JPS63135010A - Surface acoustic wave resonator - Google Patents

Surface acoustic wave resonator

Info

Publication number
JPS63135010A
JPS63135010A JP28123486A JP28123486A JPS63135010A JP S63135010 A JPS63135010 A JP S63135010A JP 28123486 A JP28123486 A JP 28123486A JP 28123486 A JP28123486 A JP 28123486A JP S63135010 A JPS63135010 A JP S63135010A
Authority
JP
Japan
Prior art keywords
surface acoustic
electrode
line width
acoustic wave
width ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28123486A
Other languages
Japanese (ja)
Inventor
Takehiko Sone
竹彦 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP28123486A priority Critical patent/JPS63135010A/en
Publication of JPS63135010A publication Critical patent/JPS63135010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the resonance characteristic by increasing the exciting efficiency of a surface acoustic wave at the midpoint of an interdigital electrode and decreasing the efficiency toward both ends. CONSTITUTION:The exciting efficiency is decreased from the midpoint of the interdigital electrode toward the ends. As a means to decrease the exciting efficiency the midpoint of the interdigital electrode toward both ends, the line width ratio (n=l/L) is decreased from the midpoint of the interdigital electrode toward both ends, where (l) is the width of the electrode finger and L is the pitch of the electrode finger. That is, with the line width ratio (n) given in the vicinity of 0.5, the exciting efficiency is the highest and the exciting efficiency is decreased even when the line width ratio (n) is larger or smaller than the value. On the other hand, the reflection efficiency tends to be higher as the line width ratio (n) gets smaller. Thus, the exciting efficiency is decreased toward both ends by decreasing the line width ratio (n) toward both ends from the midpoint of the interdigital electrode and the reflection efficiency is increased, and the resonance characteristic Q is improved by decreasing the leakage of the excited energy from both ends.

Description

【発明の詳細な説明】 「技術分野」 本発明は、弾性表面波が伝搬する圧電基板上にすだれ状
電極を設けた弾性表面波共振子に係L、特にこのすだれ
状電極内部における励振効率を部分的に変化させること
によL、共振子としての特性向上を図った弾性表面波共
振子に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to a surface acoustic wave resonator in which interdigital electrodes are provided on a piezoelectric substrate through which surface acoustic waves propagate. This invention relates to a surface acoustic wave resonator whose characteristics as a resonator are improved by partially changing L.

「従来技術およびその問題点」 弾性表面波素子は、従来軍需用の特殊な用途に使用され
でいたが、近年、FMチューナ、TV等の民生用機器に
も使用され始め、にわかに脚光を浴びるようになってき
た。弾性表面波素子は、具体的には遅延素子、発振子、
フィルタなどとして製品化されでいる。これら各種の弾
性表面波素子の特徴は、小型、軽量で、信頼性が高いこ
と、およびその製造工程が集積回路と類似しておL、量
産性に冨むことなどである。そして現在では、欠くべか
らざる電子部品として量産されるに至っている。
"Prior art and its problems" Surface acoustic wave elements have traditionally been used for special military purposes, but in recent years they have begun to be used in consumer equipment such as FM tuners and TVs, and are suddenly attracting attention. It has become. Specifically, surface acoustic wave elements include delay elements, oscillators,
It has been commercialized as a filter, etc. The characteristics of these various surface acoustic wave devices are that they are small, lightweight, and highly reliable, and that their manufacturing process is similar to that of integrated circuits, making them suitable for mass production. Nowadays, it is mass-produced as an indispensable electronic component.

このような技術的背影を有する弾性表面波素子の中には
、共振子としての用途を持つものがある。この共振子と
して作用する弾性表面波素子には、従来、第3図に示す
ようなものがあL、以下のように構成されでいる。
Among surface acoustic wave devices with such technical background, some are used as resonators. Conventionally, a surface acoustic wave element that acts as a resonator is shown in FIG. 3, and is constructed as follows.

弾・1表面波が伝搬する圧電基板1上には、弾性表面波
を励振する複数の電極指2.2・・・2から成るすだれ
状電極3が形成されている。このすだれ状電極3は、図
示のように、こめ電極指2の幅をρ、ピッチ即ち、電極
指幅及び電極指間隔の和をLとすると、線幅比n=1!
/L=0.5になっている。
On the piezoelectric substrate 1 through which surface acoustic waves propagate, there is formed an interdigital electrode 3 consisting of a plurality of electrode fingers 2, 2, . . . 2, which excites surface acoustic waves. As shown in the figure, this interdigital electrode 3 has a line width ratio n=1!, where ρ is the width of the interdigital electrode fingers 2, and L is the pitch, that is, the sum of the electrode finger width and the electrode finger spacing.
/L=0.5.

このような構成を有する弾性表面波共振子のすだれ状電
極3に特定周波数の電圧を印加すると、各電極指間に圧
電基板118:介して電界が生し、圧電基板1の圧電性
により発生電界の強さに比例した歪が生し、この歪が圧
電基板1の材料によって定まる伝搬速度で表面波として
圧電基板1上を伝搬する。この表面波は、弾性表面波を
励振すると共に、反射させる性尊をもかね備えた電極指
2間で多重反射され共振するようになっている。
When a voltage of a specific frequency is applied to the interdigital electrodes 3 of the surface acoustic wave resonator having such a configuration, an electric field is generated between each electrode finger via the piezoelectric substrate 118, and the electric field generated due to the piezoelectricity of the piezoelectric substrate 1 is A strain proportional to the strength of is produced, and this strain propagates on the piezoelectric substrate 1 as a surface wave at a propagation speed determined by the material of the piezoelectric substrate 1. This surface wave is multi-reflected and resonates between the electrode fingers 2, which both excite and reflect the surface acoustic waves.

しかしながら、このような従来の弾性表面波共振子にあ
っては、線幅比nが、すだれ状電極3内で一様であるた
めに、電気的エネルギーを機械的エネルギーに変換する
効率、すなわち励振効率はこのすだれ状電極3を構成す
る各電極指2において一定となL、又、伝搬してきた音
響エネルギーを反射する効率、すなわち反射効率も各電
極指2において一定となる。従って、すだれ状電極3の
両端部において変換された機械的エネルギーは、すだれ
状電極3の内部で反射されることなく外方に逃げでしま
い、このため、両端部に向かうに従ってリーク損失が増
加し、共振特性Qを低下させる原因となっていた。
However, in such a conventional surface acoustic wave resonator, since the line width ratio n is uniform within the interdigital electrode 3, the efficiency of converting electrical energy into mechanical energy, that is, the excitation The efficiency L is constant in each electrode finger 2 constituting this interdigital electrode 3, and the efficiency of reflecting propagated acoustic energy, that is, the reflection efficiency is also constant in each electrode finger 2. Therefore, the mechanical energy converted at both ends of the interdigital electrode 3 escapes to the outside without being reflected inside the interdigital electrode 3, and as a result, leakage loss increases toward both ends. , which caused a reduction in the resonance characteristic Q.

「発明の目的」 本発明は、以上のような問題点に鑑みて成されたもので
あL、励振効率をすだれ状電極の中央部から端部に向か
って小ざくなるように、又、一般的にはそのようにする
ことによL、反射効率がすだれ状電極の中央部から端部
に向かって大きくなることが多いので、そのように、こ
のすだれ状電極を構成することによL、共振特性Qの向
上を図ることを目的とする。
``Object of the Invention'' The present invention has been made in view of the above-mentioned problems. In general, by configuring this interdigital electrode L, the reflection efficiency often increases from the center to the ends of the interdigital electrode, so by configuring this interdigital electrode in this way, L, The purpose is to improve the resonance characteristic Q.

「発明の構成」 本発明は、弾性表面波か伝搬する圧電基板上に、複数の
電極指から成るすだれ状電極を設け、各電極指により励
振される弾性表面波を当該すだれ状電極内部で多重反射
させるようにした弾性表面波共振子において、前記弾性
表面波の励振効率を前記すだれ状電極の中央部では大き
く、前記すだれ状電極の両端に近づくに従って小さくし
たことを特徴とする。
"Structure of the Invention" The present invention provides an interdigital electrode consisting of a plurality of electrode fingers on a piezoelectric substrate through which surface acoustic waves propagate, and multiplexes the surface acoustic waves excited by each electrode finger inside the interdigital electrode. The surface acoustic wave resonator is characterized in that the excitation efficiency of the surface acoustic wave is large at the center of the interdigital electrode and becomes smaller as it approaches both ends of the interdigital electrode.

弾性表面波共振子の共振特性Qは、励振された表面波の
うち、多重反射によりすだれ状電極内部に封じ込められ
た割合が大きい程高くなる。したがって、本発明の弾性
表面波共振子では、すだれ状電極の両端部における励振
効率を減少させ、逆にこの両端部にあける反射効率を向
上させてリーク損失を減少させる構造としたので、すだ
れ状電極全体としての共振特性Qが改善され、急瞬な共
振特性を持たせることができる。
The resonance characteristic Q of the surface acoustic wave resonator increases as the proportion of the excited surface waves that is confined inside the interdigital electrodes due to multiple reflections increases. Therefore, in the surface acoustic wave resonator of the present invention, the excitation efficiency at both ends of the interdigital electrode is reduced, and conversely, the reflection efficiency at both ends is improved to reduce leakage loss. The resonance characteristic Q of the electrode as a whole is improved, and it is possible to have an instantaneous resonance characteristic.

すだれ状電極の中央部から両端部に近づくにしたがって
励振効率を低くする手段としては、各種の手段が採用可
能であるが、例えば、電極指の幅を!、電極指のピッチ
をし、線幅比nをβ/上とした場合、この線幅比nをす
だれ状電極の中央部から両端に近づくに従って小さくす
ることによって達成される。すなわち、線幅比nが0.
5付近のとき励振効率は最も高くなL、線幅比nがこれ
よりも大きくなっても小ざくなっても励振効率は低下す
る。一方、線幅比nが小さくなる程、反射効率は高くな
る傾向がある。したがって、線幅比nをすだれ状電極の
中央部から両端部に近づくに従って小ざくすることによ
L、両端部に近づくに従っで励振効率が低下し、反射効
率が高くなる状態とすることができ、励振されたエネル
ギーの両端部からの漏れを減少させて、共振特性Qを向
上させることができる。
Various methods can be used to reduce the excitation efficiency as it approaches both ends from the center of the interdigital electrode, but for example, the width of the electrode fingers can be changed! When the pitch of the electrode fingers is set to , and the line width ratio n is set to be above β/, this can be achieved by decreasing the line width ratio n from the center of the interdigital electrode toward both ends. That is, when the line width ratio n is 0.
The excitation efficiency is highest when L is around 5, and the excitation efficiency decreases even if the line width ratio n becomes larger or smaller than this. On the other hand, the smaller the line width ratio n, the higher the reflection efficiency tends to be. Therefore, by decreasing the line width ratio n from the center of the interdigital electrode toward both ends, it is possible to create a state in which the excitation efficiency decreases and the reflection efficiency increases as it approaches both ends. Therefore, the leakage of excited energy from both ends can be reduced, and the resonance characteristic Q can be improved.

ところで、弾性表面波の伝搬速度、すなわち音運Vは、
電極が形成された面と電極が形成されていない面とで変
化する傾向があL、一般には電極が形成された面では電
極が形成されていない面よ。
By the way, the propagation speed of surface acoustic waves, that is, the sound transport V, is
There is a tendency to change between the surface on which an electrode is formed and the surface on which no electrode is formed, and generally, the surface on which an electrode is formed is different from the surface on which no electrode is formed.

りも遅くなる。したかつて、線幅比nを変化させると、
電極が形成された部分の割合が変化するため、音速Vが
部分的1こ変化することになL、その結果、V/2Lで
表わされる周波数が部分的に変化してしまい、共振特性
Qが低下する原因となる。そこで、本発明の好ましい態
様では、線幅比nを変化させることにより部分的に変化
する音速に対応して、周波数が一定になるようにピッチ
Lを変化させる。すなわち、線幅比nをすだれ状電極の
両端部に近づくに従って小さくするため、電極指幅βを
変化させると共に、ピッチLも変化させることが好まし
い。
It also slows down the process. Once, when changing the line width ratio n,
Since the proportion of the area where electrodes are formed changes, the sound velocity V partially changes by 1 L. As a result, the frequency expressed by V/2L changes partially, and the resonance characteristic Q changes. This may cause a decrease in the temperature. Therefore, in a preferred embodiment of the present invention, the pitch L is changed so that the frequency becomes constant in response to the partially changing sound speed by changing the line width ratio n. That is, in order to decrease the line width ratio n as it approaches both ends of the interdigital electrode, it is preferable to change the electrode finger width β and also change the pitch L.

「発明の実施例」 第1図には、本発明による弾性表面波共振子の実施例が
示されでいる。
"Embodiment of the Invention" FIG. 1 shows an embodiment of a surface acoustic wave resonator according to the present invention.

すなわち、圧電基板1として41度回転Y軸カットの二
オフ酸リチウムを用い、この圧電基板1上に厚さ100
OAのA1膜を形成し、通常のフォトリソグラフィー技
術にてすだれ状電極3を形成した。
That is, lithium dioffate with a Y-axis cut rotated by 41 degrees is used as the piezoelectric substrate 1, and a thickness of 100 mm is formed on the piezoelectric substrate 1.
An A1 film of OA was formed, and interdigital electrodes 3 were formed using a normal photolithography technique.

なお、すだれ状電極3を構成する電極指2の総数は10
1本(50,5対)、すだれ状電極3の中央部における
ピッチしは5umとした。なお、共振周波数は、約42
0MHzとなるようにした。
The total number of electrode fingers 2 constituting the interdigital electrode 3 is 10.
One electrode (50,5 pairs) was used, and the pitch at the center of the interdigital electrodes 3 was 5 um. Note that the resonant frequency is approximately 42
It was set to 0MHz.

そして、すだれ状電極3の線幅比n(β/L)を中央部
においでは0.5とし、両端部に向かうにしたがって小
さくなるように種々変化させてその共振特性を測定した
。すなわち、線幅比nを中央部から両端に向うに従って
0.5〜0.4に変化させたもの(実施例1)、線幅比
nを中央部から両端に向うに従って0.5〜0.3に変
化させたもの(実施例2)、線幅比nを中央部から両端
に向うに従って0.5〜0.2に変化させたもの(実施
例3)、線幅比nを全て0.5としたもの(従来例)の
4種類の弾性表面波共振子を作成した。この場合、実施
例においでは、線幅比nの変化に応して音速か変化する
ため、周波数が一定に保たれるようにピッチLを両端部
に向うに従って広げるようにした。したかって、実施例
にあける線幅比nの変化は、電極指幅βを変化させると
共に、ピッチしも変化させて調整したものである。
Then, the line width ratio n (β/L) of the interdigital electrode 3 was set to 0.5 at the center, and was variously changed so that it became smaller toward both ends, and its resonance characteristics were measured. That is, the line width ratio n was changed from 0.5 to 0.4 from the center toward both ends (Example 1), and the line width ratio n was changed from 0.5 to 0.4 from the center toward both ends (Example 1). (Example 2), the line width ratio n was changed from 0.5 to 0.2 from the center toward both ends (Example 3), and the line width ratio n was all 0.3 (Example 3). Four types of surface acoustic wave resonators were created, including one with a diameter of 5 (conventional example). In this case, in the embodiment, since the speed of sound changes in accordance with a change in the line width ratio n, the pitch L is widened toward both ends so that the frequency is kept constant. Therefore, the changes in the line width ratio n in the examples were adjusted by changing the electrode finger width β and also by changing the pitch.

上記のようにして線幅比n1Fr変化させた場合の共振
特性Qの変化を第2図に示す。
FIG. 2 shows the change in the resonance characteristic Q when the line width ratio n1Fr is changed as described above.

すなわち、線幅比nを中央部から両端に向うに従って0
.5〜0.4に変化させたもの(実施例1)では、線幅
比nを0.5と一定にしたもの(従来例)と比較して共
振特性Qが約1.3倍になった。
In other words, the line width ratio n decreases to 0 from the center to both ends.
.. In the case where the line width ratio n was changed from 5 to 0.4 (Example 1), the resonance characteristic Q was approximately 1.3 times higher than that in which the line width ratio n was kept constant at 0.5 (conventional example). .

また、線幅比nを中央部から両端に向うに従って0.5
〜0.3に変化させたもの(実施例2)では、線幅比n
を0.5と一定にしたもの(従来例)と比較して共振特
性Qが約1.4倍になった。
Also, the line width ratio n is 0.5 from the center to both ends.
In the case where the line width ratio n was changed to ~0.3 (Example 2), the line width ratio n
The resonance characteristic Q is approximately 1.4 times higher than that of the conventional example in which Q is kept constant at 0.5.

ざらに、線幅比nを中央部から両端に向うに従って0.
5〜0.2に変化させたもの(実施例3)では、線幅比
nを0.5と一定にしたもの(従来例)と比較して共振
特性Qが約1.4倍になった。
Roughly speaking, the line width ratio n increases from the center to both ends.
In the case where the line width ratio n was changed from 5 to 0.2 (Example 3), the resonance characteristic Q was approximately 1.4 times higher than that in which the line width ratio n was kept constant at 0.5 (conventional example). .

「発明の効果」 このように、本発明に係る弾性表面波共振子にあっては
、弾性表面波の励振効率をすだれ状電極の中央部では高
く、その端部に向かうにしたかって低くするようにした
ので、端部にあけるリーク損失が減少し、共振特性Qが
向上する。
"Effects of the Invention" As described above, in the surface acoustic wave resonator according to the present invention, the excitation efficiency of the surface acoustic wave is high at the center of the interdigital electrode and becomes lower toward the ends. As a result, leakage loss at the end portion is reduced, and the resonance characteristic Q is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

笥1図は、本発明に係る弾性表面波共振子の概略構成図
、第2図は、線幅比nを変化させた場合の共振特性Qの
変化を示す図表、第3図は、従来の弾性表面波共振子の
概略構成図である。
Figure 1 is a schematic configuration diagram of the surface acoustic wave resonator according to the present invention, Figure 2 is a chart showing changes in resonance characteristics Q when changing the linewidth ratio n, and Figure 3 is a diagram of the conventional surface acoustic wave resonator. FIG. 2 is a schematic configuration diagram of a surface acoustic wave resonator.

Claims (3)

【特許請求の範囲】[Claims] (1)弾性表面波が伝搬する圧電基板上に、複数の電極
指から成るすだれ状電極を設け、各電極指により励振さ
れる弾性表面波をすだれ状電極内部で多重反射させるよ
うにした弾性表面波共振子において、前記弾性表面波の
励振効率を前記すだれ状電極の中央部では大きく、前記
すだれ状電極の両端に近づくに従って小さくしたことを
特徴とする弾性表面波共振子。
(1) An elastic surface in which an interdigital electrode consisting of a plurality of electrode fingers is provided on a piezoelectric substrate on which surface acoustic waves propagate, and the surface acoustic waves excited by each electrode finger are multiple reflected inside the interdigital electrode. 1. A surface acoustic wave resonator, characterized in that the excitation efficiency of the surface acoustic wave is large at the center of the interdigital electrode and becomes smaller as it approaches both ends of the interdigital electrode.
(2)特許請求の範囲第1項において、前記電極指の幅
をl、前記電極指のピッチ即ち、電極指幅及び電極指間
隔の和をL、線幅比nをl/Lとした場合、この線幅比
nを前記すだれ状電極の中央部から両端に近づくに従っ
て小さくした弾性表面波共振子。
(2) In claim 1, when the width of the electrode fingers is l, the pitch of the electrode fingers, that is, the sum of the electrode finger width and the electrode finger interval is L, and the line width ratio n is l/L. , a surface acoustic wave resonator in which the line width ratio n decreases from the center to both ends of the interdigital electrode.
(3)特許請求の範囲第2項において、前記線幅比nを
変化させることにより部分的に変化する音速に対応して
、周波数が一定になるように前記ピッチLを変化させた
弾性表面波共振子。
(3) In claim 2, the surface acoustic wave is a surface acoustic wave in which the pitch L is changed so that the frequency becomes constant in response to the sound speed that partially changes by changing the linewidth ratio n. resonator.
JP28123486A 1986-11-26 1986-11-26 Surface acoustic wave resonator Pending JPS63135010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28123486A JPS63135010A (en) 1986-11-26 1986-11-26 Surface acoustic wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28123486A JPS63135010A (en) 1986-11-26 1986-11-26 Surface acoustic wave resonator

Publications (1)

Publication Number Publication Date
JPS63135010A true JPS63135010A (en) 1988-06-07

Family

ID=17636231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28123486A Pending JPS63135010A (en) 1986-11-26 1986-11-26 Surface acoustic wave resonator

Country Status (1)

Country Link
JP (1) JPS63135010A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737942B2 (en) * 2000-04-16 2004-05-18 Murata Manufacturing Co., Ltd Surface acoustic wave apparatus and communication apparatus
JPWO2005067141A1 (en) * 2004-01-09 2007-12-20 松下電器産業株式会社 Surface acoustic wave resonator and surface acoustic wave filter using the same
WO2010047113A1 (en) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator and surface acoustic wave module device
WO2010047114A1 (en) 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave modular device
WO2010047112A1 (en) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2010103803A (en) * 2008-10-24 2010-05-06 Epson Toyocom Corp Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2010104031A (en) * 2010-01-09 2010-05-06 Epson Toyocom Corp Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2013085273A (en) * 2012-12-11 2013-05-09 Seiko Epson Corp Surface acoustic wave resonator, surface acoustic wave oscillator and surface acoustic wave module device
WO2021177108A1 (en) * 2020-03-06 2021-09-10 京セラ株式会社 Elastic wave resonator, elastic wave filter, demultiplexer, and communication device
WO2021261464A1 (en) * 2020-06-26 2021-12-30 京セラ株式会社 Elastic wave resonator, elastic wave filter, demultiplexer, and communication device
WO2022071062A1 (en) * 2020-09-29 2022-04-07 株式会社村田製作所 Elastic wave device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737942B2 (en) * 2000-04-16 2004-05-18 Murata Manufacturing Co., Ltd Surface acoustic wave apparatus and communication apparatus
JP4622860B2 (en) * 2004-01-09 2011-02-02 パナソニック株式会社 Surface acoustic wave filter
JPWO2005067141A1 (en) * 2004-01-09 2007-12-20 松下電器産業株式会社 Surface acoustic wave resonator and surface acoustic wave filter using the same
US8344815B2 (en) 2008-10-24 2013-01-01 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit
JP5163747B2 (en) * 2008-10-24 2013-03-13 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2010103803A (en) * 2008-10-24 2010-05-06 Epson Toyocom Corp Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
US8803625B2 (en) 2008-10-24 2014-08-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit
WO2010047114A1 (en) 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave modular device
US8084917B2 (en) 2008-10-24 2011-12-27 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
US8299680B2 (en) 2008-10-24 2012-10-30 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit
WO2010047113A1 (en) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator and surface acoustic wave module device
US8358177B2 (en) 2008-10-24 2013-01-22 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit
WO2010047112A1 (en) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP5163746B2 (en) * 2008-10-24 2013-03-13 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP5177230B2 (en) * 2008-10-24 2013-04-03 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
US8742861B2 (en) 2008-10-24 2014-06-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit
US8736140B2 (en) 2008-10-24 2014-05-27 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2010104031A (en) * 2010-01-09 2010-05-06 Epson Toyocom Corp Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2013085273A (en) * 2012-12-11 2013-05-09 Seiko Epson Corp Surface acoustic wave resonator, surface acoustic wave oscillator and surface acoustic wave module device
WO2021177108A1 (en) * 2020-03-06 2021-09-10 京セラ株式会社 Elastic wave resonator, elastic wave filter, demultiplexer, and communication device
WO2021261464A1 (en) * 2020-06-26 2021-12-30 京セラ株式会社 Elastic wave resonator, elastic wave filter, demultiplexer, and communication device
WO2022071062A1 (en) * 2020-09-29 2022-04-07 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
CN110324022B (en) Resonator and preparation method thereof
US4249146A (en) Surface acoustic wave resonators utilizing harmonic frequencies
JPH11355094A (en) Piezoelectric vibrator
JPWO2010047114A1 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JPH10233645A (en) Surface acoustic wave device
JP3724575B2 (en) Surface acoustic wave device
US4306170A (en) AT-Cut quartz resonator, with w/t=2.0 to 2.8, l/t<25
JPS63135010A (en) Surface acoustic wave resonator
JPH0134411B2 (en)
US4742319A (en) Surface-acoustic-wave resonator
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JPH07263998A (en) End face reflecting surface wave resonator
JPH1084245A (en) Surface acoustic wave element
JP2024001367A (en) Converter structure for generation source suppression in saw filter device
JP2005354650A (en) Surface acoustic wave device
US6160339A (en) Two-port saw resonator
JPH0746079A (en) Highly stable surface acoustic wave element
JPS59213A (en) Surface acoustic wave device
JP2850122B2 (en) 2-port SAW resonator
JP2002368576A (en) Surface acoustic wave element
RU2643501C1 (en) Resonator on surface acoustic waves
JP2003283292A (en) Piezoelectric resonator and filter, duplexer and communication device using the same
JPS6382114A (en) Surface acoustic wave element
JP3201088B2 (en) Surface acoustic wave resonator
JP2884569B2 (en) Method of manufacturing rectangular AT-cut quartz resonator for overtone