JPS63136307A - Manufacture of laminated magnetic core - Google Patents

Manufacture of laminated magnetic core

Info

Publication number
JPS63136307A
JPS63136307A JP28077686A JP28077686A JPS63136307A JP S63136307 A JPS63136307 A JP S63136307A JP 28077686 A JP28077686 A JP 28077686A JP 28077686 A JP28077686 A JP 28077686A JP S63136307 A JPS63136307 A JP S63136307A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
laminated
manufacturing
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28077686A
Other languages
Japanese (ja)
Inventor
Takayuki Kojima
小嶋 高幸
Yoshio Kawakami
川上 良男
Tomohisa Matsuda
知久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP28077686A priority Critical patent/JPS63136307A/en
Publication of JPS63136307A publication Critical patent/JPS63136307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To prevent dispersion of insulation performance by forming an insulation oxide coating film to the surface of a magnetic thin plate made of a magnetic material including Nb by means of the chemical processing. CONSTITUTION:A magnetic material including Nb is used as the material forming laminated magnetic cores 1ch-4ch and the insulation oxidation coating film is formed on the surface of the magnetic thin plate by the chemical processing. As the oxidation processing method, for example, an aq. soln. of nitric acid including nitric acid ions is used as an electrolyte, a 'Permalloy(R)' strip is used as the anode and anodic oxidation is applied by the electrolysis. The surface of the 'Permalloy(R)' strip is oxidized by the processing above and a strong insulating oxide film having much Nb content, light heat resistance and not susceptible to reduction is formed. Thus, the laminated magnetic core with excellent insulation and without dispersion is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は所定形状の磁性薄板の積層体からなり、磁気ヘ
ッド、トランス、ソレノイド、モータなどに用いられる
′jii層磁心の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a 'jii layer magnetic core, which is made of a laminate of magnetic thin plates having a predetermined shape and is used in magnetic heads, transformers, solenoids, motors, etc. be.

[従来の技術] 磁気へ一7ドなどの磁心には渦電流損失を低下させるた
めに上記の積層磁心が広く用いられている。近年では積
層磁心の磁性薄板を形成する磁性材料として、積層磁心
の硬度を上げて耐摩耗性を向上させるため、および磁気
特性を向上するために組成中にニオブ(N b)を含有
させたもの、例えばNbを含有させたパーマロイ(登録
商標名でハードパーム)が用いられている。
[Prior Art] The above-mentioned laminated magnetic core is widely used for magnetic cores such as magnetic cores in order to reduce eddy current loss. In recent years, magnetic materials that form the magnetic thin plates of a laminated magnetic core include niobium (Nb) in its composition in order to increase the hardness of the laminated magnetic core and improve its wear resistance, and to improve its magnetic properties. For example, Permalloy (registered trademark: Hard Palm) containing Nb is used.

このような21層磁心の従来の製造方法としては、以下
のような方法が挙げられる。
Conventional methods for manufacturing such a 21-layer magnetic core include the following methods.

a、磁性材料のフープ材からプレス加工により連続して
磁心形状の磁性薄板を形成し、この磁性薄板を隙間を介
して積層し、例えばレーザーにより磁性薄板どうしを溶
接して積層体として一体的に接合し、しかる後に積層体
を水素中で焼鈍温度1000℃〜1100℃で磁性焼鈍
する。
a. Continuously form magnetic core-shaped magnetic thin plates from a hoop material of magnetic material by pressing, stack these magnetic thin plates with gaps between them, and weld the magnetic thin plates together using, for example, a laser to form an integral laminate. After joining, the laminate is magnetically annealed in hydrogen at an annealing temperature of 1000°C to 1100°C.

b、先に磁性焼鈍した磁性薄板の表面に絶縁性接着剤を
塗布し、この接着剤の層を介して磁性薄板を積層し、加
熱、加圧により接着剤を固化させて全体を一体化する。
b. Apply an insulating adhesive to the surface of the magnetic thin plate that has been magnetically annealed first, laminate the magnetic thin plates through this adhesive layer, and solidify the adhesive by applying heat and pressure to integrate the whole. .

C0磁性薄板を隙間を介し積層した後、薄板間の隙間に
流動性の良好な絶縁性接着剤を浸透させ、これを固化さ
せて全体を一体化する。
After laminating the C0 magnetic thin plates with gaps in between, an insulating adhesive with good fluidity is infiltrated into the gaps between the thin plates, and is solidified to integrate the whole.

d、磁性薄板の表面にスパッタリングにより酸化ケイ素
などの絶縁被膜を形成し、しかる後に磁性薄板を積層し
、一体化する。
d. An insulating film such as silicon oxide is formed on the surface of the magnetic thin plate by sputtering, and then the magnetic thin plates are laminated and integrated.

[発明が解決しようとする問題点] これらの方法の内でaの方法は工程数が少なく、積層後
に磁性焼鈍を行うので磁性焼鈍をまとめて効率良く行え
、コストが安いという利点がある。
[Problems to be Solved by the Invention] Among these methods, method a has the advantage that the number of steps is small, and since magnetic annealing is performed after lamination, magnetic annealing can be performed efficiently all at once, and the cost is low.

しかし、この方法では磁性焼鈍時の高熱により積層の磁
性薄板間が溶着してしまう場合がある。
However, in this method, the laminated magnetic thin plates may be welded together due to the high heat during magnetic annealing.

この場合、磁性薄板間の絶縁性が悪くなり、渦電流損失
が増加するとともに、そのバラツキが大きくなる。積層
磁心を磁気ヘッドに用いた場合、特に高周波領域でヘッ
ドの特性が劣化し、インピーダンスの低下およびバラツ
キにより記録の効率が悪くなったり、ヘッドの特性のバ
ラツキが大きくなるという悪影響がある。
In this case, the insulation between the magnetic thin plates deteriorates, eddy current loss increases, and its dispersion increases. When a laminated magnetic core is used in a magnetic head, the characteristics of the head deteriorate, especially in a high frequency region, and there is an adverse effect that the recording efficiency deteriorates due to a decrease and variation in impedance, and the variation in head characteristics increases.

溶着を防止するには、焼鈍温度を下げればよいが、適正
温度以下で焼鈍しても磁性薄板に本来の良好な磁気特性
が得られない。
In order to prevent welding, it is sufficient to lower the annealing temperature, but even if annealing is performed below the appropriate temperature, the magnetic thin plate will not have the originally good magnetic properties.

またbの方法では、接着剤の塗布作業の能率が悪い上に
、接着剤の膜厚(塗布厚)の管理が困難である。また、
接着時の加圧によって磁性薄板間の接着剤が流出して薄
板どうしが接触し、絶縁層としての接着剤の機能が損な
われることもある。
In addition, in method b, the efficiency of the adhesive application operation is low, and it is difficult to control the adhesive film thickness (coating thickness). Also,
The adhesive between the magnetic thin plates may flow out due to the pressure applied during adhesion, causing the thin plates to come into contact with each other, and the function of the adhesive as an insulating layer may be impaired.

また、Cの方法では、接着剤の浸透の程度によって絶縁
性の良否が左右され、絶縁性のバラツキが比較的大きく
、確実性に欠ける。
Furthermore, in method C, the quality of the insulation depends on the degree of penetration of the adhesive, and the variation in insulation is relatively large, resulting in a lack of reliability.

さらに、dの方法ではスパッタリングに非常にコストが
かかるという問題があった。
Furthermore, method d has the problem that sputtering is very costly.

[問題点を解決するための手段] 本発明においては上述した問題点を解決するために、積
層磁心の製造方法においては、組成中にニオブ(Nb)
を含有する磁性材料からなり磁性焼鈍された所定形状の
磁性薄板の積層体からなる積層磁心の製造方法において
、前記磁性薄板の表面に化学的処理によって絶縁性酸化
被膜を形成する工程を有する構成を採用した。
[Means for Solving the Problems] In the present invention, in order to solve the above-mentioned problems, in the method for manufacturing a laminated magnetic core, niobium (Nb) is added in the composition.
A method for producing a laminated magnetic core comprising a laminated body of magnetic thin plates of a predetermined shape that are made of a magnetic material containing magnetically annealed and have a predetermined shape, the method comprising a step of forming an insulating oxide film on the surface of the magnetic thin plates by chemical treatment. Adopted.

[作 用] このような構成によれば、絶縁性酸化被膜の形成は1度
に大量の処理が可能な化学的な酸化処理により行われ、
絶縁性接着剤やスパッタリングによる絶縁被膜の形成に
比べて極めて能率良く安価に行え、かつ膜厚の管理も容
易で、膜厚のバラツキを抑えられる。そして、絶縁性酸
化被膜を介して磁性薄板間の絶縁性が良好で、バラツキ
のない慢れた積層磁心が製造できる。
[Function] According to such a configuration, the formation of the insulating oxide film is performed by chemical oxidation treatment that can be performed in large quantities at one time,
Compared to forming an insulating film using an insulating adhesive or sputtering, this method is extremely efficient and inexpensive, and the film thickness can be easily controlled and variations in film thickness can be suppressed. Then, a laminated magnetic core with good insulation between the magnetic thin plates via the insulating oxide film and uniformity and arrogance can be manufactured.

[実施例] 以下、添付した図を参照して本発明の実施例の詳細を説
明する。
[Embodiments] Hereinafter, details of embodiments of the present invention will be described with reference to the attached drawings.

l上1差摺 第1図(A)は本発明の第1実施例による積層磁心の製
造工程の流れを示している。
FIG. 1A shows the flow of manufacturing steps for a laminated magnetic core according to a first embodiment of the present invention.

本実施例によれば、まず第1図(A)のステップS1に
おいて積層磁心の磁性薄板の素材として、例えば組成中
にニオブ(N b)を含有させたパーマロイの帯材の表
面に化学的な処理によって酸化被膜を形成する。
According to this embodiment, first, in step S1 of FIG. 1(A), chemical treatment is applied to the surface of a permalloy strip containing niobium (Nb) in its composition, as the material for the magnetic thin plate of the laminated magnetic core. The treatment forms an oxide film.

この処理は、第1図(B)の流れ図に示す手順で、以下
のように行う。
This process is performed as follows using the procedure shown in the flowchart of FIG. 1(B).

まず、第1図(B)のステップSllに示す表面洗浄工
程として、パーマロイ帯材の表面をフレオンやアルコー
ルなどの有機溶媒や水などによって洗浄し、脱脂および
汚れの除去を行う。
First, as a surface cleaning step shown in step Sll in FIG. 1(B), the surface of the permalloy strip material is cleaned with an organic solvent such as Freon or alcohol, water, or the like to degrease and remove dirt.

次に、ステップS12の表面酸化処理工程として、例え
ばパーマロイ帯材を硝酸(HNO:l)の水溶液中に連
続的に送り出し1巻き取りながら浸漬する。この時の?
j!I酸濃度は使用条件により異なるが、0.01−1
4 mol/ノの範囲内に設定することが望ましい0例
えば0.1〜1.On+ol/41に設定する。
Next, as a surface oxidation treatment step in step S12, for example, a permalloy band material is immersed in an aqueous solution of nitric acid (HNO:l) while being continuously fed out and wound once. At this time?
j! I acid concentration varies depending on usage conditions, but is 0.01-1
It is desirable to set it within the range of 0.4 mol/no, for example, 0.1 to 1. Set to On+ol/41.

また、これ以外の酸化処理方法として、硝酸イオン(N
Oiイオン)を含む硝酸水溶液を電解質とし、パーマロ
イ帯材を陽極として電気分解により陽極酸化する方法が
ある。また、スプレーにより硝酸水溶液を吹き付ける方
法もある。
In addition, as an oxidation treatment method other than this, nitrate ions (N
There is a method of anodic oxidation by electrolysis using a nitric acid aqueous solution containing Oi ions as an electrolyte and a permalloy strip material as an anode. There is also a method of spraying a nitric acid aqueous solution.

なお、酸化処理中の硝酸水溶液の設定温度と処理時間は
、硝酸水溶液のイオン濃度ないし酸濃度によって異なる
が、温度は10〜60℃、浸漬時間は10秒〜15分程
度で処理を行える。
Although the set temperature and treatment time of the nitric acid aqueous solution during the oxidation treatment vary depending on the ion concentration or acid concentration of the nitric acid aqueous solution, the treatment can be performed at a temperature of 10 to 60° C. and an immersion time of about 10 seconds to 15 minutes.

このような処理により、パーマロイ帯材の表面が酸化さ
れ、その酸化物により同表面に絶縁性酸化被膜が形成さ
れる。この時にパーマロイ中のFe、Niが先に溶は出
し、硝酸に溶けにくいNbが残るので、Nbの成分量が
多くて耐熱性が高く、還元されにくい強固な酸化被膜が
形成される。
Through such treatment, the surface of the permalloy strip material is oxidized, and an insulating oxide film is formed on the surface by the oxide. At this time, the Fe and Ni in the permalloy are eluted first, leaving Nb, which is difficult to dissolve in nitric acid, to form a strong oxide film with a high Nb content, high heat resistance, and resistance to reduction.

酸化処理終了後は、第1図(B)のステップS13で、
水洗によりパーマロイ帯材から硝酸水溶液を洗い流し、
しかる後にステップS14でパーマロイ帯材を乾燥する
After the oxidation treatment is completed, in step S13 of FIG. 1(B),
Wash away the nitric acid aqueous solution from the permalloy strip material by washing with water.
After that, the permalloy strip is dried in step S14.

このようにして絶縁性酸化被膜を形成した次は、第1図
(A)のステップS2においてプレス加工によりパーマ
ロイ帯材から積層磁心の形状に対応した所定形状の磁性
薄板を打ち抜く。
After forming the insulating oxide film in this manner, in step S2 of FIG. 1(A), a magnetic thin plate having a predetermined shape corresponding to the shape of the laminated magnetic core is punched out from the permalloy strip material by press working.

次に、ステップS3において磁性薄板を磁心の厚さに対
応して必要な所定枚数だけ整列させ(@ね)、ステップ
S4において、その周辺部の数点をレーザーなどの加熱
手段により溶接して磁性薄板どうしを接合し、積層体と
して一体化する。
Next, in step S3, a predetermined number of magnetic thin plates are aligned according to the thickness of the magnetic core (@ne), and in step S4, several points around the thin plates are welded by a heating means such as a laser to make the magnetic thin plates. The thin plates are joined together and integrated into a laminate.

なお、この場合にステップ33′〜55′に示すように
、磁性薄板を前記の所定枚数を越えて連続して整列させ
、連続した状態で溶接を行い、しかる後に連続した積層
体を磁心の厚さごとに切り離すようにしても良い。
In this case, as shown in steps 33' to 55', the magnetic thin plates are successively aligned in excess of the predetermined number, welded in a continuous state, and then the continuous laminate is adjusted to the thickness of the magnetic core. You may also choose to separate each task separately.

次に、ステップS5において積層体を水素中において焼
鈍温度1000℃〜1100℃で磁性焼鈍して積層磁心
が完成する。
Next, in step S5, the laminated body is magnetically annealed in hydrogen at an annealing temperature of 1000° C. to 1100° C. to complete a laminated magnetic core.

ところで、上述した各工程の順序はこれに限るものでは
ない、以下に工程の順序を変えた本発明の第2〜第5実
施例を第2図〜第5図を参照して説明する。
By the way, the order of the steps described above is not limited to this. Second to fifth embodiments of the present invention in which the order of the steps is changed will be described below with reference to FIGS. 2 to 5.

第」L実」E例 第2図は本発明の第2実施例による製造工程の流れを示
している。
``No. L Actual'' Example E FIG. 2 shows the flow of the manufacturing process according to the second embodiment of the present invention.

本実施例では、まず最初のステップ521においてNb
含有のパーマロイ帯材からプレス加工により磁心形状の
磁性薄板を打ち抜き、続いてステップS22において磁
性薄板のパリ取りを行う。
In this embodiment, in the first step 521, Nb
A core-shaped magnetic thin plate is punched out from the permalloy strip material containing the permalloy material by press working, and then in step S22, the magnetic thin plate is deburred.

しかる後にステップS23において第1図(B)で説明
したのに対応する処理により、磁性薄板の表面に絶縁性
酸化被膜を形成する。すなわち、硝酸水溶液への浸漬な
どの処理は磁心形状の磁性薄板の状態で行うことになる
Thereafter, in step S23, an insulating oxide film is formed on the surface of the magnetic thin plate by a process corresponding to that described with reference to FIG. 1(B). In other words, treatments such as immersion in a nitric acid aqueous solution are carried out in the state of a core-shaped magnetic thin plate.

後はステップS24〜32Bないし524′〜S26′
、S26により第1実施例のステップ53〜S5ないし
53′〜35’、S5と同様に磁性薄板の整列、溶接お
よび磁性焼鈍を行って積層磁心が完成する。
After that, steps S24-32B or 524'-S26'
, S26, the magnetic thin plates are aligned, welded, and magnetically annealed in the same manner as steps 53 to S5 to 53' to 35' and S5 of the first embodiment, and a laminated magnetic core is completed.

1m遣 次に、第3図は本発明の第3実施例による製造工程を示
している。
FIG. 3 shows a manufacturing process according to a third embodiment of the present invention.

本実施例では、第3図のステップ331〜S33ないし
531−534’に示すように、Nb含有のパーマロイ
帯材かものプレスによる磁性薄板の打ち抜き、磁性薄板
の整列、溶接および連続整列の場合は積層体の分離を行
い、しかる後にステップS34において酸化被膜の形成
を第1図(B)に対応する処理により行う。
In this embodiment, as shown in steps 331 to S33 to 531 to 534' in FIG. The laminated body is separated, and then, in step S34, an oxide film is formed by a process corresponding to FIG. 1(B).

すなわち、硝酸水溶液への浸漬などは積層体の状態で行
う、浸漬の場合、毛細管現象によって積層間に硝酸水溶
液が自然に浸透するが、浸透を促進するためには超音波
振動を与えたり、真空状態に減圧したり、あるいは逆に
加圧したりす、るなどの方法が用いられる。
In other words, immersion in a nitric acid aqueous solution is carried out in the form of a laminate. When immersed, the nitric acid aqueous solution naturally penetrates between the laminates due to capillary action, but in order to promote penetration, ultrasonic vibration or vacuum treatment may be applied. Methods such as reducing the pressure or, conversely, increasing the pressure are used.

しかる後に、ステップS35において焼鈍を行い、積層
磁心を完成する。なお、分離していない連続した積層体
の状態で焼鈍を行い、焼鈍後に積層体を分離するように
しても良い。
After that, annealing is performed in step S35 to complete the laminated magnetic core. Note that annealing may be performed in a continuous laminate that is not separated, and the laminate may be separated after annealing.

1土111 次に、第4図は本発明の第4実施例による製造工程の流
れを示している。
1 soil 111 Next, FIG. 4 shows the flow of the manufacturing process according to the fourth embodiment of the present invention.

本実施例では、まずステップS41.42において磁性
薄板の打ち抜き、パリ取りを行い、次にステップS43
において磁性焼鈍を行い、しかる後にステップS44で
、先述の処理により酸化被膜形成を行う。ただし、磁性
焼鈍時に磁性薄板が脱脂され、汚れを除去されているの
で、そのための表面洗浄は不要である。
In this embodiment, first, in step S41.42, a magnetic thin plate is punched and deburred, and then in step S43.
Magnetic annealing is performed in step S44, and then, in step S44, an oxide film is formed by the process described above. However, since the magnetic thin plate is degreased and dirt is removed during magnetic annealing, surface cleaning is not necessary.

後はステップS45で磁性薄板を整列し、ステップS4
6ないし346′で示すように、磁性薄板どうしを接着
ないし溶接して全体を一体化し、積層磁心を完成する。
After that, in step S45, the magnetic thin plates are aligned, and in step S4
As shown at 6 to 346', the magnetic thin plates are bonded or welded together to integrate the whole to complete a laminated magnetic core.

表n 次に、第5図は本発明の第5実施例による製造工程を示
している。
Table n Next, FIG. 5 shows a manufacturing process according to a fifth embodiment of the present invention.

本実施例では、まずステップS51で磁性薄板の打ち抜
きを行い、次にステップS52.S53で磁性薄板の整
列および溶接を行う、あるいはステップ552′〜S5
4′に示すように、連続整列して溶接し、しかる後に積
層体の厚さに分離する。
In this embodiment, first, a magnetic thin plate is punched out in step S51, and then in step S52. Aligning and welding the magnetic thin plates in S53, or steps 552' to S5
4', weld in continuous alignment and then separate the thickness of the laminate.

次に、ステップS54で積層体の状態で磁性焼鈍を行い
、最後にステップS55で、先述と同様の処理により酸
化被膜の形成を行う。
Next, in step S54, magnetic annealing is performed on the laminated body, and finally, in step S55, an oxide film is formed by the same process as described above.

以上のような本発明のt51〜第5の実施例によれば、
絶縁性酸化被膜の形成は1度に大量の処理が可能な化学
的な酸化処理により行われ、絶縁性接着剤やスパッタリ
ングによる絶縁被膜の形成に比べて極めて能率良く安価
に行え、かつ膜厚の管理も容易で、膜厚のバラツキを抑
えられる。そして、絶縁性酸化被膜を介して磁性薄板間
の絶縁性が良好で、バラツキのない優れた積層磁心が製
造できる。
According to the t51 to fifth embodiments of the present invention as described above,
Formation of an insulating oxide film is performed by chemical oxidation treatment that can process a large amount at once, and is extremely efficient and inexpensive compared to forming an insulating film using an insulating adhesive or sputtering. It is easy to manage, and variations in film thickness can be suppressed. Moreover, an excellent laminated magnetic core with good insulation between the magnetic thin plates through the insulating oxide film and no variation can be manufactured.

個々の実施例について言うと、第1〜第3実施例では、
磁性焼鈍を最後に積層体の状態で行うので、磁性焼鈍を
まとめて効率良く安価に行える。
Regarding individual examples, in the first to third examples,
Since magnetic annealing is finally performed on the laminate, magnetic annealing can be performed all at once efficiently and at low cost.

そして、その場合に、磁性焼鈍より前に磁性薄板の表面
にPbの成分醍が多く、耐熱性に優れ、高融点で強固な
絶縁性酸化被膜が形成されているので、磁性焼鈍時に磁
性薄板どうしの金属部分どうしが溶は合おうとしても被
膜がそれを妨げ、従来方法のaの場合のような磁性薄板
どうしの溶着を防止できる。なお、本実施例による絶縁
性酸化被膜は、強固で還元されにくく、磁性焼鈍時に還
元しつくされずに残る。
In this case, before magnetic annealing, the surface of the magnetic thin plate contains a large amount of Pb, has excellent heat resistance, and forms a strong insulating oxide film with a high melting point. Even if the metal parts of the metal parts try to melt together, the coating prevents this, and it is possible to prevent the magnetic thin plates from welding together as in the case of conventional method a. Note that the insulating oxide film according to this example is strong and difficult to be reduced, and remains without being completely reduced during magnetic annealing.

また、第4、第5実施例の場合は、磁性焼鈍後に酸化被
膜の形成を行うので、被膜の還元の心配がなく、被膜に
よる絶縁性がより完全なものとなる。また、第1図(B
)でステップSllの磁性薄板の表面洗浄は不要となる
Further, in the case of the fourth and fifth embodiments, since the oxide film is formed after magnetic annealing, there is no fear of reduction of the film, and the insulation provided by the film is more perfect. In addition, Figure 1 (B
), surface cleaning of the magnetic thin plate in step Sll becomes unnecessary.

このように、本発明の実施例によれば、絶縁性が良好で
バラツキのない優れた積層磁心を安価に製造できる。実
施例方法により、積層磁心として1例えば磁気へ一7ド
の磁気コア(積層コア)を製造した場合には、絶縁性の
良好さとバラツキのなさによって磁気ヘッドのインピー
ダンスを高く、かつバラツキの少ないものにでき、ヘッ
ドの記録の効率を向上し、かつ特性のバラツキを抑える
ことができる。
As described above, according to the embodiments of the present invention, an excellent laminated magnetic core with good insulation properties and no variation can be manufactured at low cost. When a magnetic core (laminated core) of 1, for example, 7 magnets is manufactured as a laminated magnetic core by the method of the embodiment, the impedance of the magnetic head is high due to good insulation and no variation, and the impedance is small. This makes it possible to improve the recording efficiency of the head and suppress variations in characteristics.

下記の表および第7図は、このような効果を裏付けるデ
ータを示しており、本発明の第2実施例の製法と同じ条
件で、従来のaの製法とにより。
The table below and FIG. 7 show data supporting such effects, and were obtained by the conventional manufacturing method a under the same conditions as the manufacturing method of the second embodiment of the present invention.

それぞれ第6図に示すようなカセットテープレコーダ用
4チヤンネルオートリバース型の磁気ヘッドlOの第1
−第4チヤンネルの磁気コア(積層コア)lch〜4c
hを作成し、それぞれのヘッドについて80 KHzの
インピーダンスを計測し、インピーダンスの平均又とバ
ラツキ±3σ’1t−Lを比較したものである。第7図
の線図では、三角形の中心がインピーダンスの平均値を
示し、三角形の両辺の広がりの大きさがバラツキを示し
ている。また、試料A、Bが本発明の第2実施例による
もので、Aは焼鈍温度を1050″Cとし、Bは100
0℃としたものであり、試料Cは従来の製法aによるも
のである。なお、第6図の磁気ヘッドlOの基本的な構
造は公知のものであり、磁気コアlch〜4chを不図
示のコイルなどとともにケース5に嵌入し、磁気ギャッ
プGを設けた磁気コアlch〜4chの先端面をケース
の磁気テープ摺接面5aの開口部5bに臨ませて、固定
材6により磁気コアlch〜4chを固定したものであ
る。
The first of the four-channel auto-reverse type magnetic head lO for a cassette tape recorder as shown in FIG.
-4th channel magnetic core (laminated core) lch~4c
h was created, the impedance of 80 KHz was measured for each head, and the average impedance and variation ±3σ'1t-L were compared. In the diagram of FIG. 7, the center of the triangle indicates the average value of impedance, and the extent of both sides of the triangle indicates dispersion. In addition, samples A and B are according to the second embodiment of the present invention, and A has an annealing temperature of 1050"C, and B has an annealing temperature of 100"C.
The temperature was 0° C., and sample C was produced by conventional manufacturing method a. The basic structure of the magnetic head 1O shown in FIG. 6 is a known one, in which the magnetic cores lch to 4ch are fitted into a case 5 together with a coil (not shown), and the magnetic cores lch to 4ch are provided with a magnetic gap G. The magnetic cores 1ch to 4ch are fixed by a fixing member 6 with the tip end face facing the opening 5b of the magnetic tape sliding surface 5a of the case.

この表と第7図から明らかなように、第2実施例による
試料A、Hの方が従来例の試料Cよりもインピーダンス
の平均が大幅に高く、バラツキが顕著に小さく、実施例
による効果を確認できる。
As is clear from this table and FIG. 7, the average impedance of Samples A and H according to the second embodiment is significantly higher than that of Sample C of the conventional example, and the variation is significantly smaller, and the effect of the embodiment is You can check it.

なお、積層磁心の磁性薄板を形成する磁性材料として、
Nbを含有したものを用いることが重要なポイントであ
り、これにより先述のように磁性薄板の表面にNbの成
分量が多く耐熱性に優れ、高融点で還元されにくい強固
な酸化被膜が形成される。また、Nb含有の磁性材料を
用いることにより、llt 層磁心の磁気特性が向上す
るとともに、硬度が上がる。特に、磁気ヘッドの磁気コ
ア(a層コア)の場合には、硬度を上げることで1WI
I摩耗性を向上できる。
In addition, as a magnetic material forming the magnetic thin plate of the laminated magnetic core,
The important point is to use a material containing Nb, as mentioned earlier, this will form a strong oxide film on the surface of the magnetic thin plate that has a high content of Nb, has excellent heat resistance, has a high melting point, and is difficult to reduce. Ru. Further, by using a magnetic material containing Nb, the magnetic properties of the llt layer magnetic core are improved and the hardness is increased. In particular, in the case of the magnetic core (A-layer core) of a magnetic head, increasing the hardness increases the
I Abrasion resistance can be improved.

[発明の効果] 以上の説明から明らかなように、本発明による積層磁心
の製造方法においては、組成中にニオブ(Nb)を含有
する磁性材料からなり磁性焼鈍された所定形状の磁性薄
板の積層体からなる′!!i層磁心の製造方法において
、前記磁性薄板の表面に化学的処理によって絶縁性酸化
被膜を形成する工程を有する酸化被膜を形成する工程を
有する構成を採用したので、磁(Il:薄板間の絶縁性
が良好で、バラツキのない優れた植層磁心を安価に製造
できるという優れた効果が選られる。
[Effects of the Invention] As is clear from the above description, in the method for manufacturing a laminated magnetic core according to the present invention, magnetic thin plates of a predetermined shape made of a magnetic material containing niobium (Nb) and magnetically annealed are laminated. Consisting of the body'! ! In the method for manufacturing an i-layer magnetic core, a configuration including a step of forming an insulating oxide film on the surface of the magnetic thin plate by chemical treatment is adopted, so that magnetic (Il: insulation between the thin plates) is formed. The material was selected because of its excellent effect of being able to produce a superior planted-layered magnetic core with good properties and no variation at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の第1実施例による製造工程の流
れを示す流れ図、第1図(B)は第1図(A)中の酸化
被膜形成工程の処理の流れを示す流れ図、第2図から第
5図はそれぞれ本発明の第2実施例から第5実施例によ
る製造工程の流れのそれぞれを示す流れ図、第6図はカ
セットテープレコーダ用の4チヤンネルオートリバース
型磁気ヘツドの平面図、第7図は第6図の構造で実施例
方法で作製した磁気コアを用いたヘッドと従来方法で作
製したヘッドのそれぞれにおける80KHzでのインピ
ーダンスの平均とバラツキを示す線図である。 lch〜4ch・・・磁気コア 5・・・ケース     6・・・固定材lO・・・磁
気ヘッド
FIG. 1(A) is a flow chart showing the flow of the manufacturing process according to the first embodiment of the present invention, FIG. 1(B) is a flow chart showing the processing flow of the oxide film forming step in FIG. 1(A), 2 to 5 are flowcharts showing the manufacturing process flow according to the second to fifth embodiments of the present invention, respectively, and FIG. 6 is a plan view of a 4-channel auto-reverse magnetic head for a cassette tape recorder. 7 are graphs showing the average and dispersion of impedance at 80 KHz for a head using a magnetic core manufactured by the method of the embodiment and a head manufactured by the conventional method with the structure shown in FIG. 6, respectively. lch~4ch...Magnetic core 5...Case 6...Fixing material lO...Magnetic head

Claims (1)

【特許請求の範囲】 1)組成中にニオブ(Nb)を含有する磁性材料からな
り磁性焼鈍された所定形状の磁性薄板の積層体からなる
積層磁心の製造方法において、前記磁性薄板の表面に化
学的処理によって絶縁性酸化被膜を形成する工程を有す
ることを特徴とする積層磁心の製造方法。 2)前記化学的処理による酸化被膜の形成は、前記磁性
焼鈍より前の工程で行うことを特徴とする特許請求の範
囲第1項に記載の積層磁心の製造方法。 3)前記磁性薄板を積層体として一体化するための接合
は溶接により行い、該溶接は前記磁性焼鈍より前の工程
で行うことを特徴とする特許請求の範囲第2項に記載の
積層磁心の製造方法。 4)前記化学的処理による酸化被膜の形成は前記磁性焼
鈍より後の工程で行うことを特徴とする特許請求の範囲
第1項に記載の積層磁心の製造方法。 5)前記磁性薄板を積層体として一体化するための接合
は接着により行い、該接着は前記化学的処理による酸化
被膜の形成より後の工程で行うことを特徴とする特許請
求の範囲第4項に記載の積層磁心の製造方法。 6)前記磁性薄板を積層体として一体化するための接合
は溶接により行い、該溶接は前記化学的処理による酸化
被膜の形成より後の工程で行うことを特徴とする特許請
求の範囲第4項に記載の積層磁心の製造方法。 7)前記磁性薄板を積層体として一体化するための接合
は溶接により行い、該溶接は前記磁性焼鈍より前の工程
で行うことを特徴とする特許請求の範囲第4項に記載の
積層磁心の製造方法。 8)前記磁性薄板の磁性材料として組成中にニオブ(N
b)を含有するパーマロイを用いたことを特徴とする特
許請求の範囲第1項から第7項までのいずれか1項に記
載の積層磁心の製造方法。 9)前記酸化被膜を形成するための化学的処理として硝
酸イオン(NO_3^−)を含む水溶液により前記磁性
薄板の表面処理を行うことを特徴とする特許請求の範囲
第1項から第8項までのいずれか1項に記載の積層磁心
の製造方法。 10)前記表面処理は硝酸イオン(NO_3^−)を含
む水溶液中に前記磁性薄板を浸漬することにより行うこ
とを特徴とする特許請求の範囲第9項に記載の積層磁心
の製造方法。 11)前記表面処理は硝酸イオン(NO_3^−)を含
む水溶液中で前記磁性薄板表面を電解酸化することによ
り行うことを特徴とする特許請求の範囲第9項に記載の
積層磁心の製造方法。 12)前記磁性薄板の溶接はレーザーにより行うことを
特徴とする特許請求の範囲第3項、第6項または第7項
に記載の積層磁心の製造方法。
[Scope of Claims] 1) A method for manufacturing a laminated magnetic core comprising a laminate of magnetically annealed magnetic thin plates having a predetermined shape made of a magnetic material containing niobium (Nb) in the composition, wherein the surface of the magnetic thin plate is chemically coated. 1. A method for manufacturing a laminated magnetic core, the method comprising the step of forming an insulating oxide film by a chemical treatment. 2) The method for manufacturing a laminated magnetic core according to claim 1, wherein the formation of the oxide film by the chemical treatment is performed in a step before the magnetic annealing. 3) The laminated magnetic core according to claim 2, wherein the joining for integrating the magnetic thin plates as a laminate is performed by welding, and the welding is performed in a step before the magnetic annealing. Production method. 4) The method for manufacturing a laminated magnetic core according to claim 1, wherein the formation of the oxide film by the chemical treatment is performed in a step subsequent to the magnetic annealing. 5) The joining for integrating the magnetic thin plates as a laminate is performed by adhesion, and the adhesion is performed in a step after the formation of the oxide film by the chemical treatment. The method for manufacturing a laminated magnetic core described in . 6) The joining for integrating the magnetic thin plates as a laminate is performed by welding, and the welding is performed in a step after the formation of the oxide film by the chemical treatment. The method for manufacturing a laminated magnetic core described in . 7) The laminated magnetic core according to claim 4, wherein the magnetic thin plates are joined together as a laminate by welding, and the welding is performed in a step before the magnetic annealing. Production method. 8) Niobium (N) is included in the composition as the magnetic material of the magnetic thin plate.
The method for manufacturing a laminated magnetic core according to any one of claims 1 to 7, characterized in that permalloy containing b) is used. 9) Claims 1 to 8 are characterized in that the surface treatment of the magnetic thin plate is performed with an aqueous solution containing nitrate ions (NO_3^-) as the chemical treatment for forming the oxide film. The method for manufacturing a laminated magnetic core according to any one of the above. 10) The method for manufacturing a laminated magnetic core according to claim 9, wherein the surface treatment is performed by immersing the magnetic thin plate in an aqueous solution containing nitrate ions (NO_3^-). 11) The method for manufacturing a laminated magnetic core according to claim 9, wherein the surface treatment is performed by electrolytically oxidizing the surface of the magnetic thin plate in an aqueous solution containing nitrate ions (NO_3^-). 12) The method for manufacturing a laminated magnetic core according to claim 3, 6, or 7, wherein the welding of the magnetic thin plates is performed using a laser.
JP28077686A 1986-11-27 1986-11-27 Manufacture of laminated magnetic core Pending JPS63136307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28077686A JPS63136307A (en) 1986-11-27 1986-11-27 Manufacture of laminated magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28077686A JPS63136307A (en) 1986-11-27 1986-11-27 Manufacture of laminated magnetic core

Publications (1)

Publication Number Publication Date
JPS63136307A true JPS63136307A (en) 1988-06-08

Family

ID=17629799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28077686A Pending JPS63136307A (en) 1986-11-27 1986-11-27 Manufacture of laminated magnetic core

Country Status (1)

Country Link
JP (1) JPS63136307A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769712A (en) * 1980-10-17 1982-04-28 Sanyo Electric Co Ltd Amorphous magnetic core
JPS6160887A (en) * 1984-08-30 1986-03-28 Canon Electronics Inc Formation of nonconductive film
JPS61227194A (en) * 1985-03-30 1986-10-09 Nippon Steel Corp Surface treatment of thin amorphous alloy strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769712A (en) * 1980-10-17 1982-04-28 Sanyo Electric Co Ltd Amorphous magnetic core
JPS6160887A (en) * 1984-08-30 1986-03-28 Canon Electronics Inc Formation of nonconductive film
JPS61227194A (en) * 1985-03-30 1986-10-09 Nippon Steel Corp Surface treatment of thin amorphous alloy strip

Similar Documents

Publication Publication Date Title
JPS63136307A (en) Manufacture of laminated magnetic core
JPS6160887A (en) Formation of nonconductive film
JPS63254709A (en) Laminated thin magnet film and magnetic head using the same
JPH0430471B2 (en)
JPS6013314A (en) Composite type magnetic head
JPH03238606A (en) Magnetic head and production thereof
JPS60239906A (en) Magnetic head
JPS5877017A (en) Thin film magnetic head
JPS647456Y2 (en)
JPH05159217A (en) Magnetic head
JP2000123317A (en) Manufacture of magnetic head
JPH0328724B2 (en)
JPS6161212A (en) Production of magnetic head core
JPH01253806A (en) Magnetic head
JPH02227805A (en) Magnetic erasing head
JPH01286107A (en) Magnetic head with superior wear resistance and its manufacture
JPH06119612A (en) Magnetic head and its production
JPH07121817A (en) Production of magnetic head
JPS62259210A (en) Production of magnetic head
JPS61123006A (en) Magnetic head
JPS6132207A (en) Laminate magnetic head
JPH05182831A (en) Thin film coil and manufacture thereof
JPS6226086B2 (en)
JPH0562115A (en) Magnetic head and its manufacture
JPH01184609A (en) Production of magnetic head