JPS63135669A - Relief valve - Google Patents

Relief valve

Info

Publication number
JPS63135669A
JPS63135669A JP61284051A JP28405186A JPS63135669A JP S63135669 A JPS63135669 A JP S63135669A JP 61284051 A JP61284051 A JP 61284051A JP 28405186 A JP28405186 A JP 28405186A JP S63135669 A JPS63135669 A JP S63135669A
Authority
JP
Japan
Prior art keywords
relief
valve
set pressure
relief valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284051A
Other languages
Japanese (ja)
Inventor
Satoshi Miura
三浦 聡志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP61284051A priority Critical patent/JPS63135669A/en
Publication of JPS63135669A publication Critical patent/JPS63135669A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To prevent repeated stress from exerting a specific relief valve, by changing the set pressures for at least two of a plurality of relief valves, including an actuated relief valve each time when one of the relief valve is actuated. CONSTITUTION:There are provided a set pressure value memory device 10 which stores therein set pressure values corresponding to relief valves 3 with respect to relief valve actuating logic 5, and a set pressure exchanger 11 for exchanging set pressure corresponding to the relief valves 3 each time when arbitrary one of them is operated. Estimating that a first system relief valve is actuated as the arbitrary relief valve, the exchanger 11 receives an operation signal for the first system relief valve, and shifts a set pressure P1 corresponding to the first system to another system such as, for example, a second system. Similar shifts are successively carried out for the other systems so that the set pressures for all relief valve systems are substituted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力容器内の流体を系外に放出し、圧力の上
昇を抑制する系統の逃がし安全弁に係り、特に、流体の
繰り返し放出に伴う特定の逃がし弁への応力の集中を回
避するのに好適な逃がし安全弁の動作ロジックに関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a relief safety valve for a system that discharges fluid inside a pressure vessel to the outside of the system and suppresses a rise in pressure, and is particularly applicable to repeated discharges of fluid. The present invention relates to an operation logic of a safety relief valve suitable for avoiding concentration of stress on a particular relief valve.

〔従来の技術〕[Conventional technology]

第6図〜第8図を参照して沸騰水型原子炉に設置された
逃がし安全弁を対象に、従来技術の一例を説明する。
An example of the prior art will be described with reference to FIGS. 6 to 8, with reference to a relief safety valve installed in a boiling water nuclear reactor.

従来技術においては、第6図に示すように、原子炉圧力
容器1で発生した蒸気を、主蒸気流量制限器12および
主蒸気隔離弁13を介し、主蒸気配管により糸外に般出
している。一方、運転中の異常な過渡変化等によって主
蒸気隔離弁13を計画的に停止した場合、原子炉圧力容
器内の圧力が上昇することも考えられる。これら圧力の
上昇時にも、プラントの安全性を維持するために、原子
炉圧力容器1内の蒸気を系外に放出し、その圧力上昇を
抑制する系統が設けられている。圧力上昇時は、主蒸気
配管2に設けた逃がし安全弁3が開放し、原子炉格納容
器14を構成するドライウェル15の下方に位置するサ
プレッションチェンバ16内にクエンチャ17を介して
蒸気を放出する。
In the conventional technology, as shown in FIG. 6, the steam generated in the reactor pressure vessel 1 is released to the outside through the main steam piping via the main steam flow rate restrictor 12 and the main steam isolation valve 13. . On the other hand, if the main steam isolation valve 13 is intentionally stopped due to abnormal transient changes during operation, the pressure within the reactor pressure vessel may increase. In order to maintain the safety of the plant even when the pressure increases, a system is provided to release the steam inside the reactor pressure vessel 1 to the outside of the system and suppress the pressure increase. When the pressure increases, a relief safety valve 3 provided in the main steam pipe 2 opens and releases steam via a quencher 17 into a suppression chamber 16 located below a dry well 15 that constitutes a reactor containment vessel 14.

一般に、これら逃がし安全弁3は、複数の主蒸気配管2
に分散して複数個設けられている。
Generally, these safety relief valves 3 are connected to a plurality of main steam pipes 2.
There are multiple locations distributed throughout the area.

逃がし安全弁の機能を第7図に示す。この例は、逃がし
安全弁の数が4個で、各々の異なる作動設定圧を有して
いる。
The function of the safety relief valve is shown in Figure 7. In this example, the number of safety relief valves is four, each having a different operating pressure setting.

逃がし安全弁3には、3種類の作動機能がある。The relief safety valve 3 has three types of operating functions.

すなわち、原子炉圧力容器1の蒸気相部に設けられた圧
力計4の圧力信号を受け、所定の設定圧(Pz〜P4)
を越えると電気的に開弁する逃がし弁作動ロジック5、
さらに圧力が上昇する場合(P5〜PB)には、逃がし
安全弁自身に設けられたバネ駆動の安全弁機能6が作動
し、蒸気を放出する。さらに、原子炉圧力容器1に設け
た水位計7からの信号を受け、水位信号が設定値(LL
)以下となれば、時間遅れロジック9を経て、特定の逃
がし安全弁3を作動させる自動減圧系作動ロジック8が
設けられている。
That is, upon receiving a pressure signal from a pressure gauge 4 provided in the steam phase portion of the reactor pressure vessel 1, a predetermined set pressure (Pz to P4) is determined.
Relief valve operation logic 5 that opens electrically when exceeding
When the pressure further increases (P5 to PB), a spring-driven safety valve function 6 provided in the relief safety valve itself is activated to release steam. Furthermore, a signal is received from the water level gauge 7 installed in the reactor pressure vessel 1, and the water level signal is set to the set value (LL
), an automatic pressure reduction system operation logic 8 is provided which operates a specific relief safety valve 3 via a time delay logic 9.

これらの作動ロジックの中で、自動減圧系作動ロジック
8は、冷却材喪失事故を想定して設けてあり、前記ふた
つの作動ロジックとは異なり、計画的操作を除き、プラ
ント寿命中で使用されることはない、また、安全弁機能
の設定圧は、逃がし弁機能より高く設定されており、使
用されることはほとんどない。
Among these operating logics, automatic pressure reduction system operating logic 8 is provided assuming a coolant loss accident, and unlike the above two operating logics, it is used during the plant life except for planned operations. Also, the set pressure of the safety valve function is set higher than that of the relief valve function, and it is rarely used.

逃がし安全弁の作動例を第8図に示す。本図においては
、第7図と同様の逃がし安全弁構成を採用しており、事
故後の時間がOで、第6図主蒸気隔離弁13の急閉があ
ることを想定した。主蒸気V1離弁13の急閉に伴い、
原子炉圧力は定格P。
An example of the operation of the safety relief valve is shown in Fig. 8. In this figure, the same relief safety valve configuration as in Figure 7 is adopted, and it is assumed that the time after the accident is O and the main steam isolation valve 13 in Figure 6 is suddenly closed. With the sudden closing of main steam V1 separation valve 13,
The reactor pressure is rated P.

から急上昇する。この原子炉圧力の急上昇に伴い。It rises rapidly from With this sudden increase in reactor pressure.

設定圧P1からP4まで全ての逃がし安全弁が開放し、
多量の蒸気(最大Qa)を放出する。蒸気が多量に放出
されると、原子炉圧力も低下し、全ての逃がし安全弁が
閉じる。その後原子炉圧力容器内の蒸気発生は減少する
ものの、0とはならず。
All relief safety valves open from set pressure P1 to P4,
Releases large amounts of steam (maximum Qa). If a large amount of steam is released, the reactor pressure will also drop and all safety relief valves will close. After that, the steam generation inside the reactor pressure vessel decreased, but did not reach zero.

時刻TI以後では、最低設定圧Pxの逃がし安全弁のみ
が作動する程度となる。この最低設定圧の逃がし安全弁
は、プラント冷態停止に至るまで長期間にわたり繰り返
し作動する。すなわち、従来の技術では、個々の逃がし
安全弁の設定圧が固定となっているために、プラント寿
命中に作動する逃がし安全弁は、最低設定圧の系統に集
中することになる。このために、最低設定圧の逃がし安
全弁系統に加わる機械的および熱的繰り返し応力が過大
となる。例えば、代表的なりWRプラントでは、最低設
定圧の逃がし安全弁の作動回数は、他の設定圧の逃がし
安全弁に比べ、10倍以上の値になることが予想されて
いる5一方、逃がし安全弁系統ならびに第6図サプレッ
ションチェンバ16の設計値は、最も多い逃がし安全弁
の作動回数に律速されるために、非常に過大な5徴度が
要求されていた。
After time TI, only the relief safety valve with the lowest set pressure Px operates. This minimum set pressure relief safety valve operates repeatedly over a long period of time until the plant is brought to a cold shutdown. That is, in the conventional technology, since the set pressure of each safety relief valve is fixed, the safety relief valves that operate during the life of the plant are concentrated in the system with the lowest set pressure. This results in excessive mechanical and thermal cyclic stress on the lowest set pressure relief safety valve system. For example, in a typical WR plant, the number of activations of the lowest set pressure relief safety valve is expected to be more than 10 times that of other set pressure relief safety valves5. The design value of the suppression chamber 16 shown in FIG. 6 is determined by the maximum number of activations of the safety relief valve, and therefore a very large five-point scale is required.

C発明が解決しようとする問題点〕 上記従来技術では、プラント寿命中に経験が予想される
逃がし安全弁の作動が特定の弁に集中するために、プラ
ントの安全性確保の観点から、逃がし安全弁の系統およ
びサプレッションチェンバの設計に厳しい条件が要求さ
れる傾向があった。
C Problems to be Solved by the Invention] In the above-mentioned conventional technology, since the operation of the relief safety valve, which is expected to be experienced during the life of the plant, is concentrated in a specific valve, from the viewpoint of ensuring plant safety, the relief safety valve is There has been a tendency for strict requirements to be placed on system and suppression chamber design.

ところが、前記特定の弁以外の逃がし安全弁にはそれほ
どの応力がかからず、それらの弁を同一の設計規準で製
作すると、実際に印加される応力と設計規準との間に著
しい不均衡が生じることになる。
However, relief safety valves other than the above-mentioned specific valves are not subjected to that much stress, and if these valves are manufactured using the same design standards, a significant imbalance will occur between the stress actually applied and the design standards. It turns out.

本発明の目的は、特定の逃がし安全弁に選択的作動、に
よる繰り返し応力が集中することを防止し、複数個の逃
がし安全弁に応力を分散させ、安全性を高めた逃がし安
全弁を提供することである。
An object of the present invention is to provide a relief safety valve that prevents repeated stress from concentrating on a specific relief safety valve due to selective activation, and disperses the stress among a plurality of relief safety valves, thereby increasing safety. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、互いに異なる設
定圧を容器内の圧力が越える範囲で解放し、圧力容器内
の流体を系外に放出する複数個の逃がし弁からなる逃が
し安全弁の系統に対し、前記多連がし弁に対応ずる設定
圧力を記憶する設定圧力値メモリと、これら複数の逃が
し弁のひとつが作動する毎に作動した逃がし弁を含む少
なくともふたつの逃がし弁に対応ずる設定圧力を前記設
定圧力値メモリ内で交換させる設定圧交換器とを設けた
逃がし安全弁を提供するものである。
In order to achieve the above object, the present invention has developed a system of relief safety valves consisting of a plurality of relief valves that release mutually different set pressures to the extent that the pressure inside the container exceeds the pressure, and release the fluid inside the pressure container to the outside of the system. and a set pressure value memory for storing set pressures corresponding to the multiple relief valves, and settings corresponding to at least two relief valves including the relief valve activated each time one of the plurality of relief valves is activated. The present invention provides a relief safety valve equipped with a set pressure exchanger for exchanging pressure within the set pressure value memory.

ただし1111数の逃がし弁が、圧力容器内流体の液位
の変化に応じて作動する逃がし弁を含む場合は、この弁
に要求される信頼性/を考慮し、その設定圧力値は前記
交換対象外の専用メモリ領域に格納しておく。
However, if the 1111 number of relief valves include a relief valve that operates in response to changes in the level of the fluid in the pressure vessel, the set pressure value should be changed in consideration of the reliability required for this valve. Store it in an external dedicated memory area.

〔作用〕[Effect]

本発明においては、プラント寿命中に最も多数回作動が
予想される最低設定圧の逃がし弁が、特定の系統に集中
することを以下の方式で阻止する。
In the present invention, the relief valves with the lowest set pressure, which are expected to operate most times during the life of the plant, are prevented from concentrating in a specific system by the following method.

すなわち、任意(通常は最低設定圧)の逃がし安全弁と
して第1系統が作動した場合を想定すると。
That is, assuming that the first system operates as an arbitrary (usually the lowest set pressure) relief safety valve.

交換器は、第1系統の逃がし安全弁の作動信号を受け、
第1系統に対する設定圧Pz を他の系統。
The exchanger receives the activation signal of the relief safety valve of the first system,
The set pressure Pz for the first system is set for the other systems.

例えば第2系統に移す、同様な移し換えを他の系統につ
いても順次実行し、全逃がし安全弁系統の設定圧を置換
する。再び原子炉圧力が上昇し、最低設定圧に達すると
、ここで作動する逃がし安全弁系統は第2系統となる。
For example, a similar transfer to the second system is sequentially executed for other systems to replace the set pressure of the entire relief safety valve system. When the reactor pressure rises again and reaches the minimum set pressure, the safety relief valve system that operates here becomes the second system.

この方式により、プラント寿命中の逃がし安全弁の作動
回数は1個々の逃がし安全弁間で平均化され、特定の逃
がし安全弁系統に作動が集中することは抑制される。
With this method, the number of times the safety relief valve operates during the life of the plant is averaged among the individual safety relief valves, and concentration of operations in a specific safety relief valve system is suppressed.

〔実施例〕〔Example〕

以下、本発明による逃がし安全弁の一実施例の系統構成
を第1図に示す、逃がし安全弁3は、原子炉圧力容器1
で発生した蒸気を系外に搬出する主蒸気配管2に設けで
ある。その作動ロジックには、水位計7の信号を受け、
時間遅れロジック9を経て開弁する自動減圧系ロジック
8と、圧力上昇に伴い逃がし安全弁のバネが外れて開弁
する安全弁機能6と、圧力計4の信号を受は開弁する逃
がし弁作動ロジック5がある。
The system configuration of an embodiment of the safety relief valve according to the present invention is shown in FIG. 1.
This is installed in the main steam piping 2 that carries the steam generated in the system out of the system. Its operation logic includes receiving the signal from the water level gauge 7,
An automatic pressure reduction system logic 8 that opens the valve after a time delay logic 9, a safety valve function 6 that opens when the spring of the relief safety valve comes off as the pressure rises, and a relief valve operation logic that opens upon receiving the signal from the pressure gauge 4. There are 5.

本発明装置が従来例と異なるのは、逃がし弁作動ロジッ
ク5に対して9個々の逃がし、安全弁3と対応ずる設定
圧力値を記憶している設定圧力値メモリ10と、任意の
逃がし安全弁作動毎に逃がし安全弁3と対応ずる設定圧
力値を交換させる設定圧交換器11を設けた点である。
The device of the present invention is different from the conventional example in that the relief valve operation logic 5 includes a set pressure value memory 10 that stores the set pressure values corresponding to nine individual relief and safety valves 3, and a set pressure value memory 10 that stores the set pressure values corresponding to the relief valve operation logic 5. The point is that a set pressure exchanger 11 is provided for exchanging the set pressure value corresponding to the relief safety valve 3.

第1図は、設定圧力P1を有する5RV(逃がし安全弁
)グループ1が作動し、設定圧交換器11により第2作
動の設定圧の組み合わせが、逃がし弁作動ロジック5に
入力されている状態を示す。
FIG. 1 shows a state in which 5RV (relief safety valve) group 1 having a set pressure P1 is activated, and the set pressure combination for the second operation is inputted to the relief valve operation logic 5 by the set pressure exchanger 11. .

原子炉圧力容器lの圧力が再び上昇すると、今度は最も
設定圧の低いSRVグループ2が作動する。このように
、逃がし安全弁が作動するたびに同様な交換が実行され
、特定の逃がし安全弁に作動が集中することがない。
When the pressure in the reactor pressure vessel 1 rises again, SRV group 2, which has the lowest set pressure, is activated. In this way, a similar replacement is performed each time a safety relief valve is operated, and the operation is not concentrated on a particular safety relief valve.

なお1本実施例では、設定圧P4の逃がし安全弁に対す
る設定値の交換は行わない。というのは。
Note that in this embodiment, the set value of the set pressure P4 for the relief safety valve is not replaced. I mean.

設定圧P4に対する逃がし安全弁は、自動減圧系ロジッ
ク8専用として設けてあり、設定要求規準から逃がし弁
作動ロジック5による頻発作動を抑制しなければならな
いからである。
This is because the relief safety valve for the set pressure P4 is provided exclusively for the automatic pressure reduction system logic 8, and frequent activation by the relief valve operation logic 5 must be suppressed based on the setting request standard.

上記実施例の作動ロジックを、電気回路を用いて、達成
した具体的実施例を第2図に示す9本実施例では、U相
とP相で機器に電気を供給している。圧力信号は、P相
を介して比較器18のPALからPA4に分配されてい
る。圧力信号が設定値P1を上回ると、比較器18のP
ALは通電状態となり、リレー20のPlを作動させる
。リレー20のR1の作動に伴い、そのb接点によりP
VIを介し逃がし安全弁に開弁信号が送られ、また。
FIG. 2 shows a specific embodiment in which the operation logic of the above embodiment is achieved using an electric circuit.In this embodiment, electricity is supplied to the equipment through the U phase and the P phase. The pressure signal is distributed from PAL to PA4 of comparator 18 via the P phase. When the pressure signal exceeds the set value P1, the comparator 18 P
AL becomes energized and activates Pl of relay 20. With the activation of R1 of relay 20, P is turned on by its b contact.
A valve opening signal is sent to the relief safety valve via the VI, and.

a接点により多連・多接点スイッチ19に給電する。こ
の給電が終了すると、多連・多接点スイッチ19は、接
点1から接点2へ切り換わり、各リレー20に対応ずる
設定圧を交換させる。逃がし安全弁作動毎に同様な交換
が行われる。L相は水位信号で、比較器18のLAIと
時間遅れロジック9とともに自動減圧系ロジックを構成
している。
Power is supplied to the multiple/multi-contact switch 19 through the a contact. When this power supply ends, the multiple/multi-contact switch 19 switches from contact 1 to contact 2, causing each relay 20 to exchange the corresponding set pressure. A similar exchange is performed each time the safety relief valve is activated. The L phase is a water level signal, which together with the LAI of the comparator 18 and the time delay logic 9 constitutes an automatic pressure reduction system logic.

また、比較器18のPA4は、多連・多接点スイッチ1
9の動作に関係なく、常にリレー20のR4と対応して
動作する。
In addition, PA4 of the comparator 18 is the multiple/multi-contact switch 1.
Regardless of the operation of relay 9, it always operates in correspondence with relay 20 R4.

第1図実施例を、電子回路を用いて構成した実施例を第
3図に示す。
FIG. 3 shows an embodiment in which the embodiment shown in FIG. 1 is constructed using an electronic circuit.

圧力計4の信号または水位計7の信号は1選択ゲート回
路21で選択され、A/D変換器22を介し、CPU2
4に入力される。CPU24ではRAMに記憶された設
定圧力値または設定水位置と入力信号とを比較し、開弁
信号0/Cを出力する。同時に対応ずる弁に対応した信
号Sを出力する。この信号Sは、D/A変換器26を介
し、比例計数ゲート回路27に送られる。比例計数ゲー
ト回路27の出力と開弁信号0/Cをアンド回路28で
受け、対応ずる逃がし安全弁に開弁信号を送る。また、
任意の逃がし安全弁が開弁する毎に。
The signal of the pressure gauge 4 or the signal of the water level gauge 7 is selected by the 1 selection gate circuit 21, and sent to the CPU 2 via the A/D converter 22.
4 is input. The CPU 24 compares the set pressure value or set water position stored in the RAM with the input signal, and outputs a valve opening signal 0/C. At the same time, a signal S corresponding to the corresponding valve is output. This signal S is sent to the proportional counting gate circuit 27 via the D/A converter 26. The AND circuit 28 receives the output of the proportional counting gate circuit 27 and the valve opening signal 0/C, and sends the valve opening signal to the corresponding relief safety valve. Also,
Each time any relief safety valve opens.

ROM23に記憶されている設定値を、CPU24を介
しRAM25に送り、設定値を交換する。比例計数ゲー
ト回路、RAM、ROM等の信号の受は渡しおよび信号
S、O/Cの出力は、CPU24のクロック信号に同期
してなされる。
The setting values stored in the ROM 23 are sent to the RAM 25 via the CPU 24, and the setting values are exchanged. The reception and delivery of signals from the proportional counting gate circuit, RAM, ROM, etc. and the output of signals S and O/C are performed in synchronization with the clock signal of the CPU 24.

上記演算処理のフローチャートを第4図に示す。A flowchart of the above calculation process is shown in FIG.

ステップAにおいて、全ての逃がし安全弁(本例では、
1〜4)について、ステップBからステップJまでを割
り当てる。ステップBにおいて、CLOCK=Oとし、
圧力信号Pを入力する。ステップCでは、圧力信号Pを
対応ずる設定圧P(I)(I=1〜4)と比較し1条件
を満足するならば、ステップDにおいて、その逃がし安
全弁に開弁のフラグを立てる。ステップEでは、逃がし
安全弁4以外の弁について、ステップFからステップH
をバイパスする。ステップFは、CLOCK=1とし、
水位信号りを入力する。ステップGでは、水位信号りを
対応ずる設定水位L (I)と比較し1条件を満足する
ならば、ステップHにおいて、時間遅れを考慮した上で
、開弁のフラグを立てる。ステップエでは、開弁フラグ
の立っている逃がし安全弁の信号Sおよび開弁信号○/
Cを出力する。最終的に、演算Jにおいて圧力信号によ
る開弁フラグが解除された場合は、その逃がし安全弁の
作動が終了したことを意味し、ステップKにおいて設定
圧力が交換され、すなわちメモリから新たに読み直され
る。
In step A, all relief safety valves (in this example,
For 1 to 4), steps B to J are assigned. In step B, set CLOCK=O,
Input pressure signal P. In step C, the pressure signal P is compared with the corresponding set pressure P(I) (I = 1 to 4), and if one condition is satisfied, in step D, the relief safety valve is flagged to open. In step E, steps F to H are performed for valves other than relief safety valve 4.
Bypass. Step F sets CLOCK=1,
Input the water level signal. In step G, the water level signal is compared with the corresponding set water level L (I), and if one condition is satisfied, in step H, a flag is set to open the valve, taking into account the time delay. In Step E, the signal S and the valve open signal ○/ of the relief safety valve with the valve open flag set are
Output C. Finally, if the valve open flag due to the pressure signal is canceled in calculation J, it means that the operation of the relief safety valve has ended, and the set pressure is replaced in step K, that is, it is read anew from the memory. .

本発明の効果を第5図に示す。The effect of the present invention is shown in FIG.

図においては、SRVグループ1〜4について逃がし安
全弁の作動回数とプラント運転年数との関係を1本発明
と従来技術について示しである。
In the figure, the relationship between the number of actuations of the safety relief valve and the number of years of plant operation for SRV groups 1 to 4 is shown for the present invention and the prior art.

SRVグループ1〜4に従って設定圧が高くなり。The set pressure increases according to SRV groups 1 to 4.

従来技術では、SRVグループlの作動回数が大幅に多
くなっていた。このために、プラント寿命の末期Y1で
見た場合の作動回数を、余裕をみてNxと定義すると、
本発明では、SRVグループ1の作動がSRVグループ
2,3に分散されるので。
In the prior art, the number of activations of SRV group 1 was significantly increased. For this reason, if we define the number of operations at Y1, the end of the plant life, as Nx with a margin, we get
In the present invention, the operation of SRV group 1 is distributed to SRV groups 2 and 3.

Nlまで低下することになる。N1とN2は、設計余裕
を含んだプラント寿命中の逃がし安全弁作動回数である
が、概略1次の式で関係づけられている。
It will drop to Nl. N1 and N2 are the number of times the safety relief valve operates during the life of the plant, including a design margin, and are approximately related to each other by the following linear equation.

ni :設定圧iの逃がし安全弁員数 ml:fi定圧iの逃がし安全弁のプラント寿命中の作
動回数 n ADS : 迎がし安全弁の中で自動減圧系の機能
をもつ員数 代表的プラントについてみると、逃がし安全弁の作動回
数が平均化され、約1/3〜115となす、全逃がし安
全弁をより均一に作動させることができる。
ni: Number of safety relief valves with set pressure i ml: fi Number of times the relief safety valve with constant pressure i operates during the plant life n The number of times the safety valves are operated is averaged to about 1/3 to 115, and all relief safety valves can be operated more uniformly.

ここでは、BWRの逃がし安全弁について述べたが、本
発明は、あらゆる圧力容器の逃がし安全弁に適用可能で
ある。また1作動ロジックは、系統の安全を考慮して、
多重設計としてもよいことは、いうまでもない。
Although the safety relief valve for a BWR has been described here, the present invention is applicable to relief safety valves for any pressure vessel. In addition, 1 operation logic considers the safety of the system,
Needless to say, multiple designs may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特定の迎がし安全弁が選択的に作動し
、その弁に機械的ならびに熱的な繰り返し応力が集中す
るのを防止できる。また、逃がし安全弁の作動回数が平
均化するので、弁の寿命すなわち交換周期が大幅に延長
される。さらに、本発明を実施するには、系統を大幅に
変更する必要はなく、制御系のロジックの変更ですむか
ら、将来建設されるプラントのみならず、既設プラント
へのバックフィツトも容易である。
According to the present invention, a specific drop-off safety valve can be selectively operated to prevent repetitive mechanical and thermal stress from being concentrated on the valve. Furthermore, since the number of activations of the safety relief valve is averaged, the life span of the valve, ie, the replacement cycle, is significantly extended. Furthermore, in order to carry out the present invention, there is no need to make major changes to the system, and only the logic of the control system needs to be changed, so it is easy to backfit not only plants to be constructed in the future but also existing plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による逃がし安全弁の一実施例の系統構
成を示すブロック図、第2図は第1図の作動ロジックを
電気回路で実現した具体的実施例の構成を示す図、第3
図は同じく電子回路で実現した具体的実施例を示す図、
第4図は第1図装置の演算処理を示すフローチャート、
第5図は本発明逃がし安全弁の効果を従来例と比較して
示す図、第6図は逃がし安全弁の設定例として沸騰水型
原子炉の系統構成を示す図、第7図は従来の逃がし安全
弁の系統構成を示す図、第8図は原子炉圧力が上昇する
事象の一例を示す図である。 1・・・原子炉圧力容器、2・・・主蒸気配管、3・・
・逃がし弁、4・・・圧力計、5・・・逃がし弁作動ロ
ジック、6・・・安全弁機能、7・・・水位計、8・・
・自動減圧系作動ロジック、9・・・時間遅れロジック
、10・・・設定圧力値メモリ、11・・・設定圧交換
器、12・・・主蒸気流量制限器、13・・・主蒸気隔
離弁、14・・・原子炉格納容器、15・・・ドライウ
ェル、16・・・サプレッションチェンバ、17・・・
クエンチャ、18・・・比較器、19・・・多連・多接
点スイッチ、20・・・リレー、21・・・選択ゲート
回路、22・・・A/D変換器、23−ROM、24・
CPU、25・RAM、)eS・・・D/A変換器、2
7・・・比例計数ゲート回路、28・・・アンド回路。
FIG. 1 is a block diagram showing the system configuration of one embodiment of the relief safety valve according to the present invention, FIG. 2 is a diagram showing the configuration of a specific embodiment in which the operation logic of FIG. 1 is realized by an electric circuit,
The figure also shows a specific example realized using an electronic circuit.
FIG. 4 is a flowchart showing the arithmetic processing of the device shown in FIG.
Figure 5 is a diagram showing the effect of the safety relief valve of the present invention in comparison with a conventional example, Figure 6 is a diagram showing the system configuration of a boiling water reactor as an example of setting a safety relief valve, and Figure 7 is a diagram showing a conventional safety relief valve. FIG. 8 is a diagram showing an example of an event in which the reactor pressure increases. 1... Reactor pressure vessel, 2... Main steam piping, 3...
・Relief valve, 4...Pressure gauge, 5...Relief valve operation logic, 6...Safety valve function, 7...Water level gauge, 8...
・Automatic pressure reduction system operation logic, 9... Time delay logic, 10... Set pressure value memory, 11... Set pressure exchanger, 12... Main steam flow rate restrictor, 13... Main steam isolation Valve, 14... Reactor containment vessel, 15... Drywell, 16... Suppression chamber, 17...
Quencher, 18... Comparator, 19... Multiple/multi-contact switch, 20... Relay, 21... Selection gate circuit, 22... A/D converter, 23-ROM, 24...
CPU, 25/RAM,) eS...D/A converter, 2
7... Proportional counting gate circuit, 28... AND circuit.

Claims (1)

【特許請求の範囲】 1、圧力容器内の圧力上昇を抑制するために、互いに異
なる設定圧を前記圧力が越える範囲で開放し前記圧力容
器内の流体を系外に放出する複数個の逃がし弁からなる
逃がし安全弁において、前記各逃がし弁に対応する設定
圧力を記憶する設定圧力値メモリと、 前記複数の逃がし弁のひとつが作動する毎に作動した逃
がし弁を含む少なくともふたつの逃がし弁に対応する設
定圧力を前記設定圧力値メモリ内で交換させる設定圧交
換器と を設けたことを特徴とする逃がし安全弁。 2、特許請求の第1項において、 前記複数の逃がし弁が、前記圧力容器内流体の液位の変
化に応じて作動する逃がし弁を含み前記設定圧力値メモ
リが、前記液位に応ずる逃がし弁の設定圧力値を保持す
るために、前記交換対象外の専用メモリ領域を備えた ことを特徴とする逃がし安全弁。
[Scope of Claims] 1. In order to suppress the pressure increase in the pressure vessel, a plurality of relief valves open mutually different set pressures to the extent that the pressures exceed the pressures, and release the fluid in the pressure vessel to the outside of the system. a set pressure value memory that stores a set pressure corresponding to each of the relief valves; and at least two relief valves including a relief valve that is activated each time one of the plurality of relief valves is activated. A relief safety valve comprising a set pressure exchanger for exchanging a set pressure in the set pressure value memory. 2. In claim 1, the plurality of relief valves include a relief valve that operates according to a change in the liquid level of the fluid in the pressure vessel, and the set pressure value memory includes a relief valve that operates according to a change in the liquid level of the fluid in the pressure vessel. A relief safety valve characterized by comprising a dedicated memory area that is not subject to replacement in order to hold a set pressure value.
JP61284051A 1986-11-28 1986-11-28 Relief valve Pending JPS63135669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284051A JPS63135669A (en) 1986-11-28 1986-11-28 Relief valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284051A JPS63135669A (en) 1986-11-28 1986-11-28 Relief valve

Publications (1)

Publication Number Publication Date
JPS63135669A true JPS63135669A (en) 1988-06-08

Family

ID=17673656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284051A Pending JPS63135669A (en) 1986-11-28 1986-11-28 Relief valve

Country Status (1)

Country Link
JP (1) JPS63135669A (en)

Similar Documents

Publication Publication Date Title
EP3667678B1 (en) Depressurisation valve
EP0275362A2 (en) Safety control system
US4326917A (en) Method of nuclear reactor control using a variable temperature load dependent set point
JPS63135669A (en) Relief valve
CN209149827U (en) A kind of secondary side residual heat removal system of active and passive combination
CN110911024A (en) Sustained release device for steam generator heat transfer tube rupture accident
Parzer et al. Feed-and-bleed procedure mitigating the consequences of a steam generator tube rupture accident
US3102394A (en) Controlled relief system
US6643348B2 (en) Steam turbine control device of nuclear power plant
EP3493218A1 (en) Safety system
Aprile et al. Application of a qualified WWER-1000 plant nodalization for Relap5/M3. 2 computer code
JPS6252274B2 (en)
JPH0511092A (en) Method of protecting nuclear reactor
CN117490811A (en) Nuclear power plant heat exchanger liquid level switch on-load test system
Spurgin Some aspects of the process control and protection systems of a Westinghouse PWR
Hill Instrumentation Problems at the Monticello Nuclear Generating Plant
JPH09203793A (en) Test method of main steam isolation valve
JPS6334482B2 (en)
Benčik et al. NPP Krško 3 inch Cold Leg Break LOCA Calculation using RELAP5/MOD 3.3 and MELCOR 1.8. 6 Codes
Edelmann et al. Enhanced thermal expansion control rod drive lines for passive shutdown of fast reactors
Han Development of the small (600 MWe class) KSNP design
Wei-zhi et al. Study of AP1000 Protection System Based on FirmSys
Bittermann et al. Reliability Analysis of the Decay Heat Removal System of a 1000-MW (e) Gas-Cooled Fast Breeder Reactor
Oh et al. Design improvements of diverse protection system regarding CCF and D3 issues
JPS6395393A (en) Output controller for nuclear power plant