JPS63135813A - Apparatus for controlling posture of probe - Google Patents

Apparatus for controlling posture of probe

Info

Publication number
JPS63135813A
JPS63135813A JP28323686A JP28323686A JPS63135813A JP S63135813 A JPS63135813 A JP S63135813A JP 28323686 A JP28323686 A JP 28323686A JP 28323686 A JP28323686 A JP 28323686A JP S63135813 A JPS63135813 A JP S63135813A
Authority
JP
Japan
Prior art keywords
probe
measured
inclination
axis
force sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28323686A
Other languages
Japanese (ja)
Other versions
JPH0464561B2 (en
Inventor
Shuji Ohira
修司 大平
Hiroshi Watanabe
洋 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP28323686A priority Critical patent/JPS63135813A/en
Publication of JPS63135813A publication Critical patent/JPS63135813A/en
Publication of JPH0464561B2 publication Critical patent/JPH0464561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To perform the error-free measurement with a three-dimensional shape measuring device, by providing a driving control means for driving a device means so that a probe vertically contacts a surface to be measured. CONSTITUTION:Support means 51-61 each composed, for example, of an arm having a multiple degree of freedom, drive means M1-M5 composed, for example, of DC motors driving said support means, the probe 1 provided to the means 61, an axial tension sensor 3 for detecting the force acting on the probe 1 when the probe 1 contacts a surface to be measured and a driving control means 9 operating the inclination of the probe 1 to the surface to be measured on the basis of the force detected by the sensor 3 to drive the means M1-M5 so as to vertically contact the probe 1 with the surface to be measured are provided. In this case, since the force detected is different according to the inclination of the probe 1 to the surface to be measured, the detection value of the sensor 3 is inputted to the means 9 to calculate the inclination of the probe 1 to the surface to be measured. Then, the means M1-M5 are driven so that said inclination becomes zero.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、三次元形状測定機のプローブや超音波探傷ス
キャナ装置の超音波プローブ等の姿勢を制御する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a device for controlling the posture of a probe of a three-dimensional shape measuring machine, an ultrasonic probe of an ultrasonic flaw detection scanner, and the like.

B、従来の技術 三次元形状測定機を示す第9図および第10図により従
来技術を説明する。
B. Prior Art The prior art will be explained with reference to FIGS. 9 and 10 showing a three-dimensional shape measuring machine.

プローブ1はX軸、X軸およびZ軸方向に移動可能に保
持され、同一の姿勢のまま手動または自動にてプローブ
1の先端を被測定面2に接触させ、そのときのX+’/
lZの各位置を読み取る。一般にプローブ1は第10図
に示すように、軸部1aとその先端の球部1bとを有し
、被測定面2に接触させたとき球部1bの先端Pの位置
を測定値として測定機本体が読みとる。以上の操作を複
数位置で繰り返し行ない、被測定面2の形状を測定する
。なお、球部1bの中心0の位置を読み取ることもある
The probe 1 is held movably in the X-axis,
Read each position of lZ. Generally, as shown in FIG. 10, the probe 1 has a shaft portion 1a and a spherical portion 1b at its tip, and when the probe 1 is brought into contact with the surface to be measured 2, the position of the tip P of the spherical portion 1b is taken as a measurement value by a measuring device. The main body can read it. The above operation is repeated at a plurality of positions to measure the shape of the surface to be measured 2. Note that the position of the center 0 of the spherical portion 1b may be read.

C0発明が解決しようとする問題点 しかし、被測定面2が第10図に示すように水平面HP
に対してα度傾斜している場合、プローブ1の球部1b
は接触点Qにて被測定面2と接触する。このため、接触
点Qの位置と測定位置Pとの間に、δX、δ2だけずれ
が生じ誤差となる。
Problems to be solved by the C0 invention However, the surface to be measured 2 is a horizontal plane HP as shown in FIG.
If the spherical part 1b of the probe 1 is tilted by α degrees with respect to
comes into contact with the surface to be measured 2 at a contact point Q. Therefore, a deviation occurs between the position of the contact point Q and the measurement position P by δX and δ2, resulting in an error.

従来は、その傾斜面の近傍で何点がを測定しそれらの点
を補間して傾斜角度αを求め、この角度αに基づいてず
れδX、δ2を求め測定値を補正している。この場合、
補正演算が必要であり、これをコンピュータで行なって
も実時間計測とはならず、形状測定の自動化に障害とな
る。なお、以上は二次元にて説明したが三次元において
もずれδyが含まれるだけで本質的に同様な補正が必要
である。
Conventionally, the number of points in the vicinity of the inclined surface is measured, those points are interpolated to obtain the inclination angle α, and based on this angle α, the deviations δX and δ2 are calculated and the measured values are corrected. in this case,
A correction calculation is required, and even if this is performed by a computer, real-time measurement will not be possible, which will be an obstacle to automating shape measurement. Note that although the above description has been made in two dimensions, essentially the same correction is required in three dimensions as well, except that the deviation δy is included.

この種のプローブ1はX軸、y軸、Z軸に移動できても
その姿勢は一定である。このため被測定面2の傾き角度
αが90度以上になるとプローブ1の先端球部1bを被
測定面2に接触できない。
Although this type of probe 1 can move in the X-axis, y-axis, and Z-axis, its posture remains constant. Therefore, when the inclination angle α of the surface to be measured 2 becomes 90 degrees or more, the tip spherical portion 1b of the probe 1 cannot come into contact with the surface to be measured 2.

この場合、人力にて被測定物の姿勢を変える等して測定
を行なう必要があり、自動化に障害となる。
In this case, it is necessary to perform measurements by manually changing the posture of the object to be measured, which poses an obstacle to automation.

以上の如き問題点は、三次元形状測定機に限らず、超音
波プローブを有する超音波探傷自動スキャナ装置等、プ
ローブを被測定面に当接させて測定等を行なう各種の装
置にも同様にあてはまる。
The above problems are not limited to three-dimensional shape measuring machines, but also apply to various devices that perform measurements by bringing the probe into contact with the surface to be measured, such as automatic ultrasonic flaw detection scanners equipped with ultrasonic probes. That applies.

本発明の目的は、プローブの姿勢を制御して上述の問題
点を解決したプローブ姿勢制御装置を提供することにあ
る。
An object of the present invention is to provide a probe attitude control device that controls the attitude of a probe and solves the above-mentioned problems.

D6問題点を解決するための手段 一実施例を示す第1図に基づいて本発明を説明すると、
この発明に係るプローブ姿勢制御装置は。
The present invention will be explained based on FIG. 1 showing an embodiment of means for solving problem D6.
A probe attitude control device according to the present invention is:

多自由度を有する例えばアーム等から成る支持手段51
〜61と、これら支持手段を駆動する例えばDCモータ
等の駆動手段M1〜M5と、支持手段61に設けられた
プローブ1と、このプローブ1を被測定面に当接させた
ときにプローブ1に作用する力を検出する力センサ3と
、この力センサ3で検出した力に基づきプローブ1の被
測定面に対する傾きξ (第6図)を演算して、プロー
ブ1が被測定面に垂直に当接するよう駆動手段M1〜M
5を駆動する駆動制御手段9とを有する。
Supporting means 51 consisting of, for example, an arm or the like having multiple degrees of freedom
~61, driving means M1 to M5 such as DC motors for driving these supporting means, the probe 1 provided on the supporting means 61, and the probe 1 when brought into contact with the surface to be measured. A force sensor 3 detects the acting force, and the inclination ξ (Fig. 6) of the probe 1 with respect to the surface to be measured is calculated based on the force detected by the force sensor 3, and the probe 1 is perpendicular to the surface to be measured. The driving means M1 to M are in contact with each other.
and a drive control means 9 for driving the motor 5.

E0作用 プローブ1が被測定面に当接すると力センサ3でプロー
ブ1に作用する力が検出される。プローブ1と被測定面
との傾きにより検出される力が異なるから、力センサ3
の検出値を駆動制御手段9に入力してそこでプローブ1
と被測定面との傾きξ (第6図)を求める。そして、
この傾きξが零となるよう駆動手段M1〜M5を駆動す
る。
When the E0 effect probe 1 comes into contact with the surface to be measured, the force sensor 3 detects the force acting on the probe 1. Since the force detected differs depending on the inclination of the probe 1 and the surface to be measured, the force sensor 3
The detected value is input to the drive control means 9, and the probe 1 is
Find the inclination ξ (Fig. 6) between the surface and the surface to be measured. and,
The driving means M1 to M5 are driven so that this slope ξ becomes zero.

F、実施例 第1図〜第7図により本発明の一実施例を説明する。F. Example An embodiment of the present invention will be described with reference to FIGS. 1 to 7.

第1図はプローブ姿勢制御装置の概略全体構成を示し、
5自由度を有するロボット50の先端に軸力センサ3を
介して従来と同様のプローブ1を設けたものであり、ロ
ボット50の各関節はJISで定められたシンボルによ
り示している。
Figure 1 shows the general configuration of the probe attitude control device.
A probe 1 similar to the conventional one is provided at the tip of a robot 50 having five degrees of freedom via an axial force sensor 3, and each joint of the robot 50 is indicated by a symbol defined by JIS.

ロボット50は1回転機構52(モータM1を含む)に
よりベース51に対して旋回可能である。
The robot 50 can rotate with respect to the base 51 by a one-rotation mechanism 52 (including a motor M1).

回転機構52には回転軸53が接続され、その先端に接
続された回転機構54(モータM2を含む)により第1
のアーム55が旋回可能であり、第1のアーム55の先
端に接続された第2のアーム回転機構56(モータM3
を含む)により第2のアーム57が旋回可能であり、第
2のアーム57の先端に接続された第3のアーム回転機
構58(モータM4を含む)により第3のアーム59が
旋回可能である。第3のアーム59の先端には手首回転
機構60(モータM5を含む)を介して手首61が回転
可能に設けられている。手首61の先端には例えば第2
図に示す多軸力センサ3が設けられ、この多軸力センサ
3にプローブ1が取付けられている。多軸力センサ3は
、プローブ1を被測定面に当接させたときにプローブ1
に作用するX軸、y軸、Z軸の各軸力を検出するもので
ある。
A rotating shaft 53 is connected to the rotating mechanism 52, and a rotating mechanism 54 (including a motor M2) connected to the tip of the rotating shaft 53 rotates the first
The second arm rotation mechanism 56 (motor M3) is connected to the tip of the first arm 55.
), the second arm 57 is rotatable, and the third arm 59 is rotatable by a third arm rotation mechanism 58 (including motor M4) connected to the tip of the second arm 57. . A wrist 61 is rotatably provided at the tip of the third arm 59 via a wrist rotation mechanism 60 (including a motor M5). At the tip of the wrist 61, for example, a second
A multi-axial force sensor 3 shown in the figure is provided, and a probe 1 is attached to this multi-axial force sensor 3. The multi-axial force sensor 3 has a probe 1 when the probe 1 is brought into contact with the surface to be measured.
It detects the axial forces acting on the X-axis, Y-axis, and Z-axis.

すなわち、第2図において、多軸力センサ3は、第1の
リング4と、これと対向する第2のリング5と、両リン
グ4,5を連結する3本のたわみ梁6と、たわみ梁6の
内面に設けられた引っ張り・圧縮力検出ゲージ7と、た
わみ梁6の外面に設けられた剪断力検出ゲージ8とから
構成されている。
That is, in FIG. 2, the multiaxial force sensor 3 includes a first ring 4, a second ring 5 opposite thereto, three flexible beams 6 connecting both rings 4 and 5, and a flexible beam. 6 and a shearing force detection gauge 8 provided on the outer surface of the flexible beam 6.

そして、第1のリング4が手首61に連結され、第2の
リング5がプローブ1と連結され、プローブ1に作用す
る力に応じてたわみ梁6がたbむと各ゲージから歪量に
応じた信号が得られ、各軸力Fx* FYs FZが知
れる。
The first ring 4 is connected to the wrist 61, the second ring 5 is connected to the probe 1, and when the flexible beam 6 bends in response to the force acting on the probe 1, the bending beam 6 bends according to the amount of strain from each gauge. A signal is obtained and each axial force Fx*FYsFZ is known.

再び第1図において、各関節の回転機構にはその回転角
を検出する回転角センサ例えばロータリーエンコーダR
1〜R5が設けられ、検出された回転角θ□〜θ5が制
御装置9に入力される。また。
Referring again to FIG. 1, the rotation mechanism of each joint is equipped with a rotation angle sensor, for example, a rotary encoder R, for detecting the rotation angle of the rotation mechanism.
1 to R5 are provided, and the detected rotation angles θ□ to θ5 are input to the control device 9. Also.

軸力センサ3で検出された軸力FXt FYs FZも
制御装置9に入力される。制御装置9は、後述の演算に
基づいてプローブlが被測定面に垂直になるように各回
転機構のモータM1〜M5に駆動信号θS工〜θSsを
供給する。なお、第1図においては、第3のアーム回転
機構58に関する信号線D1.D、と軸力センサ3の信
号線り、のみを制御装置9と接続して示し、他の接続は
省略している。
The axial force FXt FYs FZ detected by the axial force sensor 3 is also input to the control device 9 . The control device 9 supplies drive signals θS to θSs to the motors M1 to M5 of each rotating mechanism so that the probe 1 is perpendicular to the surface to be measured based on calculations to be described later. Note that in FIG. 1, signal lines D1. Only D and the signal line of the axial force sensor 3 are shown connected to the control device 9, and other connections are omitted.

制御装置9は、第3図に示すとおり、軸力セン。As shown in FIG. 3, the control device 9 is an axial force sensor.

す3からの信号入力部として、軸力センサ3からのアナ
ログ信号を入力しその電圧レベルや零点を調整するイン
タフェース9aと、入力アナログ信号を選択的に出力す
るマルチプレクサ9bと、マルチプレクサ9bからのア
ナログ信号をデジタル信号に変換してCPU9dに入力
するA/D変換器9cとを有する。また、ロータリーエ
ンコーダR1〜R5からの信号入力部として、ロータリ
ーエンコーダR1〜R5からのシリアルパルス信号を計
数してパラレル角度信号に変換するカウンタ回路9eと
、このカウンタ回路9eからの信号が入力されCPU9
dに出力する入力用インタフェース9fとを有する。更
に、信号制御部として、処理手順を予め格納したROM
9gと、各種の数値、データ等が一時的に記憶されるR
AM9hと、処理手順に従い各機器を制御するとともに
、入力された信号に基づいて各種演算を行ないその時の
関節角度と比較して関節速度指令信号を出力するCPU
9dとを有する。更にまた、出力部として。
As a signal input section from the axial force sensor 3, there is an interface 9a that inputs the analog signal from the axial force sensor 3 and adjusts its voltage level and zero point, a multiplexer 9b that selectively outputs the input analog signal, and an analog signal from the multiplexer 9b. It has an A/D converter 9c that converts the signal into a digital signal and inputs it to the CPU 9d. Further, as a signal input section from the rotary encoders R1 to R5, there is a counter circuit 9e that counts serial pulse signals from the rotary encoders R1 to R5 and converts them into parallel angle signals, and a signal from this counter circuit 9e is inputted to the CPU 9.
It has an input interface 9f that outputs to d. Furthermore, as a signal control unit, a ROM in which processing procedures are stored in advance
9g and R where various numerical values, data, etc. are temporarily stored.
AM9h and a CPU that controls each device according to processing procedures, performs various calculations based on input signals, compares the joint angle at that time, and outputs a joint speed command signal.
9d. Furthermore, as an output section.

CPU9dから出力、されるデジタル関節速度指令信号
をアナログ信号に変換するD/A変換器91と、関節速
度指令信号とロータリーエンコーダR1〜R5からの回
転角信号から算出した関節速度とが一致するようにモー
タM1〜M5を制御するサーボドライバ9jとを有する
The D/A converter 91 converts the digital joint speed command signal outputted from the CPU 9d into an analog signal, and the joint speed calculated from the joint speed command signal and the rotation angle signals from the rotary encoders R1 to R5 match. and a servo driver 9j that controls the motors M1 to M5.

なお、以上の実施例の構成において、ベース51、アー
ム53,55,57,59および手首61が支持手段を
、モータM1〜M5が駆動手段を、軸力センサ3が力セ
ンサをそれぞれ構成する。
In the configuration of the above embodiment, the base 51, arms 53, 55, 57, 59 and wrist 61 constitute support means, the motors M1 to M5 constitute drive means, and the axial force sensor 3 constitutes a force sensor.

次に第4図を参照してプローブの姿勢制御について説明
する。
Next, attitude control of the probe will be explained with reference to FIG.

ステップS1において、ロータリーエンコーダR1〜R
5からのパルス信号を計数するカウンタ回路9eの出力
により各関節の角度θ、〜θ、を検出する。ステップS
2では、これらの角度θ1、〜θ5、および第1図に示
したロボット50の各部の長さQ1〜Qsに基づいてプ
ローブ1の球部1bの中心点0の位置および姿勢を演算
する。
In step S1, rotary encoders R1 to R
The angles θ, ˜θ, of each joint are detected by the output of a counter circuit 9e that counts pulse signals from 5. Step S
In step 2, the position and orientation of the center point 0 of the spherical portion 1b of the probe 1 are calculated based on these angles θ1 and θ5 and the lengths Q1 to Qs of each part of the robot 50 shown in FIG.

なお、第1図において、Qlは、ベース51の取付点す
なわちロボット座標原点Oiから第1のアーム回転機構
54までの距離、ft2は、第1および第2のアーム回
転機構54と56との間の距離、Q、は、第2および第
3のアーム回転機構56と58との間の距離、Q4は、
第3のアーム回転機構58から第3のアーム59に沿っ
てプローブZ軸心に達するまでの距離、Q、は、プロー
ブ球部1bの中心Oから手首61に沿って第3のアーム
59の軸心に達するまでの距離である。
In FIG. 1, Ql is the distance from the attachment point of the base 51, that is, the robot coordinate origin Oi, to the first arm rotation mechanism 54, and ft2 is the distance between the first and second arm rotation mechanisms 54 and 56. The distance, Q, is the distance between the second and third arm rotation mechanisms 56 and 58, and Q4 is,
The distance Q from the third arm rotation mechanism 58 to the probe Z axis along the third arm 59 is the distance Q from the center O of the probe sphere 1b to the axis of the third arm 59 along the wrist 61. It's the distance it takes to reach your heart.

ここで、プローブ1の位置はロボット座標の原点01か
らプローブ球部1bの中心0までの位置ベクトルPとし
て、 P= (Ox、 Oy、 Oz) =f、 (θ□〜θ
s−Qx〜Us>により求められる。また、プローブ1
の姿勢は、ロボット座標系に対する軸力センサ3の座標
系の傾きとして方向余弦ベクトル(ft gt h)を
演算することにより求められる。
Here, the position of the probe 1 is defined as the position vector P from the origin 01 of the robot coordinates to the center 0 of the probe sphere 1b, P= (Ox, Oy, Oz) = f, (θ□~θ
s-Qx~Us>. Also, probe 1
The posture of is determined by calculating the direction cosine vector (ft gt h) as the inclination of the coordinate system of the axial force sensor 3 with respect to the robot coordinate system.

方向余弦ベクトルfを、 とし、プローブX軸がロボット座標系のX軸となす角度
をθxx、 y軸となす角度をθxytzlとなす角度
をθXZとすると、この方向余弦ベクトルfは。
If the direction cosine vector f is, and the angle between the probe X-axis and the X-axis of the robot coordinate system is θxx, the angle between the probe

と表わせる。同様に、プローブy軸、Z軸がロボット座
標系のX軸、y軸、Z軸とそれぞれなす角度を、それぞ
れθyx、θYVt θyzおよびθzx。
It can be expressed as Similarly, the angles that the probe y-axis and Z-axis make with the X-axis, y-axis, and Z-axis of the robot coordinate system are θyx, θYVt, θyz, and θzx, respectively.

θZ/y θzzとすると、方向余弦ベクトルgehは
、それぞれ、 と表わすことができる6例えば方向余弦ベクトルhは、
第5図に示すように、ロボット座標系のX軸、y軸、Z
軸に対して軸力センサ3の座標系の各軸がx’ 、y’
 、z″に位置したとき、2″軸方向の単位ベクトルと
なる方向余弦ベクトルhのX軸、y軸、Z軸への投影が
、それぞれhx、 hy。
When θZ/y θzz, the direction cosine vector geh can be expressed as 6 For example, the direction cosine vector h is
As shown in Figure 5, the X-axis, y-axis, and Z-axis of the robot coordinate system
Each axis of the coordinate system of the axial force sensor 3 is x', y'
, z'', the projections of the direction cosine vector h, which becomes a unit vector in the 2'' axis direction, onto the X, y, and Z axes are hx, hy, respectively.

hzとなる。hz.

このようにしてプローブ1の位置および姿勢が演算され
るとステップS3に進み、軸力センサ3から3つの軸力
FX* FYv FZを読み込む。そして、ステップS
4において、これら3つの軸力Fx、Fyt Fzから
被測定面に対するプローブ1の傾き(姿勢角度ξ、ψ)
を演算する。
Once the position and orientation of the probe 1 have been calculated in this way, the process advances to step S3, where three axial forces FX*FYvFZ are read from the axial force sensor 3. And step S
4, the inclination of the probe 1 with respect to the surface to be measured (posture angle ξ, ψ) is calculated from these three axial forces Fx and Fyt Fz.
Calculate.

第6図は、プローブ球部1bを被測定面2に当接させた
場合の各軸力FX* FY# FZを説明する図である
FIG. 6 is a diagram illustrating each axial force FX*FY#FZ when the probe sphere 1b is brought into contact with the surface to be measured 2.

実線Jで示すように、プローブ1の2軸が被測定面2に
対して傾いている場合、プローブ1に作用する抗力Fの
方向とプローブ2軸とは一致せず、抗力Fの分力として
各軸力FX、・FY+FZが検出される。また、プロー
ブZ軸が一点鎖線工で示すように被測定面2に対して垂
直の場合には、プローブ1に作用する抗力Fの方向とプ
ローブZ軸とが一致する。このことから、実線Jで示す
プローブ1の姿勢に対する一点鎖線Iで示すプローブ1
の姿勢角度ξおよびψは、 で求められる。
As shown by the solid line J, when the two axes of the probe 1 are inclined with respect to the surface to be measured 2, the direction of the drag force F acting on the probe 1 does not match the direction of the probe 2 axis, and the component force of the drag force F is Each axial force FX, ·FY+FZ is detected. Further, when the probe Z-axis is perpendicular to the surface to be measured 2 as shown by the dashed line, the direction of the drag force F acting on the probe 1 and the probe Z-axis coincide. From this, the probe 1 shown by the dashed line I with respect to the attitude of the probe 1 shown by the solid line J.
The attitude angles ξ and ψ of are found as follows.

次いでステップS5に進み、被測定面2の法線とプロー
ブZ軸との傾き角ξが零か否か(プローブZ軸が被測定
面に対して垂直か否か)を判定する。ξ=0ならば終了
し、ξ≠0ならばステップS6に進む。
Next, the process proceeds to step S5, where it is determined whether the inclination angle ξ between the normal to the surface to be measured 2 and the probe Z-axis is zero (whether or not the probe Z-axis is perpendicular to the surface to be measured). If ξ=0, the process ends, and if ξ≠0, the process advances to step S6.

ステップS6では、ステップS4で求めた姿勢角度ξ、
ψを用いて、プローブZ軸が被測定面2に対して垂直に
なるような目標姿勢を目標方向余弦(fsy gst 
hs)として。
In step S6, the posture angle ξ obtained in step S4,
Using ψ, the target orientation cosine (fsy gst
hs) as.

(fse gst hs) =f3 (ξ、ψ(ft 
ge h) )で求める。
(fse gst hs) = f3 (ξ, ψ(ft
ge h) ).

次にステップS7に進み、この目標方向余弦(fst 
gsy hs)と、ステップS2で求めたプローブ球部
1bの中心Oの位置ベクトルPとに基づいて、プローブ
Z軸が被測定面2に対して垂直となる各関節の目標角度
θs1〜θS、を、(θB1〜θss) =L ((f
st g8e hs) e P)で求める。そして、ス
テップS8において、各関節がθS□〜θS、となるよ
うモータ駆動指令11〜i、をD/A変換器91からサ
ーボドライブ9jに供給し、これにより各モータM1〜
MSを駆動してプローブ2軸を被測定面2に対して垂直
に姿勢制御する。なお、この際、プローブ球部1bの中
心点0をロボットの運動中心とし、第7図に示すように
、プローブ1が被測定面2上の接触点Qで被測定面2と
接触したまま、一点鎖線の姿勢工から実線Jの姿勢にプ
ローブ1を姿勢制御する。
Next, the process advances to step S7, and this target direction cosine (fst
gsy hs) and the position vector P of the center O of the probe sphere 1b obtained in step S2, calculate the target angles θs1 to θS of each joint where the probe Z-axis is perpendicular to the surface to be measured 2. , (θB1~θss) = L ((f
st g8e hs) e P). Then, in step S8, motor drive commands 11 to i are supplied from the D/A converter 91 to the servo drive 9j so that each joint becomes θS□ to θS, and thereby each motor M1 to
The posture of the two axes of the probe is controlled perpendicularly to the surface to be measured 2 by driving the MS. At this time, the center point 0 of the probe sphere 1b is set as the center of motion of the robot, and as shown in FIG. 7, while the probe 1 is in contact with the surface to be measured 2 at the contact point Q on the surface to be measured 2, The posture of the probe 1 is controlled from the posture shown by the dashed-dotted line to the posture shown by the solid line J.

このようなプローブの姿勢制御装置を三次元形状測定機
に用い、プローブ球部1bの2軸を被測定面2と垂直に
姿勢制御して球部1bの点Pが被測定面2と接した状態
で、球部1bのXyywZ軸の各位置を測定すれば、従
来のような補間演算をすることなく実時間にて誤差のな
い形状寸法の測定が可能となり、連続した寸法測定が行
なえるから測定の自動化に寄与する。また、被測定面2
の傾斜角αが90度以上あってもプローブ1を被測定面
2と垂直に当接可能であり、人力により被測定物の位置
をずらす必要がなく、測定の自動化に寄与する。
Such a probe attitude control device is used in a three-dimensional shape measuring machine to control the attitude of the two axes of the probe sphere 1b perpendicular to the surface to be measured 2 so that the point P of the sphere 1b is in contact with the surface to be measured 2. By measuring each position on the X, Y, W, and Z axes of the sphere 1b in this state, it is possible to measure the shape and dimensions without errors in real time without performing interpolation calculations as in the conventional case, and continuous dimension measurements can be performed. Contributes to measurement automation. In addition, the surface to be measured 2
Even if the inclination angle α is 90 degrees or more, the probe 1 can be brought into contact with the surface to be measured 2 perpendicularly, and there is no need to manually shift the position of the object to be measured, contributing to automation of measurement.

また、超音波探傷スキャナ装置にこの発明を適用すれば
、超音波プローブを被検査面に対して常時垂直に保持で
き検査精度が向上するのに加えて、被検査面が複雑な形
をしていても自動運転が可能となる。
Furthermore, if this invention is applied to an ultrasonic flaw detection scanner device, the ultrasonic probe can be held perpendicularly to the surface to be inspected at all times, improving inspection accuracy. Autonomous driving will become possible.

なお、以上説明したロボット50は5自由度を有してい
るが、被測定面の形状が限定されて予め既知であれば、
特に5自由度も必要ない。例えば、第8図に示すように
、x−z断面がy軸に沿って全て同一である立体であれ
ば3自由度のロボットにて本発明を構成可能である。ま
た、駆動手段もモータに限定されず、更に、軸力センサ
は、他のタイプのものでもよく、更にまた、プローブの
形状も実施例に限定されない。
Although the robot 50 described above has five degrees of freedom, if the shape of the surface to be measured is limited and known in advance,
There is no particular need for 5 degrees of freedom. For example, as shown in FIG. 8, if the robot is a three-dimensional object whose x-z cross section is the same along the y-axis, the present invention can be implemented using a robot with three degrees of freedom. Further, the driving means is not limited to the motor, the axial force sensor may be of another type, and the shape of the probe is not limited to the embodiment.

G0発明の効果 本発明によれば、被測定面に対して垂直となるようにプ
ローブの姿勢を制御できるので、この種のプローブを備
えた三次元形状測定機や超音波探傷スキャナ装置等の自
動化が可能となる。また、三次元形状測定機に用いれば
、誤差のない測定が可能となる。
G0 Effects of the Invention According to the present invention, since the attitude of the probe can be controlled so that it is perpendicular to the surface to be measured, it is possible to automate three-dimensional shape measuring machines, ultrasonic flaw detection scanners, etc. equipped with this type of probe. becomes possible. Furthermore, if used in a three-dimensional shape measuring machine, error-free measurement becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の一実施例を示すもので、第1
図が全体概略構成図、第2図が軸力センサを示す斜視図
、第3図が制御装置を示すブロック図、第4図がプロー
ブ姿勢制御の手順を示すフローチャート、第5図が方向
余弦を説明する図、第6図(a)、(b)が軸力センサ
で検出する軸力の説明図、第7図がプローブの姿勢制御
を説明する図である。 第8図は3自由度で測定可能な形状例を示す斜視図であ
る。 第9図および第10図は従来例を示すもので、第9図が
従来の三次元形状測定機の一例を示す斜視図、第10図
がプローブの詳細拡大図である。 1ニブローブ     2:被測定面 3:軸力センサ    9:制御装置 R1〜R5:ロータリーエンコーダ M1〜M5:モータ
Figures 1 to 7 show one embodiment of the present invention.
Figure 2 is a schematic diagram of the overall configuration, Figure 2 is a perspective view of the axial force sensor, Figure 3 is a block diagram of the control device, Figure 4 is a flowchart of the probe attitude control procedure, and Figure 5 shows the direction cosine. FIGS. 6(a) and 6(b) are diagrams for explaining the axial force detected by the axial force sensor, and FIG. 7 is a diagram for explaining the posture control of the probe. FIG. 8 is a perspective view showing an example of a shape that can be measured with three degrees of freedom. 9 and 10 show a conventional example, in which FIG. 9 is a perspective view showing an example of a conventional three-dimensional shape measuring machine, and FIG. 10 is a detailed enlarged view of the probe. 1 Nib lobe 2: Surface to be measured 3: Axial force sensor 9: Control device R1 to R5: Rotary encoder M1 to M5: Motor

Claims (1)

【特許請求の範囲】 多自由度を有する支持手段と、 この支持手段を駆動する駆動手段と、 前記支持手段に設けられたプローブと、 このプローブを被測定面に当接したときに当該プローブ
に作用する力を検出する力センサと、この力センサで検
出した力に基づき前記プローブの被測定面に対する傾き
を演算して、前記プローブが被測定面に垂直に当接する
よう前記駆動手段を駆動する駆動制御手段とを具備する
ことを特徴とするプローブ姿勢制御装置。
[Scope of Claims] Supporting means having multiple degrees of freedom; driving means for driving the supporting means; a probe provided on the supporting means; A force sensor detects the acting force, and the driving means is driven so that the probe comes into contact with the surface to be measured perpendicularly by calculating the inclination of the probe with respect to the surface to be measured based on the force detected by the force sensor. A probe attitude control device comprising: drive control means.
JP28323686A 1986-11-28 1986-11-28 Apparatus for controlling posture of probe Granted JPS63135813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28323686A JPS63135813A (en) 1986-11-28 1986-11-28 Apparatus for controlling posture of probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28323686A JPS63135813A (en) 1986-11-28 1986-11-28 Apparatus for controlling posture of probe

Publications (2)

Publication Number Publication Date
JPS63135813A true JPS63135813A (en) 1988-06-08
JPH0464561B2 JPH0464561B2 (en) 1992-10-15

Family

ID=17662850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28323686A Granted JPS63135813A (en) 1986-11-28 1986-11-28 Apparatus for controlling posture of probe

Country Status (1)

Country Link
JP (1) JPS63135813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529375A1 (en) * 2013-07-15 2015-02-19 Kiro Robotics, S.L. Method for controlling the action of a robotic arm and robotic arm using that method
CN104385283A (en) * 2014-07-03 2015-03-04 哈尔滨工程大学 Quick judging method for singular configuration of six-degree-of-freedom mechanical arm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148209A (en) * 1981-03-09 1982-09-13 Toyoda Mach Works Ltd Device for measuring shape of curved surface
JPS5832644A (en) * 1981-08-21 1983-02-25 Achilles Corp Agricultural polyolefin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148209A (en) * 1981-03-09 1982-09-13 Toyoda Mach Works Ltd Device for measuring shape of curved surface
JPS5832644A (en) * 1981-08-21 1983-02-25 Achilles Corp Agricultural polyolefin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529375A1 (en) * 2013-07-15 2015-02-19 Kiro Robotics, S.L. Method for controlling the action of a robotic arm and robotic arm using that method
CN104385283A (en) * 2014-07-03 2015-03-04 哈尔滨工程大学 Quick judging method for singular configuration of six-degree-of-freedom mechanical arm

Also Published As

Publication number Publication date
JPH0464561B2 (en) 1992-10-15

Similar Documents

Publication Publication Date Title
US5687293A (en) Method and device for calibration of movement axes of an industrial robot
JPS63135814A (en) Apparatus for controlling posture of probe
JPWO2009057229A1 (en) Error map creation method and apparatus, and numerically controlled machine tool having error map creation function
JPH11502776A (en) Apparatus and method for calibration of multi-axis industrial robot
JP2010032373A (en) Machine tool system for measuring shape of object under measurement by on-machine measuring apparatus
US10195744B2 (en) Control device, robot, and robot system
JP5531996B2 (en) 6-axis robot offset detection method
JP2003117861A (en) Position correcting system of robot
JP5672173B2 (en) 6-axis robot offset detection method
JP5786550B2 (en) 6-axis robot offset detection method
JPH052168B2 (en)
US6584379B1 (en) Robot device and method of adjusting origin of robot
JP2000055664A (en) Articulated robot system with function of measuring attitude, method and system for certifying measuring precision of gyro by use of turntable for calibration reference, and device and method for calibrating turntable formed of n-axes
JPS63135813A (en) Apparatus for controlling posture of probe
JP2012079358A (en) Error map creation method, device, and numerical control machine tool with an error map creation function
JPH06304893A (en) Calibration system for positioning mechanism
JPS63135807A (en) Apparatus for controlling posture of probe
JPH1011146A (en) Device for correcting stop posture of mobile object
JP3671694B2 (en) Robot teaching method and apparatus
JPS62199383A (en) Control system of robot
JPS63135811A (en) Apparatus for controlling posture of probe
JPH0774964B2 (en) Robot positioning error correction method
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JPH0760332B2 (en) Robot calibration device
JP7429847B1 (en) robot system