガス反応室と同方向に伸びて隣接配置され、ガス供給
側が開口し、かつガス排出側が隔絶されているととも
に、電極側と隔絶されたガス供給室と、 前記ガス反応室と同方向に伸びて隣接配置され、ガス排
出側が開口し、かつガス供給側が隔絶されているととも
に、電極側と隔絶されたガス排出室とに仕切り壁により
仕切り、 かつ、前記ガス供給室とガス反応室及びガス反応室とガ
ス排出室間の仕切り壁に、夫々ガスの供給方向若しくは
ガスの排出方向に複数個の小孔を設けたことを特徴とす
る燃料電池。
1. A pair of electrodes, an electrolyte matrix interposed between the electrodes, and a gas channel formed on the surface of the electrode opposite to the matrix side, and a predetermined gas is supplied to the gas channel. In the fuel cell in which the electric field is circulated to take out electric power from between the electrodes, the gas flow path is opened at the electrode surface side, and the gas supply side and the gas discharge side are isolated, and the gas discharge side from the gas supply side. A plurality of gas reaction chambers extending to the side, and the gas reaction chambers that are adjacent to each other and extend in the same direction as the gas reaction chamber, the gas supply side is open and the gas discharge side is isolated, and the gas supply chamber is isolated from the electrode side. And the gas reaction chamber is arranged adjacently extending in the same direction, the gas discharge side is open, and the gas supply side is isolated, and the electrode side and the isolated gas discharge chamber are partitioned by a partition wall, and A fuel cell, characterized in that a plurality of small holes are provided in a partition wall between the gas supply chamber and the gas reaction chamber and between the gas reaction chamber and the gas discharge chamber in the gas supply direction and the gas discharge direction, respectively.
【請求項2】前記ガス供給室とガス反応室間の仕切り壁
に設けられる小孔を、電極側に近接集中配置するととも
に、前記ガス反応室とガス排出室間の仕切り壁に設けら
れる小孔を、反電極側に近接集中配置するようにしたこ
とを特徴とする特許請求の範囲第1項記載の燃料電池。
2. Small holes provided in a partition wall between the gas supply chamber and the gas reaction chamber are closely arranged on the electrode side, and small holes provided in the partition wall between the gas reaction chamber and the gas discharge chamber. The fuel cell according to claim 1, wherein the fuel cells are arranged in close proximity to each other on the side opposite to the electrode.
【請求項3】一対の電極と、該電極の間に介在された電
解質マトリックスと、前記電極の反マトリックス側の面
に夫々形成されたガス流路とを備え、該ガス流路へ所定
のガスを流通せしめて前記電極間より電力を取り出すよ
うになした燃料電池において、 前記ガス流路を、電極表面側が開口し、ガス供給側及び
ガス排出側が隔絶されているとともに、ガス供給側から
ガス排出側に伸びた複数のガス反応室と、 該ガス反応室と同方向に伸びて隣接配置され、かつ内部
に改質触媒を内蔵した密閉状の改質室と、 該改質室に隣接して配置され、ガス供給側が開口し、か
つガス排出側が隔絶されているとともに、電極側と隔絶
させたガス供給室と、 ガス排出側が開口し、かつガス供給側が隔絶されている
とともに、電極側と隔絶されたガス排出室とに 仕切り壁により仕切り、 かつ前記ガス供給室と改質室及び改質室とガス反応室及
びガス反応室とガス排出室間の仕切り壁に、夫々ガスの
供給方向若しくはガスの排出方向に複数個の小孔を設け
たことを特徴とする燃料電池。
3. A pair of electrodes, an electrolyte matrix interposed between the electrodes, and a gas channel formed on the surface of the electrode opposite to the matrix side, and a predetermined gas is supplied to the gas channel. In the fuel cell in which the electric field is circulated to take out electric power from between the electrodes, the gas flow path is opened at the electrode surface side, and the gas supply side and the gas discharge side are isolated, and the gas discharge side from the gas supply side. A plurality of gas reaction chambers that extend to the side, a sealed reforming chamber that extends in the same direction as the gas reaction chamber and is arranged adjacent to each other, and a reforming catalyst inside The gas supply side is open, the gas discharge side is isolated, and the gas supply chamber is isolated from the electrode side, and the gas discharge side is open and the gas supply side is isolated, and the electrode side is isolated. With a gas discharge chamber A partition wall and a plurality of partition walls between the gas supply chamber and the reforming chamber, between the reforming chamber and the gas reaction chamber, and between the gas reaction chamber and the gas discharge chamber. A fuel cell characterized by having small holes.
JP61281768A 1986-11-28 1986-11-28 Fuel cell Expired - Lifetime JPH0622145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281768A JPH0622145B2 (en) 1986-11-28 1986-11-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281768A JPH0622145B2 (en) 1986-11-28 1986-11-28 Fuel cell

Publications (2)

Publication Number Publication Date
JPS63136471A JPS63136471A (en) 1988-06-08
JPH0622145B2 true JPH0622145B2 (en) 1994-03-23

Family

ID=17643701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281768A Expired - Lifetime JPH0622145B2 (en) 1986-11-28 1986-11-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0622145B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788110A (en) * 1987-10-20 1988-11-29 Energy Research Corporation Fuel cell with partially shielded internal reformer
DE19808331C2 (en) 1998-02-27 2002-04-18 Forschungszentrum Juelich Gmbh Gas distributor for a fuel cell

Also Published As

Publication number Publication date
JPS63136471A (en) 1988-06-08

Similar Documents

Publication Publication Date Title
US4933242A (en) Power generation system with use of fuel cell
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP3516693B2 (en) Fuel cell stack with complete internal manifold
US8039162B2 (en) Unit cell for solid polymer electrolyte fuel cell
US11374235B2 (en) Fuel cell anode flow field design configurations for achieving increased fuel utilization
JPS624833B2 (en)
JP3553245B2 (en) Direct methanol fuel cell
JPS5931568A (en) Film cooling type fuel battery
EP1363342B1 (en) Fuel cell
US5350642A (en) Solid-electrolyte fuel cell system
US7618735B2 (en) Fuel cell with triangular buffers
US7951508B2 (en) Fuel cell
JPH0622145B2 (en) Fuel cell
US10020530B2 (en) Fuel cell
JP3098619B2 (en) Fuel cell
JP4486357B2 (en) Fuel cell
JP2005093081A (en) Power generation unit and fuel cell assembly equipped with the same
JPS61148766A (en) Fused carbonate type fuel cell
JPH10302818A (en) Fuel cell
JPH04322062A (en) Separator of fuel cell and fuel cell using separator
JPH08339814A (en) Fuel cell
JPS5830074A (en) Fuel cell
JPS63158754A (en) Internal-reforming type fuel cell
JPH03216962A (en) Fuel cell
JPH0414854Y2 (en)