JPS6226086B2 - - Google Patents
Info
- Publication number
- JPS6226086B2 JPS6226086B2 JP4343579A JP4343579A JPS6226086B2 JP S6226086 B2 JPS6226086 B2 JP S6226086B2 JP 4343579 A JP4343579 A JP 4343579A JP 4343579 A JP4343579 A JP 4343579A JP S6226086 B2 JPS6226086 B2 JP S6226086B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- core chip
- magnetic head
- jig
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910000702 sendust Inorganic materials 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 5
- 239000012790 adhesive layer Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims 1
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 238000004804 winding Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】
本発明は磁気ヘツドの製造方法に関するもので
磁気ヘツドを構成するコアの反り曲り及びこれに
起因するギヤツプずれを防止することを目的とす
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic head, and an object of the present invention is to prevent warpage of a core constituting a magnetic head and gap deviation caused by this.
メタルテープ等高抗磁力テープにビデオ信号の
ような高周波信号を記録するには従来のフエライ
ト材を用いる磁気ヘツドでは所要の飽和磁束密度
を得られない。そこでこの飽和磁束密度の大きい
金属磁性材料例えばセンダストの利用が見直され
ている。ところでこのセンダスト材は合金材料の
ためその固有抵抗は80〜150μΩ−cm程度と極め
て低く従つてビデオ周波数領域では渦電流損失が
大きくなり、その影響で透磁率は数10〜100程度
(従来のフエライト材では500以上)に低下する。
この渦電流損失を低く抑えるためにはコア厚を非
常に薄く例えば20μ前後にする必要がある。この
位の厚さにすれば磁気ヘツドの最も重要な特性要
因である透磁率は500以上を実現できることが確
められた。そこで所望のコアを大量生産するため
に第1図に示すようにセンダスト製コアブロツク
半体の一対1,2を、そのフロントギヤツプ対応
部位にスペーサ3を挾んでリヤギヤツプ相当部に
おいて銀ロウ4,5により接合し、その後破線の
ようにスライシングし、さらに所望のコア厚に厚
み加工を施した場合、完成したコアチツプは第2
図に示す如く反り曲りその為フロントギヤツプの
ずれが認められ歩留まりの良い磁気ヘツドを得る
ことができなかつた。これは第3図に示すように
将来除去されるフロントギヤツプの先端部及び巻
線孔6の後端部に銀ロウによる補強部7及び8を
設けた場合においても第4図に示すように避けら
れなかつた。本発明者等の実験によると、厚み加
工後の厚さを60ミクロン以下にした場合、加工の
ため治具に接着したコアチツプを、接着剤を剥離
剤で化学的に除去することにより、治具からとり
外して見ると上述のように反り曲る現象が認めら
れることがわかつた。 In order to record high frequency signals such as video signals on high coercive force tapes such as metal tapes, conventional magnetic heads using ferrite materials cannot obtain the required saturation magnetic flux density. Therefore, the use of magnetic metal materials such as Sendust, which has a high saturation magnetic flux density, is being reconsidered. By the way, since this Sendust material is an alloy material, its specific resistance is extremely low at about 80 to 150 μΩ-cm. Therefore, eddy current loss becomes large in the video frequency region, and as a result, the magnetic permeability is on the order of tens to hundreds (compared to conventional ferrite). For wood, it decreases to over 500).
In order to keep this eddy current loss low, the core thickness needs to be very thin, for example around 20μ. It was confirmed that a magnetic permeability of 500 or more, which is the most important characteristic factor of a magnetic head, can be achieved with a thickness of this order. Therefore, in order to mass-produce the desired cores, as shown in Fig. 1, a pair of Sendust core block halves 1 and 2 are joined with a spacer 3 in the area corresponding to the front gear, and silver solder 4 and 5 in the area corresponding to the rear gear. If the core chip is then sliced as shown in the dashed line and further thickened to the desired core thickness, the completed core chip will become the second core chip.
As shown in the figure, the head was warped and the front gap was misaligned, making it impossible to obtain a magnetic head with a good yield. This can be avoided as shown in FIG. 4 even if reinforcement parts 7 and 8 are provided with silver solder at the tip of the front gear and the rear end of the winding hole 6, which will be removed in the future, as shown in FIG. Nakatsuta. According to experiments conducted by the present inventors, when the thickness after thickness processing is reduced to 60 microns or less, the core chip bonded to the jig for processing can be removed chemically using a release agent. When it was removed and looked at, it was found that the above-mentioned warping phenomenon was observed.
本発明はこの反り曲り及びこれに起因するギヤ
ツプずれを防止する磁気ヘツドの製造方法を提供
しようとするものであり、以下実施例に基づき説
明する。 The present invention aims to provide a method for manufacturing a magnetic head that prevents this warping and gap deviation caused by it, and will be explained below based on examples.
一対のセンダスト製コア半体をそのフロントギ
ヤツプ対向部間に所定のギヤツプ長に相当するス
ペーサを挾んで衝き合わせ、両コア半体を両者間
の銀ロウにより接合、一体化する。この一体化の
ための技術は一般には難しいとされているが、本
出願人の先願にかかる発明(昭54年4月6日付特
許願(1)添付の明細書参照)を利用することに
より可能である。次いでこの一体化したブロツク
を第3図の破線で示すようにスライシングして約
200μ厚のコアチツプ10(第5図イ)を得る。
このコアチツプ10の一面10aを一次研磨する
ためこれを石英板で形成した治具11に有機接着
剤12(例えばアロンアルフア、商標)で接着す
る(第5図ロ)。この一次研磨はコア厚が例えば
100μ厚となるように行なわれる。その後、接着
剤12を剥離剤にて化学的に除去し、一次研磨面
を上記治具11に接着剤(アロンアルフア)13
で接着する(第5図ハ)。その後、このコアチツ
プ10の他面10bを二次研磨してそのコア厚が
約20μ厚となるようにする(第5図ハの破線参
照)。 A pair of Sendust core halves are butted against each other with a spacer corresponding to a predetermined gap length sandwiched between their front gap opposing parts, and both core halves are joined and integrated with silver solder therebetween. The technology for this integration is generally considered to be difficult, but by utilizing the invention related to the applicant's earlier application (see the attached specification of patent application (1) dated April 6, 1972). It is possible. Next, this integrated block is sliced as shown by the broken line in Figure 3 to approximately
A core chip 10 (FIG. 5A) with a thickness of 200 μm is obtained.
In order to primary polish one surface 10a of this core chip 10, it is bonded to a jig 11 formed of a quartz plate with an organic adhesive 12 (for example, Aron Alpha, trademark) (FIG. 5B). For this primary polishing, the core thickness is
This is done so that the thickness is 100μ. Thereafter, the adhesive 12 is chemically removed using a release agent, and the primary polished surface is attached to the jig 11 using an adhesive (Aron Alpha) 13.
(Figure 5 C). Thereafter, the other surface 10b of this core chip 10 is secondarily polished so that the core thickness becomes approximately 20 μm (see the broken line in FIG. 5C).
次いでこのように一次、二次研磨したコアチツ
プを治具11に接着剤13で接着した状態のまゝ
で、同じく石英材で構成した押圧板14により加
圧(例えばこの種のコアチツプを10枚並列に並べ
たものに対して約20グラムの押圧板を載せる)
し、その状態で水素雰囲気中又は真空中第6図に
示すようにヒータ15を有する炉16内において
温度500℃〜750℃の範囲で約10〜15分間加熱す
る。この温度及び加熱時間は主にコアの加工歪除
去及びコア半体の接合に供した銀ロウの拡散防止
の観点から選定される。この加熱を通じてコアチ
ツプの加工歪を除去すると共に分解温度が150〜
200℃である接着剤層13を分解する。その後炉
から治具と押圧板にサンドイツチされたコアチツ
プをとり出す。そのコアチツプは加工歪の除去さ
れた反り曲りのないものである。 Next, while the core chips that have been primarily and secondarily polished in this way are still bonded to the jig 11 with the adhesive 13, they are pressed by a pressing plate 14 also made of quartz material (for example, 10 core chips of this type are placed in parallel). (Place about 20 grams of pressure plate on the items lined up)
Then, in this state, it is heated in a hydrogen atmosphere or in a vacuum in a furnace 16 having a heater 15 as shown in FIG. 6 at a temperature in the range of 500 DEG C. to 750 DEG C. for about 10 to 15 minutes. The temperature and heating time are selected mainly from the viewpoint of removing processing strain from the core and preventing diffusion of the silver solder used to join the core halves. Through this heating, processing distortion of the core chip is removed and the decomposition temperature is increased to 150~150℃.
The adhesive layer 13, which is at 200°C, is decomposed. Thereafter, the core chip sandwiched between the jig and the pressing plate is taken out of the furnace. The core chip has no processing distortion and is not warped.
かかるコアチツプを実際にVTR用の磁気ヘツ
ドとして構成するためには第7図に示すように、
このコアチツプの各面に、ギヤツプ対向部に非磁
性ガラスによる橋渡片17を持ちかつ巻線孔18
を持つフエライトコア19,19を接着して機械
的特性及び磁気的特性を向上させるようにして利
用される。この第7図に示したコアに巻線を施
し、またそのテープ当接面を研磨して所定のギヤ
ツプ深さ(デプス)を得て磁気ヘツドを完成す
る。 In order to actually configure such a core chip as a magnetic head for a VTR, as shown in FIG.
Each surface of this core chip has a bridging piece 17 made of non-magnetic glass at the part facing the gap, and has a winding hole 18.
The ferrite cores 19, 19 are bonded together to improve mechanical properties and magnetic properties. The magnetic head is completed by winding the core shown in FIG. 7 and polishing its tape contact surface to obtain a predetermined gap depth.
叙上の如く、従来の製造法ではビデオ信号のよ
うに高周波信号を取扱う磁気ヘツドとしてセンダ
スト材を適用した場合所定の厚さにするにはコア
の反り曲り及びそれに起因するギヤツプのずれが
不可避であつたが、本発明は治具とコアチツプ間
の接着剤層を熱分解により除去する新規方法を採
用したのでコアの反り曲りを呈しないコア厚の限
界(従来例では60ミクロン以上)を除去すること
ができ、上記用途に適するセンダスト材による磁
気ヘツドを製造することができるようになつた。
またこの熱分解工程を、加工歪を除去するための
焼鈍工程と兼用させることができる。 As mentioned above, in conventional manufacturing methods, when sendust material is used as a magnetic head that handles high-frequency signals such as video signals, warping of the core and deviation of the gap caused by it are unavoidable in order to achieve a specified thickness. However, the present invention uses a new method of removing the adhesive layer between the jig and the core chip by thermal decomposition, which eliminates the core thickness limit (60 microns or more in the conventional example) that does not cause the core to warp. It has now become possible to manufacture a magnetic head made of sendust material suitable for the above-mentioned uses.
Further, this thermal decomposition step can also be used as an annealing step for removing processing strain.
第1図及び第3図はコアブロツクの斜視図、第
2図及び第4図はそれぞれ各ブロツクから従来法
により成形した各コアチツプの斜視図、第5図
イ,ロ,ハは本発明の工程図、第6図は電気炉の
構成図、第7図は本発明による磁気ヘツドコアの
斜視図である。
10……コアチツプ、11……治具、14……
押圧板。
Figures 1 and 3 are perspective views of core blocks, Figures 2 and 4 are perspective views of each core chip formed from each block by the conventional method, and Figures 5 A, B, and C are process diagrams of the present invention. , FIG. 6 is a block diagram of an electric furnace, and FIG. 7 is a perspective view of a magnetic head core according to the present invention. 10... core chip, 11... jig, 14...
Pressure plate.
Claims (1)
ツプについてその一面を一次研磨する工程と、こ
のコアチツプの一次研磨面を治具に接着する工程
と、治具に固定したコアチツプの他面を加工後の
コアチツプ全厚が60ミクロン以下の所定の厚さと
なるように二次研磨する工程と、このコアチツプ
を加圧状態で加温することにより前記治具に対す
る接着層を分解する工程とを備えてなる磁気ヘツ
ドの製造方法。 2 一次研磨はコアチツプ全厚が60ミクロン以上
のときに終了するようにした特許請求の範囲第1
項記載の磁気ヘツドの製造方法。 3 治具は石英板である特許請求の範囲第1項又
は第2項記載の磁気ヘツドの製造方法。 4 温度条件はセンダスト材料に対して焼鈍効果
を持つ500℃以上である特許請求の範囲第3項記
載の磁気ヘツドの製造方法。[Claims] 1. A step of primary polishing one surface of a core chip formed by joining a pair of sendust core halves, a step of bonding the primary polished surface of the core chip to a jig, and a step of bonding the core chip fixed to the jig. A step of secondary polishing the surface so that the total thickness of the core chip after processing becomes a predetermined thickness of 60 microns or less, and a step of decomposing the adhesive layer to the jig by heating the core chip under pressure. A method of manufacturing a magnetic head comprising: 2. The first polishing is completed when the total thickness of the core chip is 60 microns or more.
A method for manufacturing a magnetic head as described in Section 1. 3. The method for manufacturing a magnetic head according to claim 1 or 2, wherein the jig is a quartz plate. 4. The method for manufacturing a magnetic head according to claim 3, wherein the temperature condition is 500° C. or higher, which has an annealing effect on the sendust material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4343579A JPS55135320A (en) | 1979-04-09 | 1979-04-09 | Manufacture of magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4343579A JPS55135320A (en) | 1979-04-09 | 1979-04-09 | Manufacture of magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55135320A JPS55135320A (en) | 1980-10-22 |
JPS6226086B2 true JPS6226086B2 (en) | 1987-06-06 |
Family
ID=12663611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4343579A Granted JPS55135320A (en) | 1979-04-09 | 1979-04-09 | Manufacture of magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55135320A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0664693B2 (en) * | 1987-02-03 | 1994-08-22 | 株式会社日立製作所 | Magnetic head manufacturing method |
-
1979
- 1979-04-09 JP JP4343579A patent/JPS55135320A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55135320A (en) | 1980-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2554041B2 (en) | Method of manufacturing magnetic head core | |
JPS6226086B2 (en) | ||
US4807075A (en) | Magnetic head | |
US5208971A (en) | Process of manufacturing a magnetic head | |
JP3114220B2 (en) | Manufacturing method of magnetic head | |
JPS6157024A (en) | Manufacture of magnetic head | |
JPH0345443B2 (en) | ||
JPS62267910A (en) | Magnetic head | |
JP2542946B2 (en) | Magnetic head and manufacturing method thereof | |
JPS5996528A (en) | Production of amorphous magnetic head | |
JPS60263303A (en) | Magnetic head core | |
JPH0334124B2 (en) | ||
JPS61204909A (en) | Composite magnetic material | |
JPS61172204A (en) | Production of magnetic head | |
JPH07121817A (en) | Production of magnetic head | |
JPH0227725B2 (en) | JIKIHETSUDOOYOBISONOSEIZOHOHO | |
JPH0156445B2 (en) | ||
JPH0414407B2 (en) | ||
JPS63263608A (en) | Production of magnetic head | |
JPH0721512A (en) | Production of magnetic head | |
JPH0775053B2 (en) | Magnetic head and manufacturing method thereof | |
JPH033283B2 (en) | ||
JPS60212804A (en) | Amorphous magnetic head | |
JPS61227206A (en) | Manufacture of magnetic head | |
JPH10283610A (en) | Magnetic head and its manufacture |