JPS63135598A - Conductive paper - Google Patents

Conductive paper

Info

Publication number
JPS63135598A
JPS63135598A JP27395586A JP27395586A JPS63135598A JP S63135598 A JPS63135598 A JP S63135598A JP 27395586 A JP27395586 A JP 27395586A JP 27395586 A JP27395586 A JP 27395586A JP S63135598 A JPS63135598 A JP S63135598A
Authority
JP
Japan
Prior art keywords
fibers
layer
conductive paper
conductive
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27395586A
Other languages
Japanese (ja)
Other versions
JPH0331840B2 (en
Inventor
晴彦 大塚
川島 貞男
二宮 佑八
新井 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP27395586A priority Critical patent/JPS63135598A/en
Publication of JPS63135598A publication Critical patent/JPS63135598A/en
Publication of JPH0331840B2 publication Critical patent/JPH0331840B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は導電紙に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to conductive paper.

[従来の技術] 従来、導電紙としては、炭素繊維やカーボンブラックを
含有するもの(特開昭59−2E159?、特公昭58
−4H88)や、黄銅、アルミニウム、ステンレスなど
の金属繊維をバルブや合成繊維とともにすき込んだもの
(#開閉58−183799.  同59−47500
)などが知られている。また、無電解重メッキを施した
ガラス繊維を含有する導電紙や、ニッケル被覆された炭
素繊維を含有する導電性繊維のマラト(特公昭8O−8
8198)も知られている。
[Prior Art] Conventionally, conductive papers containing carbon fiber or carbon black (Japanese Patent Publication No. 59-2E159?, Japanese Patent Publication No. 1983
-4H88), and those in which metal fibers such as brass, aluminum, and stainless steel are inserted together with valves and synthetic fibers (#Opening/closing 58-183799. 59-47500
) etc. are known. In addition, conductive paper containing electroless heavy plated glass fibers and conductive fiber Marat containing nickel-coated carbon fibers
8198) is also known.

しかるに、炭素繊維やカーボンブラックを含有した導電
紙は、導電物質である炭素繊維やカーボンブラックの導
電性が低いため(10−3〜1010cm)導電紙とし
ての導電性が低く、電磁シールド材や電波反射材として
用いた場合、充分な性能を示さない。
However, conductive paper containing carbon fiber or carbon black has low conductivity as a conductive paper (10-3 to 1010 cm) because the conductivity of the conductive substances such as carbon fiber and carbon black is low (10-3 to 1010 cm), and it is not suitable for electromagnetic shielding materials or radio waves. When used as a reflective material, it does not show sufficient performance.

黄銅繊維やアルミニウム繊維を用いた導電紙は、導電性
が高いが、金属繊維が酸化されやすいため、高い導電性
を長期に亘って保つことは難しい。また、現在、市販さ
れている黄銅繊維やアルミニウム繊維は切削法で製造さ
れているため、繊維径が最小でも30JLm程度あり、
薄手の紙を作るには向いていない。
Conductive paper using brass fibers or aluminum fibers has high conductivity, but because the metal fibers are easily oxidized, it is difficult to maintain high conductivity over a long period of time. In addition, since the brass fibers and aluminum fibers currently on the market are manufactured using a cutting method, the minimum fiber diameter is approximately 30 JLm.
Not suitable for making thin paper.

ステンレス繊維を用いた導電紙は、導電性が高く金属繊
維の耐食性も高いため、長期に亘って高い導電性を保つ
ことができる。またステンレス繊維は一般に引抜き法で
製造されるため、繊維径が細く (10gm前後)薄手
のペーパーを作るにも向いている。しかし、ステンレス
繊維は比重が大きい(8前後)ため、抄紙する際に繊維
を均一に分散させることが困難である。また比重が大き
いことから、軽い導電紙を作るには不利である。更に、
ステンレス繊維i維は前述のように引抜き法で製造され
るため、生産性が悪くコストが高くなる難点がある。
Conductive paper using stainless steel fibers has high conductivity and the metal fibers have high corrosion resistance, so it can maintain high conductivity over a long period of time. Additionally, since stainless steel fibers are generally manufactured using the pultrusion method, the fiber diameter is small (around 10 gm), making it suitable for making thin paper. However, since stainless steel fibers have a high specific gravity (approximately 8), it is difficult to uniformly disperse the fibers during paper making. Also, because of its high specific gravity, it is disadvantageous for making light conductive paper. Furthermore,
Since the stainless steel fiber i-fiber is manufactured by the pultrusion method as described above, it has the disadvantage of poor productivity and high cost.

一方、無電解Niメッキを施したガラス繊維を用いた導
電線ペーパーは、メッキ膜厚を厚くすることによって導
電性を高めることができ、またm組径も1107z前後
であるから、薄手の導電紙を作ることも容易である。導
電膜がNiであるため耐食性が高く、導電紙の導電性を
長期に亘って保つことができる。導電性t繊維はメッキ
法で製造されるため、生産性も高い。しかしながら、無
電解重メッキ膜は一般にリン又はホウ素を含有するため
、純粋なGu (比抵抗1.72X10−6Ωcm)や
Ni(比抵抗?、24X 10−5Ωc+w)に比べ比
抵抗が10〜100倍はど大きい(10−4〜10−6
Ωcm) 、そのため、無電解Niメッキ膜で純粋なC
uやNiと同等の低い抵抗値を得るためには、メッキ膜
厚を厚くしなければならず、コスト高のみならず、繊維
の比重が大きくなり、ステンレス繊維の場合と同様の不
都合を生じる。
On the other hand, conductive wire paper using electroless Ni-plated glass fiber can improve conductivity by increasing the thickness of the plating film, and the m-group diameter is around 1107z, so thin conductive paper It is also easy to make. Since the conductive film is made of Ni, it has high corrosion resistance, and the conductivity of the conductive paper can be maintained for a long period of time. Since the conductive t-fiber is manufactured by a plating method, productivity is also high. However, since electroless heavy plating films generally contain phosphorus or boron, their specific resistance is 10 to 100 times higher than that of pure Gu (specific resistance: 1.72 x 10-6 Ωcm) or Ni (specific resistance?, 24 x 10-5 Ωc+w). Large (10-4 to 10-6)
Ωcm), therefore, the electroless Ni plating film is pure C.
In order to obtain a low resistance value equivalent to that of u or Ni, the plating film thickness must be increased, which not only increases cost but also increases the specific gravity of the fibers, causing the same disadvantages as in the case of stainless steel fibers.

ニッケル被覆された炭素繊維を含有する導電繊維のマッ
トは、被覆する金属が旧であるため耐食性が高く、導電
性も比較的高い。従って、導電性の高いマットを作るこ
とが可能で、かつその導電性を長期に亘って保つことが
できる。
Conductive fiber mats containing nickel-coated carbon fibers have high corrosion resistance and relatively high conductivity due to the older metal coating. Therefore, it is possible to make a highly conductive mat and maintain its conductivity for a long period of time.

また炭素繊維を用いるため、導電繊維の比重が軽く、軽
量の導電マットを作ることができる。
Furthermore, since carbon fiber is used, the specific gravity of the conductive fibers is light, making it possible to create a lightweight conductive mat.

しかしながら、Niの比抵抗(7,24X 10−6Ω
cm)はCuc7)比抵抗(1,72X 10−6Ωa
m)に比べ約4倍大きいため、銅被膜と同程度の低い抵
抗値をNi被膜で実現するためには、膜厚を厚くする必
要があり、導電繊維の比重の増加とコスト高が避けられ
ない。
However, the specific resistance of Ni (7,24X 10-6Ω
cm) is Cuc7) specific resistance (1,72X 10-6Ωa
m), so in order to achieve the same low resistance value with the Ni coating as the copper coating, it is necessary to increase the thickness of the Ni coating, which avoids an increase in the specific gravity of the conductive fiber and increased cost. do not have.

[発明の解決しようとする問題点] 本発明の目的は、従来技術が有していた前述の種々の問
題点を解消しようとするものである。
[Problems to be Solved by the Invention] An object of the present invention is to solve the aforementioned various problems that the prior art had.

[問題点を解決するための手段コ 本発明は、前述の問題点を解決すべくなされたものであ
り表面に無電解メッキにより形成されたCu被膜又は旧
被膜の第1層と、該第1層上に電気メッキにより形成さ
れたCu被膜の第2層と、該第2層上に無電解メッキ又
は電気メッキにより形成されたNi被膜の第3層とから
なる金属層を有するガラス繊維、該ガラスm維と該ガラ
ス繊維以外の繊維とをからみ合せ紙状にしてなる導電紙
を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a first layer of a Cu film or an old film formed on the surface by electroless plating, and A glass fiber having a metal layer consisting of a second layer of Cu coating formed on the layer by electroplating, and a third layer of Ni coating formed on the second layer by electroless plating or electroplating. To provide a conductive paper made of glass m fibers and fibers other than the glass fibers intertwined to form a paper shape.

本発明における金属被覆ガラス繊維としては、ガラス繊
維の表面に無電解メッキ法により形成されたCu被膜あ
るいはNi被膜からなる第1層と、その上に電気メッキ
により形成されたCu被膜からなる第2層と、更にその
上に無電解メッキ法あるいは電気メッキにより形成され
たNi被膜あるいは無電解メッキにより形成された旧被
膜からなる第3層とを有するガラス繊維が使用される。
The metal-coated glass fiber in the present invention includes a first layer consisting of a Cu coating or a Ni coating formed on the surface of the glass fiber by electroless plating, and a second layer consisting of a Cu coating formed thereon by electroplating. A glass fiber is used which has a layer and a third layer thereon consisting of a Ni coating formed by electroless plating or electroplating or an old coating formed by electroless plating.

本発明における金属被覆ガラス繊維に用いるガラス繊維
としては、一般に工業的に生産される長繊維ガラスが使
用できる。ガラス繊維の単位重量当りの表面積が大きい
程、ガラス繊維を一定重量含有した導電紙の導電性が高
いことと、薄手の導電紙を作るのに有利なことから、ガ
ラス繊維の直径は細いことが好ましく、23pLm以下
、更に好ましくは13μm以下が望ましい。
As the glass fiber used for the metal-coated glass fiber in the present invention, generally industrially produced long fiber glass can be used. The larger the surface area per unit weight of glass fiber, the higher the conductivity of the conductive paper containing a certain weight of glass fiber, and because it is advantageous for making thin conductive paper, the diameter of the glass fiber is preferably small. It is preferably 23 pLm or less, more preferably 13 μm or less.

か−るガラス繊維の表面には第1層として、Cu被膜又
は旧被膜が無電解メッキにより形成されるがその理由は
次の通りである。即ちメッキに使用する原料の入手が容
易であり、第2層を電気メッキする際の導電性が確保で
き、かつメッキ処理が比較的容易であるからである。
A Cu coating or an old coating is formed as a first layer on the surface of the glass fiber by electroless plating, and the reason is as follows. That is, the raw materials used for plating are easily available, the conductivity can be ensured when electroplating the second layer, and the plating process is relatively easy.

か〜る第1層の被膜の厚さは薄過ぎると導電性が低下し
、厚過ぎるとメッキ処理の生産性が低下するのでいずれ
も好ましくない。望ましい厚さは0.01〜0.5ル頂
の範囲であり0.05〜0.2p、mの範囲が特に望ま
しい。
If the thickness of the first layer is too thin, the conductivity will decrease, and if it is too thick, the productivity of the plating process will decrease, so both are not preferred. The preferred thickness is in the range of 0.01 to 0.5 μm, particularly preferably in the range of 0.05 to 0.2 μm.

この第1層上の第2層は主として導電性を付与するため
のもので、厚い被膜が容易に得られる電気メッキにより
Cu被膜が形成される。か−るCu被膜の厚さは薄過ぎ
ると導電性の優れた導電紙が得られず、厚過ぎると生産
性が低下するのでいずれも好ましくない。望ましい厚さ
は0.1gm以上であり、0.2〜2 p、mの範囲が
特に望ましい。
The second layer on the first layer is mainly for imparting electrical conductivity, and the Cu coating is formed by electroplating, which allows a thick coating to be easily obtained. If the thickness of the Cu coating is too thin, a conductive paper with excellent conductivity cannot be obtained, and if it is too thick, the productivity will decrease, so both are not preferred. A desirable thickness is 0.1 gm or more, and a range of 0.2 to 2 gm is particularly desirable.

一方、第3層は主として第2層のCu被膜を保護するた
めに設けるものであり、耐食性の点で旧被膜が使用され
る。か−る被膜の厚さは、薄過ぎるとCu被膜の保護が
不充分になり、厚過ぎると生産性が低下するのでいずれ
も好ましくない。望ましい厚さは0.01〜0.5 g
mの範囲であり、0.05〜0.2 gmの範囲が特に
望ましい。
On the other hand, the third layer is provided mainly to protect the second layer Cu film, and the old film is used from the viewpoint of corrosion resistance. The thickness of such a coating is not preferable because if it is too thin, the protection of the Cu coating will be insufficient, and if it is too thick, productivity will decrease. Desired thickness is 0.01-0.5 g
m, with a range of 0.05 to 0.2 gm being particularly desirable.

本発明の導電紙において、かかるガラス繊維の含有率は
、導電紙の重量の10〜89重量パーセント、好ましく
は30〜95重量パーセント、特に40〜70重量パー
セントとすることが、高い導電性、電磁シールド効果ま
たは電波反射性能を得られる理由から望ましい。
In the conductive paper of the present invention, the content of such glass fibers is preferably 10 to 89 percent by weight, preferably 30 to 95 percent by weight, particularly 40 to 70 percent by weight, based on the weight of the conductive paper. It is desirable because it can provide shielding effect or radio wave reflection performance.

また、本発明の導電紙において、かかるガラス繊維の量
は5〜200g/m2 、好ましくは30〜150g/
m2 、特に35〜100g/m2が高い導電性、電磁
波シールド効果または電波反射性能を得られる理由から
望ましい。
Further, in the conductive paper of the present invention, the amount of glass fiber is 5 to 200 g/m2, preferably 30 to 150 g/m2.
m2, particularly 35 to 100 g/m2, is desirable because high conductivity, electromagnetic shielding effect, or radio wave reflection performance can be obtained.

本発明における導電紙は上記ガラス繊維と、該ガラス繊
維以外の繊維とがからみ合い紙状にしたものであり、後
者の繊維としては、パルプ、マニラ麻等の植物繊維、ポ
リエステル、ポリビニルアルコール、ポリエチレンテレ
フタレート等の合成繊維、無機繊維が広範囲に使用され
る。中でも植物繊維はガラス繊維のバインダーとして作
用するので特に好ましい。後者の繊維として無機繊維等
ガラス繊維のバインダーとしての作用が少ない繊維を使
用する場合、又は植物繊維を使用してもそのバインダー
作用が不足する場合、別途バインダーを添加することが
できる。か(るバインダーとしてはポリビニルアルコー
ル、ポリエチレンテレフタレートが例示される。
The conductive paper of the present invention is made of the above-mentioned glass fibers and fibers other than the glass fibers intertwined to form a paper shape, and the latter fibers include pulp, vegetable fibers such as Manila hemp, polyester, polyvinyl alcohol, and polyethylene terephthalate. A wide range of synthetic and inorganic fibers are used. Among these, vegetable fibers are particularly preferred since they act as a binder for glass fibers. When using fibers such as inorganic fibers that do not act as a binder for glass fibers as the latter fibers, or when using vegetable fibers whose binder action is insufficient, a binder may be added separately. Examples of such binders include polyvinyl alcohol and polyethylene terephthalate.

[実施例] 実施例1 ロービングタイプのガラス繊維(直径13pmのモノフ
ィラメントが約3000本の束になった連続長繊維)に
次のようにして約0.1gmの膜厚の旧被膜の第1層を
形成した。即ち、ガラス繊維を塩化第1錫の水溶液に1
分間浸漬後水洗し、塩化パジウム水溶液中に1分間浸漬
した。このガラス繊維を、硫酸ニッケル20g/水1見
、次亜リン酸ナトリウム30g/水 l見、酢酸ナトリ
ウム20g/水 1立、クエン酸ナトリウム10g/水
1文の溶液に 150秒間浸漬し第1層を形成した。
[Example] Example 1 A first layer of an old coating with a thickness of about 0.1 gm was applied to roving type glass fiber (continuous long fibers made of a bundle of about 3000 monofilaments with a diameter of 13 pm) as follows. was formed. That is, glass fiber was dissolved in an aqueous solution of stannous chloride.
After being immersed for a minute, it was washed with water and immersed in an aqueous palladium chloride solution for 1 minute. This glass fiber was immersed for 150 seconds in a solution of 20 g of nickel sulfate/1 liter of water, 30 g of sodium hypophosphite/1 liter of water, 20 g of sodium acetate/1 liter of water, and 10 g of sodium citrate/1 liter of water to form the first layer. was formed.

次いで、第2層として、硫酸銅溶液(250g/水1文
)を用いIOAの電流で3分間メッキし約0.51Lr
sのCu被膜を形成した。
Next, as a second layer, a copper sulfate solution (250 g/1 liter of water) was plated for 3 minutes at a current of IOA to form a layer of approximately 0.51 Lr.
A Cu film of s was formed.

次いで第3層として硫酸ニッケル(240g/水1文)
塩化ニッケル45g/l、ホウ酸30g/JJを用いて
電流3Aで150秒間電気メツキし約0.IILmのN
i被膜を第2層上に形成した。
Then, as the third layer, nickel sulfate (240g/1 sentence of water)
Electroplating was performed using nickel chloride 45g/l and boric acid 30g/JJ at a current of 3A for 150 seconds, resulting in approximately 0. N of IILm
A coating was formed on the second layer.

かくして得られたガラスm維を表面処理剤としてポリエ
ーテルオキサイドを5%含有する水溶液に浸漬したのち
引き揚げ、長さ13mmにカットした。これを、水中に
入れガラス繊維と同じ重量の充分に開繊させたマニラ麻
を加え、分散剤として界面活性剤を、増粘剤としてポリ
エーテルアマイドをそれぞれ添加して充分に攪拌しこれ
らの混合物をスラリーとした。このスラリーを丸鋼抄紙
機を用いて抄造し、乾燥し、坪量150g/m2の導電
紙を得た。
The glass m-fiber thus obtained was immersed in an aqueous solution containing 5% polyether oxide as a surface treatment agent, then pulled up and cut into a length of 13 mm. This was placed in water, and a sufficiently opened Manila hemp with the same weight as the glass fiber was added, a surfactant was added as a dispersant, and polyetheramide was added as a thickener, and the mixture was thoroughly stirred. It was made into a slurry. This slurry was made into paper using a round steel paper machine and dried to obtain conductive paper with a basis weight of 150 g/m2.

この導電紙の面積抵抗を測定したところ、1.0X10
°Ω/口であった。この導電紙の電磁波シールド性能を
電磁波シールド効果測定器(アトパンテスト(株)社製
17301型)を用いて電界及び磁界について測定した
結果をそれぞれ図1および2に示す。すなわち、500
MHzにおいて電界で45dB、磁界で33dB減衰率
を示し、充分な電磁波シールド性能を有することが判っ
た。
When the sheet resistance of this conductive paper was measured, it was found to be 1.0×10
It was °Ω/mouth. The electromagnetic shielding performance of this conductive paper was measured using an electromagnetic shielding effect measuring device (Model 17301 manufactured by Atopan Test Co., Ltd.) in terms of electric and magnetic fields, and the results are shown in FIGS. 1 and 2, respectively. That is, 500
At MHz, it showed an attenuation rate of 45 dB for electric field and 33 dB for magnetic field, and was found to have sufficient electromagnetic shielding performance.

この導電紙に不飽和ポリエステル樹脂を含浸させ、 1
20℃に加熱し、加圧して厚さ 3mmの成形板を得た
。この成形板の電波反射特性を測定したところ、周波数
12.4GHzにおいて反射損失がたかだか0.00θ
dBの特性を示し、衛星通信受信用のアンテナ材料とし
て充分な性能を示すことが判った。
This conductive paper is impregnated with unsaturated polyester resin, 1
It was heated to 20° C. and pressed to obtain a molded plate with a thickness of 3 mm. When we measured the radio wave reflection characteristics of this molded plate, we found that the reflection loss was at most 0.00θ at a frequency of 12.4 GHz.
dB characteristics, and was found to exhibit sufficient performance as an antenna material for satellite communication reception.

実施例2 実施例1と同様の方法で作成した金属被覆ガラスamを
表面処理剤としてポリエーテルオキサイドを5%含有す
る溶液に浸漬したのち、引き揚げ、長さ25mmにカッ
トした。これを水中に入れ、加えたガラス繊維の重量に
対して%の重量の充分に開繊させた材木パルプを加え、
分散剤として界面活性剤を増粘剤としてポリエーテルア
マイドをそれぞれ添加して充分に攪拌し、これらの混合
物をスラリー状とした。このスラリーを長網抄紙機を用
いて抄造し、乾燥し、坪量125g/m2の導電紙を得
た。
Example 2 A metal-coated glass am produced in the same manner as in Example 1 was immersed in a solution containing 5% polyether oxide as a surface treatment agent, then pulled up and cut to a length of 25 mm. Place this in water, add % of the weight of fully opened timber pulp to the weight of the glass fiber added,
A surfactant as a dispersant and a polyetheramide as a thickener were respectively added and sufficiently stirred to form a slurry. This slurry was made into paper using a Fourdrinier paper machine and dried to obtain conductive paper with a basis weight of 125 g/m2.

この導電紙の面積抵抗を測定したところ、4.5 Xl
0−1Ω/口であった。
When the sheet resistance of this conductive paper was measured, it was found to be 4.5 Xl
It was 0-1Ω/mouth.

この導電紙の両面に、厚さ30ILmのポリプロピレン
フィルムをプレス圧着してラミネートした。この導電紙
/ポリプロピレン ラミネート品の電磁波シールド性能
を実施例1と同一の測定器で測定したところ、500M
Hzにおいて電界で47dB、磁界で38dBの減衰率
を示し、充分な電磁波シールド性能を有することが判っ
た。これらの測定結果を図3および図4に示す。
A polypropylene film having a thickness of 30 ILm was press-bonded and laminated on both sides of this conductive paper. When the electromagnetic shielding performance of this conductive paper/polypropylene laminate product was measured using the same measuring device as in Example 1, it was found that 500M
It showed an attenuation rate of 47 dB for electric field and 38 dB for magnetic field at Hz, and was found to have sufficient electromagnetic shielding performance. The results of these measurements are shown in FIGS. 3 and 4.

実施例3 実施例1と同様の方法で作成した金属被覆ガラス繊維に
表面処理剤としてポリエーテルオキサイドを10%含有
する水溶液をスプレーし長さBamにカットした。これ
を乾燥しないうちに水中に入れ、加えた金属被覆ガラス
繊維の重量と同じ重量のポリエチレンテレフタレート繊
維を加え、分散剤として界面活性剤を増粘剤としてポリ
エーテルアマイドをそれぞれ添加して充分に攪拌し、こ
れらの混合物をスラリー状とした。このスラリーを膜網
抄造し、加熱して乾燥させ、坪量75g/m2の導電紙
を得た。
Example 3 A metal-coated glass fiber prepared in the same manner as in Example 1 was sprayed with an aqueous solution containing 10% polyether oxide as a surface treatment agent, and cut into lengths Bam. Put this in water before it dries, add polyethylene terephthalate fiber of the same weight as the added metal-coated glass fiber, add a surfactant as a dispersant, polyetheramide as a thickener, and stir thoroughly. The mixture was made into a slurry. This slurry was made into a membrane paper, heated and dried to obtain a conductive paper having a basis weight of 75 g/m2.

この導電紙の面積抵抗を測定したところ、2.8 Xl
0I Ω/口であった。
When the sheet resistance of this conductive paper was measured, it was found to be 2.8 Xl
It was 0I Ω/mouth.

[発明の効果] 本発明における導電紙は、高い導電性が得られるため、
高い電磁波シールド性能、高い電波反射性能の如き優れ
た効果を有する。また、導電紙中に含有せしめる金属被
覆ガラス繊維の含有率を少なくすることにより面積抵抗
102〜106Ω/ロ程度の導電性とすることができ、
このものについては静電除去及び帯電防止の効果が認め
られる。
[Effect of the invention] Since the conductive paper of the present invention has high conductivity,
It has excellent effects such as high electromagnetic shielding performance and high radio wave reflection performance. In addition, by reducing the content of metal-coated glass fiber contained in the conductive paper, it is possible to achieve a conductivity of about 102 to 106 Ω/2 in sheet resistance.
This product is recognized to be effective in removing static electricity and preventing static electricity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による導電紙の電解シールド効果を示す
図である。 第2図は本発明による導電紙の磁界シールド効果を示す
図である。
FIG. 1 is a diagram showing the electrolytic shielding effect of the conductive paper according to the present invention. FIG. 2 is a diagram showing the magnetic field shielding effect of the conductive paper according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)表面に無電解メッキにより形成されたCu被膜又
はNi被膜の第1層と、該第1層上に電気メッキにより
形成されたCu被膜の第2層と、該第2層上に無電解メ
ッキ又は電気メッキにより形成されたNi被膜の第3層
とからなる金属層を有するガラス繊維、該ガラス繊維と
該ガラス繊維以外の繊維とをからみ合せ紙状にしてなる
導電紙。
(1) A first layer of Cu coating or Ni coating formed on the surface by electroless plating, a second layer of Cu coating formed on the first layer by electroplating, and a non-coated layer on the second layer. Glass fibers having a metal layer consisting of a third layer of Ni coating formed by electrolytic plating or electroplating, and conductive paper made by intertwining the glass fibers with fibers other than the glass fibers.
(2)前記ガラス繊維が10〜99重量%の範囲含有す
る特許請求の範囲第1項記載の導電紙。
(2) The conductive paper according to claim 1, wherein the glass fiber is contained in a range of 10 to 99% by weight.
JP27395586A 1986-11-19 1986-11-19 Conductive paper Granted JPS63135598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27395586A JPS63135598A (en) 1986-11-19 1986-11-19 Conductive paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27395586A JPS63135598A (en) 1986-11-19 1986-11-19 Conductive paper

Publications (2)

Publication Number Publication Date
JPS63135598A true JPS63135598A (en) 1988-06-07
JPH0331840B2 JPH0331840B2 (en) 1991-05-08

Family

ID=17534897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27395586A Granted JPS63135598A (en) 1986-11-19 1986-11-19 Conductive paper

Country Status (1)

Country Link
JP (1) JPS63135598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295691A (en) * 1992-04-17 1993-11-09 Tomoegawa Paper Co Ltd Electrically conductive fluorine-based fiber paper and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295691A (en) * 1992-04-17 1993-11-09 Tomoegawa Paper Co Ltd Electrically conductive fluorine-based fiber paper and its production

Also Published As

Publication number Publication date
JPH0331840B2 (en) 1991-05-08

Similar Documents

Publication Publication Date Title
TW448452B (en) Conductive material and its manufacture method
US10400370B2 (en) Nonwoven fabric or nonwoven composite material for shielding and absorbing electromagnetic wave
JPS59228786A (en) Support capable of being metallized for printed circuit and method of producing same
KR101424030B1 (en) A shield sheet for preventing electromagnetic wave
KR101326266B1 (en) Method for producing conductive non-woven fabric and Multi-fuctional Electro Magnetic Interference shield tape using conductive non-woven fabric
CN106671502A (en) Short carbon fiber based electromagnetic shielding composite material and preparation method thereof
CN1268803C (en) Nickel-copper composite metal textile and preparation method thereof
CN104448840A (en) Preparation method of filing type electromagnetic shielding silicon rubber
CN113442520B (en) Double-shielding structure material with directional electromagnetic shielding performance and preparation method thereof
JPS63135598A (en) Conductive paper
JPH07100917B2 (en) Mat of conductive fiber
JPH0762311B2 (en) Method for producing metal-coated fiber
JPH09107195A (en) Manufacture of high electromagnetic wave shielding composite sheet
JPH0544149A (en) Non-oriented nonwoven fabric and its production
JPS61258500A (en) Electromagnetic shielding material
JP2604216Y2 (en) Electromagnetic wave shielding tape
JPH0417215B2 (en)
JPS5879303A (en) Method of reflecting high frequency microwave
JPH0366272B2 (en)
JPH04174599A (en) Composite sheet having high electromagnetic wave shielding property and its manufacture
JPS61157541A (en) Electrically conductive filter
JPH07123196B2 (en) Electromagnetic shield material and manufacturing method thereof
JP2003175565A (en) Flame-retardant electrically-conductive material and method for manufacturing it
JPH05186967A (en) Fiber, knit or woven fabric and nonwoven fabric having electric conductivity and their production
JPS62233243A (en) Conductive glass fiber mat