JPS63134851A - Accumulator fuel injection device for diesel engine - Google Patents

Accumulator fuel injection device for diesel engine

Info

Publication number
JPS63134851A
JPS63134851A JP28004586A JP28004586A JPS63134851A JP S63134851 A JPS63134851 A JP S63134851A JP 28004586 A JP28004586 A JP 28004586A JP 28004586 A JP28004586 A JP 28004586A JP S63134851 A JPS63134851 A JP S63134851A
Authority
JP
Japan
Prior art keywords
pressure
valve
fuel
advance
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28004586A
Other languages
Japanese (ja)
Other versions
JPH0739825B2 (en
Inventor
Masahiro Akeda
正寛 明田
Satoshi Fujii
聡 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP28004586A priority Critical patent/JPH0739825B2/en
Publication of JPS63134851A publication Critical patent/JPS63134851A/en
Publication of JPH0739825B2 publication Critical patent/JPH0739825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To make the wide use of a fuel injection device possible independently of the size of an engine or the like by assembling both an injection time determining mechanism and an injection time adjusting spark advance device in the fuel injection device. CONSTITUTION:A pressure relief valve 19 for determining injection time and a spark advance valve 20 for adjusting injection time are connected in order to the valve closing pressure accumulating chamber 85 of a fuel injector 29 through a fuel injection pump 26 and a cutoff valve 25. A pressure relief valve 19 is composed so that passages 59 for a pressure relief valve body 57 may communicate with the introducing port 24 of a valve box 56 with timing control made on a crankshaft. A spark advance valve 20 is composed so that the passages 59 may be plurally provided along the rotational direction of the valve body 57, and moreover the passage 62 for spark advance of a spark advance valve body 61 may selectively communicate with the plural passages 59. In addition to that, the spark advance valve body 61 is energized by a spark regress energizing means 65 to the side of spark regress, and by fuel pressure in a spark advance pressure chamber 63 communicating with pressure regulating device 12 to the side of spark advance.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ディーゼルエンジンの蓄圧型燃料噴射装置に
関し、特に、進角装置を簡素化でき、燃料供給装置内に
進角装置を組み込んでその汎用性を高められるようにす
るとともに、進角装置の機構を簡素にして信頼性を高め
、更に、燃料噴射のための圧抜による運転騒音、噴射時
期の誤差及び次回の噴射量不足の発生を防止でき、しか
も、噴射器・燃料噴射ポンプ・ポンプ復動用蓄圧室等を
初期状態に戻す機構を簡素化できるようにしたディーゼ
ルエンジンの蓄圧型燃料噴射装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a pressure accumulation type fuel injection device for a diesel engine, and in particular, the advance angle device can be simplified, and the advance angle device can be incorporated into the fuel supply device. In addition to increasing versatility, the mechanism of the advance angle device is simplified to improve reliability, and it also reduces the occurrence of operational noise, errors in injection timing, and insufficient injection amount the next time due to pressure relief for fuel injection. The present invention relates to a pressure accumulation type fuel injection device for a diesel engine that can prevent the above problems and also simplify the mechanism for returning the injector, fuel injection pump, pump double-acting pressure accumulation chamber, etc. to the initial state.

く前提構成ン 本発明は、第1図に示すように、燃料タンク11を調圧
装置12、調量装置f14、遮断弁25及び燃料噴射ポ
ンプ26を介して蓄圧式燃料噴射器29に連通連結し、
燃料噴射ポンプ26に遮断弁を介してポンプ復動用蓄圧
室27を連通し、調圧装置12はエンジンの回転速度に
対応して燃料供給圧を高めるように構成したディーゼル
エンジンの蓄圧型燃料噴射装置を前提にして発明された
ものである。ここで、蓄圧型燃料噴射器29とは、第1
1図に例示するように、燃料を閉弁加圧用燃料室85及
び逆止弁95を通って噴射燃料蓄圧室86に圧入した後
、閉弁加圧用燃料室85の内圧を減圧し、噴射器29の
閉弁加圧用燃料室85の内圧が所定値を下回ると噴射燃
料蓄圧室86の内圧が閉弁バネ91の閉弁付勢力及び閉
弁加圧用燃料室85の内圧に打ち勝って噴射弁88を開
弁させ、噴射燃料蓄圧室86の燃料が噴射孔87から噴
射されるようになっている噴射器を言う。上記閉弁加圧
用燃料室85は、通常、燃料噴射ポンプ26のポンプ室
82に連通される。
The present invention, as shown in FIG. death,
A pressure accumulation type fuel injection device for a diesel engine, in which a fuel injection pump 26 is connected to a pressure accumulation chamber 27 for double-acting pump via a cutoff valve, and a pressure regulation device 12 is configured to increase fuel supply pressure in accordance with the rotational speed of the engine. It was invented on the premise that Here, the pressure accumulation type fuel injector 29 refers to the first
As illustrated in FIG. 1, after the fuel is injected into the injection fuel pressure accumulation chamber 86 through the valve-closing pressurizing fuel chamber 85 and the check valve 95, the internal pressure of the valve-closing pressurizing fuel chamber 85 is reduced, and the injector When the internal pressure of the valve-closing pressurizing fuel chamber 85 of No. 29 falls below a predetermined value, the internal pressure of the injected fuel accumulating chamber 86 overcomes the valve-closing force of the valve-closing spring 91 and the internal pressure of the valve-closing pressurizing fuel chamber 85, and the injection valve 88 This is an injector in which the valve is opened and the fuel in the injected fuel pressure accumulation chamber 86 is injected from the injection hole 87. The valve closing pressurization fuel chamber 85 is normally communicated with the pump chamber 82 of the fuel injection pump 26 .

〈従来の技術〉 従来、この閉弁加圧用燃料室85の内圧は、ポンプ室8
2から逆止弁95を開いて燃料を噴射燃料蓄圧室86に
圧入した後、プランジャ81を上昇させることにより減
圧される。そしてプランジャ81の上昇は、第14図に
示すように、クランク軸(第2図に示す)に連動する駆
動装置5の燃料噴射カム30によって直接に、あるいは
、カムフォロア31、プッシュロッド32、ロッカーア
ーム33等を介して制限されている。また、上記カムフ
ォロア31は、エンジンの肉壁部105に回転可能に支
持された進角用の偏心軸106に偏心支持され、エンジ
ンの回転速度に対応して偏心軸106を進角側あるいは
遅角側に回転させることによりカムフォロア31と燃料
噴射カム°3oとの接触位置を変化させて燃料噴射時期
を調節するように構成されている。
<Prior art> Conventionally, the internal pressure of this valve closing pressurizing fuel chamber 85 is equal to that of the pump chamber 8.
After the check valve 95 is opened from 2 to pressurize the fuel into the injection fuel pressure storage chamber 86, the pressure is reduced by raising the plunger 81. As shown in FIG. 14, the plunger 81 is raised directly by the fuel injection cam 30 of the drive device 5 linked to the crankshaft (shown in FIG. 2), or by the cam follower 31, push rod 32, or rocker arm. 33 etc. Further, the cam follower 31 is eccentrically supported by an eccentric shaft 106 for advance angle which is rotatably supported by a wall portion 105 of the engine, and the eccentric shaft 106 is moved toward an advance angle or a retard angle depending on the rotational speed of the engine. By rotating the cam follower 31 toward the side, the contact position between the cam follower 31 and the fuel injection cam 3o is changed, thereby adjusting the fuel injection timing.

〈先行発明〉 このように構成された従来のディーゼルエンジンの蓄圧
型燃料噴射装置では、部分負荷時にはプランジャ81が
上死点まで上昇しない結果、運転騒音が発生したり、噴
射時期を高精度に決定することが困難になると言う問題
があった。
<Prior Invention> In the conventional pressure accumulation type fuel injection device for a diesel engine configured as described above, the plunger 81 does not rise to top dead center during partial load, resulting in operational noise and difficulty in determining injection timing with high precision. The problem was that it was difficult to do so.

そこで、本発明者は、このような問題を解決するために
、本発明に先だって、第1図に示すように、ディーゼル
エンジンの燃料タンク1を調圧装置12、調量装置14
、遮断弁25及び燃料噴射ポンプ26を介して蓄圧式燃
料噴射器29に連通連結し、燃料噴射ポンプ26に遮断
弁を介してポンプ復動用蓄圧室27を連通したディーゼ
ルエンジンの蓄圧型燃料噴射装置を発明した。
Therefore, in order to solve such problems, the inventor of the present invention, prior to the present invention, installed a fuel tank 1 of a diesel engine with a pressure regulating device 12 and a metering device 14, as shown in FIG.
, a pressure accumulation type fuel injection device for a diesel engine, which is connected to a pressure accumulation type fuel injector 29 via a cutoff valve 25 and a fuel injection pump 26, and is connected to a pressure accumulation chamber 27 for reciprocating pump operation to the fuel injection pump 26 via a cutoff valve. invented.

この先行発明によれば、プランジャ81の下降ストロー
クにおいてポンプ復動用蓄圧室27に蓄圧された燃料が
プランジャ81の上昇ストロークにおいてポンプ室81
に圧入され、プランジャ81が常時上死点に復帰させら
れることになり、上記の問題は解決される。
According to this prior invention, the fuel accumulated in the pump reciprocating pressure accumulation chamber 27 during the downward stroke of the plunger 81 is transferred to the pump chamber 81 during the upward stroke of the plunger 81.
Since the plunger 81 is press-fitted into the top dead center, the above problem is solved.

しかしながら、噴射時期は燃料噴射ポンプ26を駆動す
る駆動装置5によって決定されており、この駆動値W5
はエンジンのサイズ等が異なるごとにその構成、部品の
形状及び寸法等が異ならせられ、汎用性に乏しいという
問題がある。また、進角装置が上記駆動装置5に組み込
まれており、その汎用性も乏しいという問題もある。
However, the injection timing is determined by the drive device 5 that drives the fuel injection pump 26, and this drive value W5
The problem is that the structure, shape and dimensions of the parts are different depending on the size of the engine, and it lacks versatility. Another problem is that the advance angle device is built into the drive device 5, and its versatility is also poor.

そこで、本発明者は更に本発明に先だって、第1図に示
すように、上記の先行発明の構成を備えるディーゼルエ
ンジンの蓄圧型燃料噴射装置において、次のように改良
されたものを発明した。
Therefore, prior to the present invention, as shown in FIG. 1, the present inventor invented an accumulator fuel injection system for a diesel engine having the configuration of the prior invention described above, which was improved as follows.

即ち、調圧装置12はエンジンの回転速度に対応して燃
料供給圧を高めるように構成し、燃料噴射器29の閉弁
加圧用燃料室85に燃料噴射ポンプ26及び遮断弁25
を介して噴射時期決定用圧抜弁19及び噴射時期調節用
進角弁20を順に接続し、 上記圧抜弁19は弁箱56の導入口24に圧抜用弁体5
7の圧抜用弁体通路59をクランク軸Cに調時連通させ
るように構成し、 上記進角弁20は前記圧抜用弁体通路59を圧抜用弁体
57の回転方向にそって複数個設けるとともに、この複
数個の進角用弁体通路59に進角用弁体61の進角用通
路62を選択連通可能に構成し、 進角用弁体61を遅角付勢手段65で遅角側へ付勢する
とともに、進角用受圧室63の燃料圧で進角側に付勢す
るように構成し、進角用受圧室63を前記調圧装置12
に連通させたディーゼルエンジンの蓄圧型燃料噴射装置
を発明した。
That is, the pressure regulating device 12 is configured to increase the fuel supply pressure in accordance with the rotational speed of the engine, and the fuel injection pump 26 and the cutoff valve 25 are connected to the fuel chamber 85 for pressurizing the valve of the fuel injector 29.
The pressure relief valve 19 for determining the injection timing and the advance valve 20 for adjusting the injection timing are connected in sequence through the pressure relief valve 19 and the pressure relief valve 5 to the inlet 24 of the valve box 56
The advance valve 20 is configured to connect the pressure relief valve body passage 59 of No. 7 to the crankshaft C in timing communication, and the advance valve 20 connects the pressure relief valve body passage 59 along the rotational direction of the pressure relief valve body 57. A plurality of advance valve bodies 61 are provided, and the advance passages 62 of the advance valve bodies 61 are selectively communicated with the advance valve bodies 61 through the advance valve body passages 59 . The pressure receiving chamber 63 is configured to be biased toward the retard side and biased toward the advance side by the fuel pressure in the advance pressure receiving chamber 63.
invented an accumulator fuel injection system for diesel engines that communicates with

この改良された先行発明によれば、燃料が噴射器29に
圧入された後、圧抜弁19を開弁して閉弁加圧用蓄圧室
85の内圧を減圧することにより噴射弁88が開弁され
る。従って、噴射時期は進角弁20によって選択された
圧抜弁19の噴射時期決定用弁体通路59が弁箱56の
導入口24に連通ずるタイミングによって高精度に決定
される。
According to this improved prior invention, after fuel is pressurized into the injector 29, the injection valve 88 is opened by opening the pressure relief valve 19 and reducing the internal pressure of the pressure accumulation chamber 85 for valve closing pressurization. Ru. Therefore, the injection timing is determined with high precision by the timing when the injection timing determining valve body passage 59 of the pressure relief valve 19 selected by the advance valve 20 communicates with the inlet 24 of the valve box 56.

また、進角用弁体61の位置が調圧装置12によりエン
ジンの回転速度に対応して燃料供給圧を高められる進角
用受圧室63の内圧に依存して決定れるので、噴射時期
を調整する進角装置の機構を簡素化できる。更に、上記
圧抜弁19及び進角弁20が燃料供給装置内に組み込ま
れるのでエンジンのサイズ等に無関係に汎用化すること
ができる。
In addition, since the position of the advance valve body 61 is determined depending on the internal pressure of the advance pressure receiving chamber 63, which increases the fuel supply pressure according to the rotational speed of the engine by the pressure regulator 12, the injection timing can be adjusted. The mechanism of the advance angle device can be simplified. Further, since the pressure relief valve 19 and the advance valve 20 are incorporated into the fuel supply system, it can be used for general purposes regardless of the engine size.

〈発明が解決しようとする問題点〉 しかしながら、上記の改良された先行発明によれば、燃
料噴射時に閉弁加圧用燃料室85から燃料が逃されるの
で、これと連通ずるポンプ室82及びポンプ復動用蓄圧
室27内の燃料が初期状態よりも少なくなり、プランジ
ャ81の上昇ストロークにおいてプランジャ81が上死
点まで戻れな(なり、その結果、駆動装置5の各部品間
あるいは駆動装置5とプランジャ81との間に隙間がで
きて運転騒音を発生すること、次回に噴射器29に燃料
を圧入するときに調量された量よりも少なく圧入され、
噴射量が不足すること等の問題も生しることが分かった
<Problems to be Solved by the Invention> However, according to the above-mentioned improved prior invention, since fuel is released from the valve-closing pressurizing fuel chamber 85 during fuel injection, the pump chamber 82 and the pump return valve communicating with the valve-closing pressurizing fuel chamber 85 are The fuel in the dynamic pressure accumulator 27 becomes less than the initial state, and the plunger 81 cannot return to the top dead center during the upward stroke of the plunger 81 (as a result, damage occurs between each component of the drive device 5 or between the drive device 5 and the plunger 81 There is a gap between the fuel and the fuel, which causes operational noise.The next time fuel is injected into the injector 29, less fuel is injected than the metered amount.
It was also found that problems such as insufficient injection amount occurred.

本発明は、上記の事情を考慮してなされたものであって
、進角装置の機構を簡素化でき、燃料噴射装置を進角装
置付にしてその汎用性を高められるようにするとともに
、噴射時期を調節する進角装置の機構を簡素化して信頼
性を高め、更に、燃料噴射後に噴射器、燃料噴射ポンプ
、ポンプ復動用蓄圧室等を確実に初期状態に戻せるよう
にし、しかも、この初期状態に戻すための機構を簡素に
できるようにしたディーゼルエンジンの蓄圧型燃料噴射
装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and it is possible to simplify the mechanism of the advance angle device, increase the versatility of the fuel injection device by equipping it with an advance device, and The mechanism of the advance device that adjusts the timing has been simplified to improve reliability, and the injector, fuel injection pump, pump return pressure accumulator, etc. can be returned to the initial state reliably after fuel injection. It is an object of the present invention to provide a pressure accumulation type fuel injection device for a diesel engine which can simplify a mechanism for returning to the state.

く問題点を解決するための手段〉 本発明では、上記の前提構成を備えるディーゼルエンジ
ンの蓄圧型燃料噴射装置において上記の目的を達成する
ために次のような技術的手段が講じられる。
Means for Solving the Problems> In the present invention, the following technical measures are taken in order to achieve the above object in a pressure accumulation type fuel injection device for a diesel engine having the above-mentioned prerequisite configuration.

すなわち、第1図に示すように、燃料噴射器29の閉弁
加圧用燃料室85に燃料噴射ポンプ26及び遮断弁25
を介して噴射時期決定用圧抜弁19及び噴射時期調節用
進角弁20を順に接続し、噴射時期決定用圧抜弁19は
弁箱56の導入口24に圧抜用弁体通路59をクランク
軸Cと調時させて連通させるように構成し、 噴射時期調節用進角弁20は、前記圧抜用弁体通路59
を圧抜用弁体の回転方向に沿って複数個設けるとともに
、この複数個の圧抜用弁体通路59に亘って進角用弁体
通路62を選択連通可能に構成し、 進角用弁体61を遅角付勢手段65により遅角側へ付勢
するとともに、進角用受圧室63の燃料圧で進角側に付
勢するように構成し、進角用受圧室63を前記調圧装置
12に連通させ、圧抜用弁体57に圧抜用弁体通路59
から独立した初期圧供給路23を形成し、初期圧供給路
23の始端部を前記進角用受圧室63に連通させるとと
もに、その終端部が前記噴射時期決定用圧抜弁19の導
入口24に調時連通可能に構成される。
That is, as shown in FIG.
The pressure relief valve 19 for determining the injection timing and the advance valve 20 for adjusting the injection timing are connected in order through the pressure relief valve 19 for determining the injection timing. The injection timing adjustment advance valve 20 is configured to communicate with the pressure relief valve body passage 59 in a timed manner.
A plurality of valve bodies for pressure relief are provided along the rotational direction of the valve body for pressure relief, and an advance valve body passage 62 is configured to be selectively communicated across the plurality of valve body passages 59 for pressure relief. The body 61 is biased toward the retard side by the retard biasing means 65 and biased toward the advance side by the fuel pressure in the advance pressure chamber 63, and the advance pressure chamber 63 is biased toward the advance side by the fuel pressure in the advance pressure chamber 63. A pressure relief valve body passage 59 is connected to the pressure device 12 and the pressure relief valve body 57 is connected to the pressure relief device 12 .
An initial pressure supply passage 23 is formed independent of the initial pressure supply passage 23, and the starting end of the initial pressure supply passage 23 is communicated with the advance pressure receiving chamber 63, and the terminal end thereof is connected to the introduction port 24 of the injection timing determining pressure relief valve 19. It is configured to enable timed communication.

〈発明の作用〉 本発明のディーゼルエンジンの蓄圧型噴射装置によれば
、進角弁20によって選択された噴射時期決定用圧抜弁
19の噴射時3Ul決定決定体弁路59がクランク軸C
に調時して弁箱56の導入口24に連通ずると、閉弁加
圧用燃料室85の燃料が該圧抜弁19から外部に逃され
、閉弁加圧室85の内圧が減圧され、噴射弁88が開弁
されて噴射孔87から燃料が噴射される。この噴射時期
は、進角弁20の進角用弁体通路62がどの圧抜用弁体
通路59に連通ずるかによって調節される。進角用弁体
通路62がどの圧抜用弁体通路59に連通ずるかは、遅
角付勢手段65と進角用受圧室63の燃料圧とがバラン
スする進角用弁体61の位置によって決定される。進角
用受圧室63は、エンジンの回転速度に対応して燃料の
供給圧力を高めるように構成された調圧装置12から燃
料を受けるので、上記進角用弁体61の位置はエンジン
の回転速度に対応して進角側に移動されることになる。
<Operation of the Invention> According to the pressure accumulation type injection device for a diesel engine of the present invention, the 3Ul determining body valve passage 59 at the time of injection of the pressure relief valve 19 for determining the injection timing selected by the advance valve 20 is connected to the crankshaft C.
When the fuel chamber 85 for valve closing pressurization is communicated with the inlet port 24 of the valve box 56 at the same time, the fuel in the valve closing pressurizing fuel chamber 85 is released to the outside from the pressure relief valve 19, the internal pressure of the valve closing pressurizing chamber 85 is reduced, and the fuel is injected. The valve 88 is opened and fuel is injected from the injection hole 87. This injection timing is adjusted depending on which pressure release valve body passage 59 the advance valve body passage 62 of the advance valve 20 communicates with. Which pressure release valve body passage 59 the advance valve body passage 62 communicates with depends on the position of the advance valve body 61 where the retardation biasing means 65 and the fuel pressure in the advance pressure receiving chamber 63 are balanced. determined by Since the advance pressure receiving chamber 63 receives fuel from the pressure regulator 12 that is configured to increase the fuel supply pressure in accordance with the rotational speed of the engine, the position of the advance valve body 61 is adjusted according to the rotational speed of the engine. It will be moved to the advance angle side in accordance with the speed.

また、燃料噴射終了後には、閉弁加圧用燃料室85、燃
料噴射ポンプ26及びポンプ復動用蓄圧室27が、初期
圧供給路23、進角用受圧室63を介して前記調圧装置
12に連通されるので、閉弁加圧用燃料室85、燃料噴
射ポンプ26及びポンプ復動用蓄圧室27に噴射時に逃
された燃料が調圧装置12から補充され、それらの内圧
が確実に初期状態に戻されることになる。
Further, after the fuel injection is completed, the valve closing pressurization fuel chamber 85, the fuel injection pump 26, and the pump reciprocating pressure accumulation chamber 27 are connected to the pressure regulating device 12 via the initial pressure supply path 23 and the advance pressure receiving chamber 63. Since the valve-closing pressurization fuel chamber 85, the fuel injection pump 26, and the pump double-acting pressure accumulation chamber 27 are refilled with the fuel that escaped during injection from the pressure regulator 12, their internal pressures are reliably returned to their initial states. It will be.

〈実施例〉 以下、本発明の実施例を図面に基づき説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

このディーゼルエンジンの燃料装置は、第1図に示すよ
うに、燃料タンク1内の燃料を調量供給装置2によりエ
ンジンの負荷条件に対応して調量し、タイミング制御複
合弁装置3の供給時期決定弁1日を介して所定のタイミ
ングでユニットインジェクタ4に供給し、燃料噴射ポン
プ26を駆動装置5で駆動することにより蓄圧式燃料噴
射器29に圧入した後、タイミング制御複合弁装置3の
噴射時!IIl設定用圧抜弁19及び噴射時′M調節用
進角弁20により蓄圧式燃料噴射器29の閉弁加圧用燃
料室85の燃料を圧抜燃料呼吸室21に逃がして閉弁加
圧用燃料室85の内圧を減圧し、これにより噴射弁88
を開弁させて噴射燃料蓄圧室86から噴射孔87を介し
て燃料を噴射させ、噴射終了後の所定のタイミングで、
圧抜燃料呼吸室21内の燃料を圧抜燃料戻し通路22を
介してユニットインジェクタ4に吐き戻して圧抜により
減量された燃料をユニットインジェクタ4に戻し、この
後、タイミング制御複合弁装置3の初期圧供給路23を
ユニットインジェクタ4に連通させてユニットインジェ
クタ4を初期状態に復帰させるようになっている。
As shown in FIG. 1, this diesel engine fuel system measures the amount of fuel in a fuel tank 1 according to the load conditions of the engine using a metering supply device 2, and controls the timing control compound valve device 3 to determine when the fuel is supplied. The fuel is supplied to the unit injector 4 at a predetermined timing via the determining valve 1, and after being pressurized into the accumulating fuel injector 29 by driving the fuel injection pump 26 with the drive device 5, the fuel is injected by the timing control compound valve device 3. Time! The fuel in the fuel chamber 85 for valve closing pressurization of the pressure accumulation type fuel injector 29 is released to the pressure relief fuel breathing chamber 21 by the pressure relief valve 19 for setting IIl and the advance valve 20 for adjusting 'M at the time of injection to the fuel chamber 85 for valve closing pressurization of the pressure accumulation type fuel injector 29. This reduces the internal pressure of the injection valve 88.
The valve is opened to inject fuel from the injection fuel accumulation chamber 86 through the injection hole 87, and at a predetermined timing after the injection ends,
The fuel in the depressurized fuel breathing chamber 21 is discharged back to the unit injector 4 via the depressurized fuel return passage 22, and the fuel reduced by the depressurization is returned to the unit injector 4. The unit injector 4 is returned to its initial state by communicating the initial pressure supply path 23 with the unit injector 4.

上記iII量供給装置2は、第2図に示すように、厚内
円筒状のケーシング6内に組み込まれたトランスファポ
ンプ10、調圧装置12(第4図)、調量装置14及び
圧送ポンプ16を備え、燃料タンク1からトランスファ
ポンプ10で図示しない燃料パイプ、入口継手8(第4
図)及び入口通路9゛(第4図)を介して燃料を汲み出
し、トランスファポンプ10から吐出される燃料の圧力
を調圧装置12でエンジンの回転速度に対応して(例え
ば、正比例させて)増減させ、調圧された燃料を調量装
置14でエンジンの負荷状態に対応して調量し、調圧・
調量された燃料を圧送ポンプ16でタイミング制御複合
弁装置3に圧送するように構成されている。
As shown in FIG. 2, the III quantity supply device 2 includes a transfer pump 10, a pressure regulating device 12 (FIG. 4), a metering device 14, and a pressure pump 16, which are built into a thick cylindrical casing 6. A fuel pipe (not shown) and an inlet joint 8 (fourth
) and the inlet passage 9' (Fig. 4), and the pressure of the fuel discharged from the transfer pump 10 is adjusted by the pressure regulator 12 to correspond to (for example, directly proportional to) the rotational speed of the engine. The metering device 14 measures the fuel whose pressure has been adjusted according to the load condition of the engine, and adjusts the pressure.
The metered fuel is configured to be pressure-fed to the timing control compound valve device 3 by a pressure-feeding pump 16.

トランスファポンプ10はケーシング6の前端部に形成
されたポンプ室34を有し、このポンプ室34内には、
第3図に示すように、ケーシング6を貫通する主軸7に
固定されるインナロータ35と、これに偏心状に噛み合
わされたアウタロータ36が挿入され、入口通路9から
吸入口37°を経て燃料を両ロータ35.36の間に吸
入し、吐出口38から吐出通路11に吐出するようにな
っている。
The transfer pump 10 has a pump chamber 34 formed at the front end of the casing 6, and inside this pump chamber 34,
As shown in FIG. 3, an inner rotor 35 fixed to the main shaft 7 passing through the casing 6 and an outer rotor 36 eccentrically meshed with the inner rotor 35 are inserted, and fuel is supplied from the inlet passage 9 through the suction port 37° to both sides. It is sucked in between the rotors 35 and 36 and discharged from the discharge port 38 into the discharge passage 11.

調圧装置12は、第4図に示すように、吐出通路11に
分岐接続され、ケーシング6に螺着された調圧プラグ3
9と、これに摺動可能に内嵌された調圧弁体40と、こ
の調圧弁体40を閉弁位置に付勢する閉弁バネ41とを
備える。調圧プラグ39の周壁には調圧弁孔42を開口
させてあり、この調圧弁孔42は入口通路9に連通され
る。上記トランスファポンプ10の吐出圧はエンジンの
′回転速度に対応して2次関数的に変化し、この吐出圧
を受けて調圧弁体40が閉弁バネ41に抗して開弁方向
に付勢される。この調圧装置12では、調圧弁体40の
閉弁位置からの変位量に対する調圧弁孔42の開口面積
を適宜設定することによって、エンジンの回転速度に対
応して調圧装置12から入口通路9に逃される燃料量を
調節し、吐出通路11の内圧が正確にエンジンの回転速
度に正比例して増減されるようになっている。もつとも
、調圧装置12によって制御される吐出通路11の内圧
とエンジンの回転速度との対応関係は正比例に限定され
るものではなく、例えば、高速になるほど吐出通路11
の内圧の増加率が減少するように構成してもよく、逆に
高速になるほど吐出通路11の内圧の増加率が増大する
ように構成してもよい。尚、上記調圧プラグ3つには、
これと調圧弁体42との間からリークした燃料を排出す
る図示しないドレンバイブを1妾続するためのドレンバ
イブ用継手43が連設されている。
As shown in FIG. 4, the pressure regulating device 12 includes a pressure regulating plug 3 that is branch-connected to the discharge passage 11 and screwed onto the casing 6.
9, a pressure regulating valve body 40 slidably fitted therein, and a valve closing spring 41 biasing the pressure regulating valve body 40 to the valve closing position. A pressure regulating valve hole 42 is opened in the peripheral wall of the pressure regulating plug 39, and this pressure regulating valve hole 42 communicates with the inlet passage 9. The discharge pressure of the transfer pump 10 changes quadratically in response to the rotational speed of the engine, and in response to this discharge pressure, the pressure regulating valve body 40 is biased in the valve opening direction against the valve closing spring 41. be done. In this pressure regulating device 12, by appropriately setting the opening area of the pressure regulating valve hole 42 with respect to the amount of displacement of the pressure regulating valve body 40 from the valve closing position, the pressure regulating device 12 is connected to the inlet passage 9 in response to the rotational speed of the engine. The internal pressure of the discharge passage 11 is increased or decreased in exact proportion to the rotational speed of the engine. However, the correspondence between the internal pressure of the discharge passage 11 controlled by the pressure regulator 12 and the rotational speed of the engine is not limited to being directly proportional; for example, the higher the speed, the more the discharge passage 11
The rate of increase in the internal pressure of the discharge passage 11 may be configured to decrease, or conversely, the rate of increase in the internal pressure of the discharge passage 11 may be configured to increase as the speed increases. In addition, for the three pressure regulating plugs mentioned above,
A drain vibe joint 43 for connecting a drain vibe (not shown) for discharging leaked fuel from between this and the pressure regulating valve body 42 is connected.

調量装置14は、第2図に示すように、主軸7の前半部
に進退可能に内嵌された31ピストン44を備えている
。この調量ピストン44はエンジンの回転速度に対応し
てフライウェイトイ5の推力によりガバナスプリング4
6の圧力に抗して燃料減量方向(ここでは前方)に駆動
されるようになっている。主軸7の内周面には吐出通路
11に連通する調量弁孔47が開口され、これに対向し
て1iftピストン44の周面にはその全周にわたって
調量弁体通路48が凹設されている。そして、エンジン
の回転速度に対応してIT]ffiピストン44が進退
することにより、調量弁孔47と調量弁体通路48との
接続面積を変更させることによりエンジンの回転速度に
対応するように流量が調整され、主軸7及びケーシング
6内に形成された出口通路49を経て圧送ポンプ16に
燃料が導かれる。
As shown in FIG. 2, the metering device 14 includes a 31-piston 44 fitted into the front half of the main shaft 7 so as to be movable forward and backward. This metering piston 44 is moved by the governor spring 4 by the thrust of the flyway toy 5 in accordance with the rotational speed of the engine.
6 in the direction of fuel reduction (in this case, forward). A metering valve hole 47 that communicates with the discharge passage 11 is opened in the inner circumferential surface of the main shaft 7, and a metering valve body passage 48 is recessed in the circumferential surface of the 1ift piston 44 over its entire circumference. ing. By moving the IT]ffi piston 44 forward and backward in response to the rotational speed of the engine, the connection area between the metering valve hole 47 and the metering valve body passage 48 is changed to correspond to the rotational speed of the engine. The flow rate is adjusted accordingly, and the fuel is introduced to the pressure pump 16 through the main shaft 7 and the outlet passage 49 formed in the casing 6.

尚、ガバナスプリング46の圧力は速度設定レバー50
をtS動操作して変更設定できるようになっている。
The pressure of the governor spring 46 is controlled by the speed setting lever 50.
It is now possible to change settings by operating the tS.

圧送ポンプ16は、第2図及び第5図に示すように、主
軸7の周面に形成された駆動カム51によりスイングア
ーム52を介して駆動されるプランジャ53と、プラン
ジャ53の進退に伴って容積が変化するポンプ室54と
を備えている。また、この圧送ポンプ16は上記プラン
ジャ53のストロークをトルク特性設定装置55により
変更設定することによりエンジンの用途に適した種々の
トルク特性に対応するポンプ特性を得られるように構成
されている。
As shown in FIGS. 2 and 5, the pressure pump 16 includes a plunger 53 that is driven via a swing arm 52 by a drive cam 51 formed on the circumferential surface of the main shaft 7, and a plunger 53 that moves forward and backward as the plunger 53 moves back and forth. A pump chamber 54 whose volume changes. Further, the pressure pump 16 is configured so that the stroke of the plunger 53 can be changed and set by a torque characteristic setting device 55 to obtain pump characteristics corresponding to various torque characteristics suitable for the application of the engine.

タイミング制御複合弁装置3は、小型化及びコンパクト
化を図るために、第2図及び第6図〜第8図に示すよう
に調量供給装置2の内部に組み込まれる。このタイミン
グ制御複合弁装置3は、本質的には第1図に示すように
それぞれ独立して設けることが可能な供給時期決定弁1
8と、噴射時期設定用圧抜弁19と、噴射時期調整用進
角弁20と、圧抜燃料呼吸室21とを、小型化及びコン
パクト化を図るために一体的に組み合わせたちのである
In order to achieve miniaturization and compactness, the timing control compound valve device 3 is incorporated into the metering supply device 2 as shown in FIG. 2 and FIGS. 6 to 8. This timing control composite valve device 3 essentially consists of supply timing determining valves 1 that can be provided independently, as shown in FIG.
8, a pressure relief valve 19 for setting injection timing, an advance valve 20 for adjusting injection timing, and a pressure relief fuel breathing chamber 21 are integrally combined in order to achieve miniaturization and compactness.

即ち、第2図、第6図〜第8図に示すように、各ユニッ
トインジェクタ4に燃料を圧送するタイミングを決定す
る供給時期決定弁18と、噴射時!UI設定用圧抜弁1
9はケーシング6の後半部からなる共通の弁箱56と、
主軸7の後半部からなる共通の弁体57とを備える。ケ
ーシング6の内周面の後端部には31RN供給装置2の
圧送ポンプ16から導出された圧送通路17が開口され
、その少し前方に各ユニットインジェクタ4への出入通
路(分配通路)24が周方向に等間隔をおいて開口させ
である。上記圧送通路17に対向する主軸7の部分には
供給時期決定用弁体通路58の連通溝部58aが全周に
わたって凹設され、この連通溝部58aの周方向の1箇
所から出入通路24のim過軌跡lに対向する主軸7外
周面の部分まで周面に沿って軸心方向に供給時期決定溝
部58bが連出される。そして、主軸7が図示しないク
ランク軸に連動して回転し、供給時期決定溝部58bが
出入通路24とが内外に重なり合って連通ずることによ
り圧送通路17から供給時期決定用弁体通路58を介し
て出入通路24に調圧・調量された燃料が圧入されるよ
うになっている。また、出入通路24の通過軌跡lに対
向する主軸7外周面の部分には、供給時期決定溝部58
aよりも後の所定のタイミングで出入通路24と連通さ
れる圧抜弁19の圧抜用弁体通路59が開口される。
That is, as shown in FIGS. 2 and 6 to 8, there is a supply timing determining valve 18 that determines the timing of pumping fuel to each unit injector 4, and a timing determination valve 18 that determines the timing for pumping fuel to each unit injector 4. Pressure relief valve 1 for UI setting
9 is a common valve box 56 consisting of the rear half of the casing 6;
A common valve body 57 formed from the rear half of the main shaft 7 is provided. A pressure feeding passage 17 led out from the pressure pump 16 of the 31RN supply device 2 is opened at the rear end of the inner circumferential surface of the casing 6, and a passage 24 leading in and out to each unit injector 4 (distribution passage) 24 is opened slightly in front of it. The openings are equally spaced in the direction. A communication groove 58a of the supply timing determining valve body passage 58 is recessed in the part of the main shaft 7 facing the pressure feeding passage 17 over the entire circumference. The supply timing determining groove portion 58b is extended in the axial direction along the circumferential surface up to a portion of the outer circumferential surface of the main shaft 7 facing the locus l. Then, the main shaft 7 rotates in conjunction with a crankshaft (not shown), and the supply timing determining groove portion 58b communicates with the inlet/outlet passage 24 by overlapping inside and outside, so that the supply timing determining groove portion 58b communicates with the inlet/outlet passage 24 from the pressure feeding passage 17 via the valve body passage 58 for determining the supply timing. Pressure-regulated and metered fuel is forced into the inlet/outlet passage 24. In addition, a supply timing determining groove portion 58 is provided in a portion of the outer peripheral surface of the main shaft 7 facing the passage locus l of the inlet/outlet passage 24.
At a predetermined timing after time a, the pressure relief valve body passage 59 of the pressure relief valve 19 communicating with the inlet/outlet passage 24 is opened.

供給時期決定弁18と噴射時期設定用圧抜弁19との共
通の弁体57である主軸7の後半部は更に噴射時期調節
用進角弁20の弁箱としての役目を有している。即ち、
主軸7の後半部内にはこれと同心状に円筒形の進角用弁
室60が形成され、この進角用弁室60に進角用弁体6
1が主軸7の軸心方向に進退可能に収納される。上記弁
体57には、その内周面における開口位置が主軸7の回
転方向及び軸心方向に異なる3木の圧抜用弁体通路59
がその周壁を貫通するように形成され、進角用弁体61
の周面には、その3本の圧抜用弁体通路59のうちの1
本または隣合う2本に連通する進角用弁体通路62が形
成される。この進角用弁体1ffl路62は進角用弁体
61の周面の全周にわたり凹設された周溝で構成されて
いる。進角用弁室60は進角用弁体61によって進角用
受圧室63と遅角付勢室64とに区画される。そして、
進角用受圧室63を調圧装置12により調圧される吐出
通路IIに連通させ、遅角付勢室64をほぼ定圧に保持
される入口通路9に連通させ、また、遅角付勢室64の
内部には、進角用弁体61を遅角方向に付勢する遅角付
勢手段65を収納して、後述するように、進角用弁体6
1の位置をエンジンの回転速度に対する調圧特性に依存
して高精度に制御できるように構成される。
The rear half of the main shaft 7, which is the common valve body 57 of the supply timing determining valve 18 and the pressure relief valve 19 for setting the injection timing, also serves as a valve box for the advance valve 20 for adjusting the injection timing. That is,
A cylindrical advance valve chamber 60 is formed concentrically within the rear half of the main shaft 7, and an advance valve body 6 is formed in this advance valve chamber 60.
1 is housed so that it can move forward and backward in the axial direction of the main shaft 7. The valve body 57 includes three pressure relief valve body passages 59 whose opening positions on the inner peripheral surface are different in the rotational direction and the axial direction of the main shaft 7.
is formed so as to pass through its peripheral wall, and the advancing valve body 61
One of the three pressure relief valve body passages 59 is provided on the circumferential surface of the
An advance valve body passage 62 is formed that communicates with one or two adjacent valves. The advancing valve element 1ffl passage 62 is constituted by a circumferential groove recessed over the entire circumference of the advancing valve element 61. The advance valve chamber 60 is divided into an advance pressure receiving chamber 63 and a retard biasing chamber 64 by an advance valve body 61 . and,
The advance pressure receiving chamber 63 is communicated with the discharge passage II whose pressure is regulated by the pressure regulator 12, the retard biasing chamber 64 is communicated with the inlet passage 9 maintained at approximately constant pressure, and the retard biasing chamber 64 accommodates a retard biasing means 65 for biasing the advance valve body 61 in the retard direction.
1 can be controlled with high precision depending on the pressure regulation characteristics with respect to the rotational speed of the engine.

尚、ここでは進角用弁体61が軸心方向に移動されて圧
抜用弁体通路59に選択的に連通されるようになってい
るが、エンジンの回転速度に対応して進角用弁体61が
軸心回りに回転して圧抜用弁体通路59に選択的に連通
されるように構成することも可能である。
Here, the advance valve body 61 is moved in the axial direction to selectively communicate with the pressure relief valve body passage 59, but the advance angle valve body 61 is moved in the axial direction to selectively communicate with the pressure relief valve body passage 59. It is also possible to configure the valve body 61 to rotate around the axis and selectively communicate with the pressure relief valve body passage 59.

圧抜燃料呼吸室21は、小型化及びコンパクト化を図る
ために進角用弁体61の内部に形成される。即ち、進角
用弁体61の内部は段付円筒状の空洞66が形成され、
この空洞66はこれの内部に摺動可能に内嵌されたピス
トン67により圧抜燃料呼吸室21と吐き戻し付勢室6
8とに区画される。吐き戻し付勢室68は、遅角付勢室
64を介して入口通路9に連通され、その内部に吐き戻
し付勢手段69を収納している。圧抜燃料呼吸室21は
、呼吸通路70により進角用弁体通路62に連通されて
いる。そして、出入通路24が圧抜用弁体通路59、進
角用弁体通路62及び呼吸通路70を介して圧抜燃料呼
吸室21に連通ずると、出入通路24側の燃料圧によっ
てピストン67が吐き戻し付勢室68側に押し込められ
、圧抜燃料呼吸室21に燃料が圧入される。これにより
、出入通路24に連通している蓄圧式燃料噴射器29の
閉弁加圧用燃料室85の内圧が減圧され、噴射弁87が
開弁されて燃料が噴射されるようになっている。
The depressurizing fuel breathing chamber 21 is formed inside the advance valve body 61 in order to achieve miniaturization and compactness. That is, a stepped cylindrical cavity 66 is formed inside the advance valve body 61.
This cavity 66 is formed into a depressurizing fuel breathing chamber 21 and a discharge biasing chamber 6 by a piston 67 slidably fitted inside the cavity 66.
It is divided into 8. The retardation biasing chamber 68 communicates with the inlet passage 9 via the retardation biasing chamber 64, and accommodates a retrieval biasing means 69 therein. The pressure relief fuel breathing chamber 21 is communicated with the advance valve body passage 62 through a breathing passage 70 . When the inlet/outlet passage 24 communicates with the pressure relief fuel breathing chamber 21 via the pressure relief valve body passage 59, the advance valve body passage 62, and the breathing passage 70, the piston 67 is moved by the fuel pressure on the side of the inlet/outlet passage 24. The fuel is pushed into the discharge biasing chamber 68 side, and the fuel is pressurized into the depressurized fuel breathing chamber 21. As a result, the internal pressure of the valve-closing pressurizing fuel chamber 85 of the pressure accumulation type fuel injector 29 communicating with the inlet/outlet passage 24 is reduced, and the injection valve 87 is opened to inject fuel.

出入通路24の通過軌跡lに対向する主軸7の周壁の部
分に、圧抜用弁体通路59よりも後の所定のタイミング
で出入通路24と連通される圧抜燃料戻し通路22が形
成されている。そして、圧抜燃料呼吸室21が呼吸通路
70、進角用弁体通路62及び圧抜燃料戻し通路22を
介して出入通路24に連通されることにより、吐き戻し
付勢手段69がピストン67を圧抜燃料呼吸室21側に
押し戻し、圧抜燃料呼吸室21に圧入された燃料が出入
通路24を経てユニ7)インジェクタ4に吐き戻される
ようになっている。
A depressurizing fuel return passage 22 is formed in a portion of the peripheral wall of the main shaft 7 facing the passage path l of the inlet/outlet passage 24, and communicates with the inlet/outlet passage 24 at a predetermined timing after the pressure relief valve body passage 59. There is. Then, the depressurized fuel breathing chamber 21 is communicated with the inlet/outlet passage 24 via the breathing passage 70 , the advance valve body passage 62 , and the depressurized fuel return passage 22 , so that the discharge biasing means 69 pushes the piston 67 . The fuel that has been pushed back to the depressurized fuel breathing chamber 21 side and pressurized into the depressurized fuel breathing chamber 21 is discharged back to the injector 4 through the inlet/outlet passage 24.

更に、出入通路24の通過軌跡iに対向する主軸7周壁
の部分に、圧抜燃料戻し通路22よりも後の所定のタイ
ミングで出入通路24と連通される初期圧供給路23が
凹設されている。この初期圧供給路23は、調圧装置1
2によって調圧されている吐出通路11に連通されてい
る。
Further, an initial pressure supply path 23 is recessed in a portion of the peripheral wall of the main shaft 7 facing the passage path i of the inlet/outlet passage 24, and communicates with the inlet/outlet passage 24 at a predetermined timing after the depressurization fuel return passage 22. There is. This initial pressure supply path 23 is connected to the pressure regulating device 1
It communicates with a discharge passage 11 whose pressure is regulated by 2.

ユニットインジェクタ4は、第1図及び第11図に示す
ように、出入通路3に接続される複合遮断弁25と燃料
噴射ポンプ26と、ポンプ復動用蓄圧室27と、遮断弁
復動用蓄圧室28と、蓄圧式燃料噴射器29とからなり
、燃料噴射ポンプ26は噴射器29のボディ83に内蔵
され、複合遮断弁25は更に燃料噴射ポンプ26のプラ
ンジャ81内に内蔵される。
As shown in FIGS. 1 and 11, the unit injector 4 includes a compound cutoff valve 25 connected to the inlet/outlet passage 3, a fuel injection pump 26, a pressure accumulation chamber 27 for double-action pump operation, and a pressure accumulation chamber 28 for double-operation cutoff valve. and a pressure accumulator fuel injector 29, the fuel injection pump 26 is built into the body 83 of the injector 29, and the compound cutoff valve 25 is further built into the plunger 81 of the fuel injection pump 26.

即ち、燃料噴射ポンプ26は、ボディ83の一側に噴射
管84と平行に、かつ、昇降可能に内嵌されたプランジ
ャ81と、ボディ84及びプランジャ81によって区画
されたポンプ室82を有する。プランジャ81は両端が
閉塞された中空筒状に形成され、その内部空間が複合遮
断弁25の弁室71を構成している。この弁室71には
スプール72が摺動可能に挿入され、このスプール72
によって弁室71がスプール72の移動ストロークの下
死点側のポンプ復動用蓄圧室27と、その上死点側の遮
断弁復動用付勢室73に区画される。
That is, the fuel injection pump 26 has a plunger 81 fitted on one side of the body 83 in parallel with the injection pipe 84 and movable up and down, and a pump chamber 82 partitioned by the body 84 and the plunger 81. The plunger 81 is formed into a hollow cylindrical shape with both ends closed, and its internal space constitutes the valve chamber 71 of the composite shutoff valve 25. A spool 72 is slidably inserted into this valve chamber 71.
As a result, the valve chamber 71 is divided into a pressure accumulation chamber 27 for pump return movement on the bottom dead center side of the movement stroke of the spool 72, and a biasing chamber 73 for shutoff valve return movement on the top dead center side.

この遮断弁復動用付勢室73は遮断弁復動用蓄圧室28
に連通されている。プランジャ81の周壁の中間高さ部
には出入通路24に連通ずる内部出入通路74が開口さ
れ、その下部にはポンプ室82に連通するポンプ連通路
75が開口され、その上部には遮断弁復動用蓄圧室28
及び遮断弁復動用付勢室73にi!!通ずる踏圧連通路
76が開口されている。スプール72には、その下端面
から上部に延びる中空孔77が形成され、スプール72
の周壁にはその中間高さから周面に延びて、常時内部出
入通路74に連通する連通孔78と、その下部から周面
に延びて、スプール72が上死点よりも下方に位置する
ときにポンプ連通路75に連通されるポンプ弁孔79と
、その上端部から周面に延びて、スプール72が上死点
及び下死点に位置するときに蓄圧連通路76に連通され
る蓄圧弁孔80とが形成されている。
This biasing chamber 73 for shutoff valve double operation is the pressure accumulator chamber 28 for double operation of the shutoff valve.
is communicated with. An internal inlet/outlet passage 74 communicating with the inlet/outlet passage 24 is opened at the intermediate height of the peripheral wall of the plunger 81, a pump communication passage 75 communicating with the pump chamber 82 is opened at the lower part thereof, and a shutoff valve is connected at the upper part thereof. Dynamic pressure storage chamber 28
and i! in the biasing chamber 73 for shutoff valve return operation. ! A tread pressure communication path 76 is opened. A hollow hole 77 is formed in the spool 72 and extends upward from the lower end surface of the spool 72.
The peripheral wall has a communication hole 78 extending from the middle height to the peripheral surface and always communicating with the internal inlet/outlet passage 74, and a communication hole 78 extending from the lower part to the peripheral surface when the spool 72 is located below the top dead center. a pump valve hole 79 that communicates with the pump communication passage 75; and a pressure accumulation valve that extends from its upper end to the circumferential surface and communicates with the pressure accumulation communication passage 76 when the spool 72 is located at the top dead center and the bottom dead center. A hole 80 is formed.

蓄圧式燃料噴射器29は、ボディ83の他側部に内嵌さ
れた噴射管8′4を備え、この噴射管84内の下半部に
閉弁加圧用燃料室85と第1蓄圧室96が上下一連に形
成され、噴射管84の下端部に1個または複数個(ここ
では2個)の噴射孔87が形成される。噴射孔87の近
傍で第1蓄圧室96と噴射孔87との接続を遮断する噴
射弁8日はニードル弁で構成され、その弁軸89の上端
部は、噴射管84の上半部内に形成された閉弁バネ室9
0に突入させである。閉弁バネ室90には噴射弁88を
閉弁付勢する閉弁バネ91が収納され、この閉弁バネ9
1の付勢力を調整する調整ナツト92は、噴射管84の
上端部に油密状に螺着されるカバーナツト93により覆
われる。カバーナツト93の内部空間94は閉弁バネ室
91と連通され、これとともに遮断弁復動用蓄圧室28
を構成している。閉弁加圧用燃料室85と第1蓄圧室9
6とは逆止弁95により区画される。この逆止弁95は
弁軸89の一部分を拡径して形成した弁座100と、こ
れの板面に接離する円環状の弁体101と、これを閉弁
付勢する閉弁バネ102からなる。また、噴射管84の
中間高さ部の周囲には、これとボディ83により区画さ
れた円環状の第2蓄圧室97が設けられ、この第2M圧
室97は燃料噴射ポンプ26と反対側のボディ83内部
に配置された第2蓄圧室用逆止弁98及び第2蓄圧室用
蓄圧設定弁99により第1蓄圧室96に接続され、第1
蓄圧室とともに噴射燃料蓄圧室86を構成している。尚
、第1蓄圧室96は比較的小容積に形成され、第2蓄圧
室97は比較的大容積に形成されている。
The pressure accumulation type fuel injector 29 includes an injection pipe 8'4 fitted in the other side of the body 83, and a fuel chamber 85 for valve closing pressurization and a first pressure accumulation chamber 96 in the lower half of the injection pipe 84. are formed in a series from top to bottom, and one or more (here, two) injection holes 87 are formed at the lower end of the injection pipe 84. The injection valve 8 that cuts off the connection between the first pressure accumulation chamber 96 and the injection hole 87 near the injection hole 87 is composed of a needle valve, and the upper end of the valve shaft 89 is formed in the upper half of the injection pipe 84. Closed valve spring chamber 9
Let it rush to 0. A valve-closing spring 91 that biases the injection valve 88 to close is housed in the valve-closing spring chamber 90.
An adjustment nut 92 for adjusting the biasing force of the injection pipe 84 is covered by a cover nut 93 screwed onto the upper end of the injection pipe 84 in an oil-tight manner. The internal space 94 of the cover nut 93 communicates with the valve-closing spring chamber 91, and together with this, the pressure accumulation chamber 28 for double operation of the shutoff valve.
It consists of Valve closing pressurization fuel chamber 85 and first pressure accumulation chamber 9
6 and is separated by a check valve 95. This check valve 95 includes a valve seat 100 formed by enlarging the diameter of a portion of the valve shaft 89, an annular valve body 101 that comes into contact with and separates from the plate surface of the valve seat 100, and a valve closing spring 102 that biases the valve to close the valve seat 100. Consisting of Further, a second pressure accumulation chamber 97 having an annular shape and partitioned by the intermediate height portion of the injection pipe 84 and the body 83 is provided, and this second M pressure chamber 97 is located on the opposite side from the fuel injection pump 26. It is connected to the first pressure accumulation chamber 96 by a second pressure accumulation chamber check valve 98 and a second pressure accumulation chamber pressure setting valve 99 arranged inside the body 83.
Together with the pressure accumulation chamber, an injected fuel pressure accumulation chamber 86 is configured. Note that the first pressure accumulation chamber 96 is formed to have a relatively small volume, and the second pressure accumulation chamber 97 is formed to have a relatively large volume.

尚、上記吐出ill!!allは調量装置12の直前部
分で緊急停止用電磁弁13により遮断できるように成っ
ており、また、出口通路49は手動停止弁15によって
遮断できるように成っている。
In addition, the above discharge ill! ! all can be shut off by an emergency stop solenoid valve 13 immediately in front of the metering device 12, and the outlet passage 49 can be shut off by a manual stop valve 15.

次に、この燃料装置の動作を説明する。Next, the operation of this fuel system will be explained.

第12図(1)に示すように、初期状態では、プランジ
ャ81は上死点に位置し、スプール72は下死点に位置
させられる。また、遮断弁復動用蓄圧室28、ポンプ復
動用蓄圧室27、遮断弁復動用付勢室73及びポンプ室
82の内圧は調圧袋!12により調圧された基準圧にな
っている。ここで、第13図(1)〜第13図(6)の
a時点[以下、単にa時点という。第13図(1)ない
し第13図(6)の他の時点についても同様とする]か
らb時点にわたって供給時期決定弁18の供給時期決定
溝58aと出入通路24が連通され、yI量・調圧され
た燃料Vinがユニットインジェクタ4に圧入される。
As shown in FIG. 12(1), in the initial state, the plunger 81 is located at the top dead center, and the spool 72 is located at the bottom dead center. In addition, the internal pressures of the shutoff valve double-acting pressure accumulating chamber 28, the pump double-acting pressure accumulating chamber 27, the shutoff valve double-acting biasing chamber 73, and the pump chamber 82 are controlled by pressure regulating bags! The reference pressure is regulated by 12. Here, time a in FIGS. 13(1) to 13(6) [hereinafter simply referred to as time a]. The same applies to the other points in FIG. 13(1) to FIG. 13(6)] to point b, the supply timing determining groove 58a of the supply timing determining valve 18 and the inlet/outlet passage 24 are communicated, and the yI amount/adjustment is performed. The pressurized fuel Vin is press-fitted into the unit injector 4.

この燃料Vinはまず第12図(2)に示すようにポン
プ復動用蓄圧室27に圧入され、スプール72は下死点
から中間高さまで押し上げられる。この後のC時点から
駆動装置5によってプランジャ81が下降させられると
、ホンプ室82、ポンプ復動用蓄圧室27、遮断弁復動
用付勢室73及び遮断弁復動用蓄圧室28の内圧がしだ
いに上昇し、第12図(3)に示すように、ポンプ室8
2からポンプ復動用蓄圧室27に最大噴射lVmaxと
等しい量の燃料が圧入されたとき、すなわち、プランジ
ャ81の残りのストロークでポンプ室82から押し出さ
れる燃料の量が圧入された燃料Vinと等しくなったと
きにスプール72が上死点まで上昇させられる。C時点
からスプール72が上死点に達するd時点までのプラン
ジャ81の下降ストローク中は燃料噴射器29の逆止弁
95が閉弁されており、燃料噴射器29には燃料が圧入
されないので、無効ストロークと呼ぶ。スプール72が
上死点に達するとポンプ室82の内圧が逆止弁95の開
弁圧に達するとともにポンプ連通路75とポンプ弁孔7
9とが遮断される。また、蓄圧弁孔80が蓄圧連通路7
6と連通され、ポンプ復動用蓄圧室27の内圧が遮断弁
復動用蓄圧室28及び遮断弁復動用付勢室73の内圧と
一敗するように補正される。そして、このd時点以後、
プランジャ81が下降してポンプ室82の内圧が更に上
昇するに連れ、燃料Vinが噴射燃料蓄圧室86に圧入
される。噴射燃料蓄圧室86に圧入される燃料は、その
圧力が第2M圧室97の内圧に達するe時点までは専ら
第1蓄圧室98に圧入され、その圧力が第2蓄圧室97
の内圧を上回ると第2M圧室用逆止弁98が開弁されて
第2m圧室97にも圧入される。第2蓄圧室97の内圧
が蓄圧設定弁99の設定圧以上になると蓄圧設定弁99
が開弁され、逆止弁98は閉弁される。第12図(4)
に示すようにプランジャ81が下死点に到達する1時点
では、燃料の圧力上昇が止まり、逆止弁95が閉弁され
て噴射燃料蓄圧室86に燃料Vinが高圧で蓄圧される
。そして、この後の所定のg時点で、出入通路24が圧
抜用弁体通路59、進角用弁体通路62及び呼吸通路7
0を介して圧抜燃料呼吸室21に連通され、出入通路2
4の内圧が減圧され始める。この減圧開始のタイミング
は、進角用弁体通路62に連通している圧抜用弁体通路
59が出入通路24に連通ずることにより設定されるの
で、エンジンの回転速度が速い場合には標〈心的なタイ
ミングよりも速くなり、エンジンの回転速度が遅い場合
には標準的なタイミングよりも遅くなる。
This fuel Vin is first pressurized into the pump double-acting pressure storage chamber 27 as shown in FIG. 12(2), and the spool 72 is pushed up from the bottom dead center to an intermediate height. When the plunger 81 is lowered by the drive device 5 from the subsequent point C, the internal pressures of the pump chamber 82, the pump double-action pressure storage chamber 27, the shutoff valve double-action biasing chamber 73, and the cutoff valve double-action pressure storage chamber 28 gradually increase. As shown in FIG. 12 (3), the pump chamber 8
2, when an amount of fuel equal to the maximum injection lVmax is pressurized into the pump reciprocating pressure storage chamber 27, that is, the amount of fuel pushed out from the pump chamber 82 by the remaining stroke of the plunger 81 becomes equal to the pressurized fuel Vin. When this occurs, the spool 72 is raised to the top dead center. During the downward stroke of the plunger 81 from time C to time d when the spool 72 reaches the top dead center, the check valve 95 of the fuel injector 29 is closed and no fuel is pressurized into the fuel injector 29. This is called an invalid stroke. When the spool 72 reaches the top dead center, the internal pressure of the pump chamber 82 reaches the opening pressure of the check valve 95, and the pump communication passage 75 and the pump valve hole 7
9 is cut off. Further, the pressure accumulation valve hole 80 is connected to the pressure accumulation communication passage 7.
6, and the internal pressure of the pressure accumulation chamber 27 for double action of the pump is corrected so as to be equal to the internal pressure of the pressure storage chamber 28 for double action of the shutoff valve and the biasing chamber 73 for double action of the cutoff valve. And after this point d,
As the plunger 81 descends and the internal pressure of the pump chamber 82 further increases, fuel Vin is pressurized into the injection fuel pressure accumulation chamber 86. The fuel pressurized into the injected fuel pressure accumulator 86 is exclusively pressurized into the first pressure accumulator 98 until the time e when its pressure reaches the internal pressure of the second M pressure chamber 97, and the fuel is pressurized into the second pressure accumulator 97.
When the internal pressure exceeds the internal pressure, the second M pressure chamber check valve 98 is opened and the second M pressure chamber 97 is also pressurized. When the internal pressure of the second pressure accumulation chamber 97 exceeds the set pressure of the pressure accumulation setting valve 99, the pressure accumulation setting valve 99
is opened, and check valve 98 is closed. Figure 12 (4)
As shown in FIG. 1, at one point in time when the plunger 81 reaches the bottom dead center, the fuel pressure stops rising, the check valve 95 is closed, and the fuel Vin is accumulated at high pressure in the injection fuel pressure accumulation chamber 86. Then, at a predetermined point g thereafter, the inlet/outlet passage 24 is connected to the pressure relief valve body passage 59, the advance valve body passage 62, and the breathing passage 7.
0 to the depressurized fuel breathing chamber 21, and the inlet/outlet passage 2
The internal pressure of No. 4 begins to decrease. The timing for starting this pressure reduction is set by the pressure relief valve passage 59 communicating with the advance valve body passage 62 communicating with the inlet/outlet passage 24, so if the engine rotational speed is high, (It will be faster than the mental timing, and if the engine speed is slow, it will be slower than the standard timing.)

−即ち、エンジンの回転速度が高くなるとエンジンの回
転速度に正比例して進角用受圧室63の内圧が高まり、
進角用弁体61が進角方向に移動され、最も主軸7の回
転上手側の圧抜用弁体通路59と進角用弁体通路62が
連通ずることにより、中央の圧抜用弁体通路59と進角
用弁体通路62が連通ずる場合よりも早く出入通路24
が圧抜用弁体通路59を介して進角用弁体通路62に連
通され、噴射時期が早められるようになっている。
- That is, as the engine rotation speed increases, the internal pressure of the advance pressure receiving chamber 63 increases in direct proportion to the engine rotation speed.
The advance valve body 61 is moved in the advance direction, and the pressure relief valve body passage 59 on the rotationally upper side of the main shaft 7 and the advance valve body passage 62 communicate with each other, so that the pressure relief valve body in the center The entrance/exit passage 24 is opened earlier than when the passage 59 and the advance valve body passage 62 communicate with each other.
is communicated with the advance valve body passage 62 via the pressure relief valve body passage 59, so that the injection timing can be advanced.

また、エンジンの回転速度が低くなると、最も主軸7の
回転下手側の圧抜用弁体通路59と進角用弁体通路62
が連通することにより、中央の圧抜用弁体通路59と進
角用弁体通路62が連通する場合よりも遅く出入通路2
4が圧抜用弁体通路59を介して進角用弁体通路62に
連通され、噴射時期が遅れるようになっている。中間の
速度では中央の圧抜用弁体通路59と進角用弁体通路6
2が連通し、I5!準的なタイミングで出入通路24が
圧抜用弁体通路59を介して進角用弁体通路62に連通
され、標準的なタイミングで噴射用の圧抜きが行われる
。進角用弁体通路62は、各圧抜用弁体通路59に択一
的に連通ずるだけでな(、それらに対応する回転数領域
の過渡領域では中央と最も上手の圧抜用弁体通路59あ
るいは中央と最も下手の圧抜用弁体1jIl路59の2
本の圧抜用弁体通路59と同時に連通でき、側圧抜用弁
体通路59との接続面積の割合によって圧抜の立ち上が
り特性が変化するようになっている。このようにして、
進角用弁体61の位置を調圧装置12のエンジン回転速
度に対する調圧特性に依存して節単に高精度に制御でき
るので、進角時期を簡単に高精度に制御できることにな
る。
Furthermore, when the engine speed becomes low, the pressure relief valve passage 59 and the advance angle valve passage 62 on the rotationally downstream side of the main shaft 7 are
By communicating with each other, the entrance/exit passage 2 is opened later than when the center pressure relief valve body passage 59 and the advance valve body passage 62 communicate with each other.
4 is communicated with the advance valve body passage 62 via the pressure relief valve body passage 59, so that the injection timing is delayed. At intermediate speeds, the central pressure relief valve passage 59 and the advance angle valve passage 6
2 connects, I5! The inlet/outlet passage 24 is communicated with the advance valve element passage 62 via the pressure relief valve element passage 59 at a standard timing, and pressure relief for injection is performed at a standard timing. The advance valve body passage 62 not only selectively communicates with each pressure relief valve body passage 59 (but also communicates with the center and the most advanced pressure relief valve body in the transient region of the corresponding rotational speed region). 2 of the passage 59 or the center and lowest pressure relief valve body 1jIl passage 59
It can communicate with the main pressure relief valve body passage 59 at the same time, and the rising characteristics of pressure relief change depending on the proportion of the connection area with the side pressure relief valve body passage 59. In this way,
Since the position of the advance valve body 61 can be controlled easily and highly accurately depending on the pressure regulation characteristics of the pressure regulator 12 with respect to the engine rotational speed, the advance timing can be easily and precisely controlled.

スプール72が上死点からしだいに下降し、ポンプ弁孔
79とポンプ連通路75の連通が回復されるh時点から
閉弁加圧用燃料室85の内圧が急激に減圧し、所定の開
弁圧まで閉弁加圧用燃料室85の内圧が降下したi時点
から逆止弁95に作用する差圧が閉弁バネ91の付勢力
に打ち勝って噴射弁88が開弁される。
From the time h when the spool 72 gradually descends from the top dead center and the communication between the pump valve hole 79 and the pump communication passage 75 is restored, the internal pressure of the fuel chamber 85 for valve closing pressurization decreases rapidly, and the predetermined valve opening pressure is reached. From time point i, when the internal pressure of the fuel chamber 85 for valve closing pressurization has dropped to the point i, the differential pressure acting on the check valve 95 overcomes the biasing force of the valve closing spring 91, and the injection valve 88 is opened.

上述のように、スプール72が上死点に達したときに、
蓄圧弁孔80と蓄圧連通路76とが連通されるので、噴
射器29への燃料圧入時にポンプ室82からポンプ復動
用蓄圧室27へのリーク燃料によって生じるポンプ復動
用蓄圧室27の内圧の上昇が補正され、圧抜時にポンプ
連通路75とポンプ弁孔79とが連通ずるタイミングが
遅れることが防止される。そして、この連通の遅れによ
る噴射タイミングの誤差(遅れ)の発生が防止される。
As mentioned above, when the spool 72 reaches the top dead center,
Since the pressure accumulation valve hole 80 and the pressure accumulation communication passage 76 are communicated with each other, the internal pressure of the pump double-action pressure storage chamber 27 is increased due to leakage of fuel from the pump chamber 82 to the pump double-stroke pressure storage chamber 27 when fuel is pressurized into the injector 29. is corrected, and the timing at which the pump communication passage 75 and the pump valve hole 79 communicate with each other during pressure relief is prevented from being delayed. This prevents an error (delay) in injection timing from occurring due to this communication delay.

ここでは、ポンプ連通路75が上下に並ぶ小径ポンプ連
通路75aと大径ポンプ連通路75bとで構成され、ス
プール72が下死点から下降し始めて先に小径ポンプ連
通路75aがポンプ弁孔79に連1ffiL、閉弁加圧
用蓄圧室86の内圧の減少を比較的緩慢に抑えて、噴射
弁88の開弁機を小さく制限し、燃料噴射■を少量に抑
えるとともに、燃料噴射による噴射燃料蓄圧室86の内
圧の減圧が小さく抑えられる。そして、スプール72が
さらに下降して、例えば、定格回転速度における着火時
点に相当するj時点に達すると、大径ポンプ連通路75
bがポンプ弁孔79に連通し、2aに閉弁加圧用燃料室
85の内圧が減圧され、噴射弁88が急激に太き(開弁
され、多量の燃料が高圧で勢いよく噴射されることにな
る。このように、着火前の燃料噴射量を少量に抑えるこ
とにより着火時の爆発音を減少させて運転騒音を防止す
ることができる。また、着火時以降に高圧で多量の燃料
を噴射することにより運転騒音の減少をはかる上で許さ
れる限り最大の熱効率を得ることができる。また、噴射
圧は噴射撚f:+蓄圧室86の内圧が高圧であるので、
所定量の燃料Vinを短時間で噴射しきることができる
。そして、噴射燃料蓄圧室86の内圧が第2蓄圧室用蓄
圧設定弁99の設定圧以下になるに時点以後は、この蓄
圧設定弁99が閉弁され、第2M圧室97の内圧はその
設定圧以上に保持される。一方、噴射孔87に連通ずる
噴射燃料蓄圧室86の容積は、実質上、第1M圧室96
のそれに減少され、僅かな量の燃料が噴射されても大き
く第1蓄圧室96の内圧が減圧され、短時間でこの内圧
が所定の閉弁圧まで減圧されて噴射弁88が閉弁される
(1時点)。従って、噴射時間を大幅に短縮するとかで
き、エンジンの高速化を図る上で有利になる。燃料噴射
が終了した後、所定のm時点になると、駆動装置5の燃
料噴射カム30のカムリフトが減少し始め、ポンプ室8
2の内圧によりプランジャ81が駆動装置5のロッカー
アーム33に押し当てられつつ上昇する。
Here, the pump communication passage 75 is composed of a small diameter pump communication passage 75a and a large diameter pump communication passage 75b arranged vertically, and when the spool 72 starts to descend from the bottom dead center, the small diameter pump communication passage 75a first connects to the pump valve hole 79. 1ffiL, the decrease in the internal pressure of the pressure accumulation chamber 86 for closing the valve is suppressed relatively slowly, the valve opening mechanism of the injection valve 88 is limited to a small amount, and the fuel injection ■ is suppressed to a small amount, and the injected fuel pressure is accumulated by fuel injection. The reduction in the internal pressure of the chamber 86 is suppressed to a small level. Then, when the spool 72 further descends and reaches, for example, time j corresponding to the ignition time at the rated rotational speed, the large diameter pump communication passage 75
b communicates with the pump valve hole 79, the internal pressure of the pressurizing fuel chamber 85 is reduced to 2a, and the injection valve 88 is suddenly widened (opened, and a large amount of fuel is vigorously injected at high pressure). In this way, by suppressing the amount of fuel injected before ignition to a small amount, it is possible to reduce the explosion noise at the time of ignition and prevent operational noise.In addition, a large amount of fuel is injected at high pressure after ignition. By doing so, it is possible to obtain the maximum thermal efficiency that is allowed in order to reduce operational noise.Also, since the injection pressure is injection twist f: + the internal pressure of the pressure accumulation chamber 86 is high pressure,
A predetermined amount of fuel Vin can be completely injected in a short time. After the internal pressure of the injected fuel accumulator 86 becomes equal to or lower than the set pressure of the second pressure accumulator setting valve 99, this pressure accumulator setting valve 99 is closed, and the internal pressure of the second M pressure chamber 97 is reduced to the set pressure. held above pressure. On the other hand, the volume of the injected fuel pressure accumulation chamber 86 communicating with the injection hole 87 is substantially equal to that of the first M pressure chamber 96.
Even if a small amount of fuel is injected, the internal pressure of the first pressure accumulating chamber 96 is greatly reduced, and in a short time, this internal pressure is reduced to a predetermined valve closing pressure, and the injection valve 88 is closed. (1 point in time). Therefore, the injection time can be significantly shortened, which is advantageous in increasing the speed of the engine. At a predetermined time m after the fuel injection ends, the cam lift of the fuel injection cam 30 of the drive device 5 begins to decrease, and the pump chamber 8
2, the plunger 81 is pressed against the rocker arm 33 of the drive device 5 and rises.

プランジャ81が上昇するに連れポンプ室82の容積が
拡大され、ポンプ室82、ポンプ復動用蓄圧室27の内
圧が減圧されるので、遮断弁復動用付勢室73の圧力に
よってスプール72が下降させられ、ポンプ復動用蓄圧
室27からポンプ室82に最大噴射IJ Vmaxに等
しい量の燃料が圧入されるまでポンプ復動用蓄圧室27
からポンプ室82に燃料が押し込められる。
As the plunger 81 rises, the volume of the pump chamber 82 is expanded, and the internal pressure of the pump chamber 82 and the pressure accumulation chamber 27 for double action of the pump is reduced, so the spool 72 is lowered by the pressure of the biasing chamber 73 for double action of the shutoff valve. until an amount of fuel equal to the maximum injection IJ Vmax is pressurized from the pump reciprocating pressure accumulator 27 to the pump chamber 82.
Fuel is forced into the pump chamber 82 from there.

ところで、g時点以後の圧抜の期間に、ポンプ復動用蓄
圧室27から圧抜燃料呼吸室21側に燃料が逃されるこ
とから、そのままスプール72を下死点まで下降させた
とすればタイミング制御口複合弁装置3からユニットイ
ンジェクタ4側に封入された燃料の量は初期状態よりも
少なくなり、次に調圧・4111された燃料をユニット
インジェクタ4に圧入するとスプール72がその圧入l
に対応して上昇すべき高さよりも低い位置までしか上昇
せず、運転騒音や噴射時期制御の誤差を生じる上、次回
の燃料噴射量が不足するといった不都合が生しることに
なる。
By the way, during the pressure relief period after time g, fuel is released from the pump double-acting pressure accumulation chamber 27 to the pressure relief fuel breathing chamber 21 side, so if the spool 72 is lowered to the bottom dead center, the timing control port The amount of fuel injected from the composite valve device 3 into the unit injector 4 side becomes smaller than the initial state, and when the pressure-regulated fuel is then pressurized into the unit injector 4, the spool 72 moves to the unit injector 4 side.
The engine only rises to a position lower than the height that it should rise to in response to this, resulting in operational noise and errors in injection timing control, as well as inconveniences such as an insufficient amount of fuel to be injected next time.

そこで、スプール72が下死点の近傍まで下降するn時
点で、圧抜燃料呼吸室21が呼吸通路70、圧抜燃料戻
し通路22を介して出入通路24に連通され、吐き戻し
付勢手段69によって圧抜燃料呼吸室21に圧抜のため
に押し込められていた燃料が出入通路24に吐き戻され
、更に、ポンプ復動用蓄圧室27及びポンプ室82に吐
き戻される。このようにして吸い出された燃料をユニッ
トインジェクタ4に吐き戻すことにより、次回の噴射時
の燃料不足の発生が防止される。しかし、圧抜燃料呼吸
室21に封じ込められていた燃料は初期圧よりも高圧で
あるために、ポンプ復動用蓄圧室27及びポンプ室82
の内圧は初期状態よりも高圧になり、スプール72は下
死点の近傍から少しだけ上死点側に移動させられる。従
って、この状態から初期状態に戻すために、最後に所定
の0時点において、初期圧供給路23が出入通路24に
連通され、遮断弁復動用蓄圧室28、ポンプ復動用蓄圧
室27、遮断弁復動用付勢室73及びポンプ室82の内
圧が調圧袋Wl 2により調圧された基準圧に戻され、
スプール72が下死点に戻される。
Therefore, at time point n when the spool 72 descends to the vicinity of the bottom dead center, the depressurized fuel breathing chamber 21 is communicated with the inlet/outlet passage 24 via the breathing passage 70 and the depressurized fuel return passage 22, and the discharge urging means 69 As a result, the fuel that had been forced into the depressurizing fuel breathing chamber 21 for depressurization is discharged back into the inlet/outlet passage 24, and is further discharged into the pump reciprocating pressure accumulating chamber 27 and the pump chamber 82. By spitting out the fuel sucked out in this way back to the unit injector 4, occurrence of fuel shortage during the next injection is prevented. However, since the pressure of the fuel contained in the depressurized fuel breathing chamber 21 is higher than the initial pressure,
The internal pressure becomes higher than the initial state, and the spool 72 is moved slightly from the vicinity of the bottom dead center toward the top dead center. Therefore, in order to return from this state to the initial state, finally at a predetermined time point 0, the initial pressure supply path 23 is communicated with the inlet/outlet passage 24, and the shutoff valve double-acting pressure accumulator 28, the pump double-acting pressure accumulator 27, and the shutoff valve The internal pressure of the double-acting biasing chamber 73 and the pump chamber 82 is returned to the standard pressure regulated by the pressure regulating bag Wl 2,
The spool 72 is returned to the bottom dead center.

ところで、遮断弁復動用蓄圧室28及び遮断弁復動用付
勢室73の内圧は、第2蓄圧室97からの燃料リークに
より増圧されたり、圧抜時にポンプ復動用蓄圧室27へ
のリークにより減圧されたりすることが考えられる。遮
断弁復動用蓄圧室28及び遮断弁復動用付勢室73の内
圧が増圧すれば、次回に!JiI量供給袋供給装置2料
が圧入されるときに遮断弁復動用蓄圧室2Bの内圧によ
ってスプール72の上昇が妨げられ、ポンプ復動用蓄圧
室27の蓄圧容積が狭められる。その結果、燃料を噴射
器29に圧入した後、プランジャ81の上昇時にポンプ
復動用蓄圧室27からポンプ室82に圧入される燃料の
量が不足してプランジャ81が上死点まで上昇できな(
なり、運転騒音が発生することになる。また、遮断弁復
動用蓄圧室28及び遮断弁復動用付勢室73の内圧が減
圧すれば、次回に調量供給装置2から燃料が圧入され、
プランジャ81を下降させるときにポンプ連通路75と
ポンプ弁孔79とが遮断されるタイミングが遅れ、燃料
噴射量が減少することになる。
By the way, the internal pressures of the shutoff valve double-acting pressure accumulator 28 and the shutoff valve double-actuate biasing chamber 73 are increased due to fuel leak from the second pressure accumulator 97, or due to leakage to the pump double-acting pressure accumulator 27 when the pressure is released. It is possible that the pressure is reduced. If the internal pressure of the shutoff valve double-acting pressure accumulation chamber 28 and the shutoff valve double-acting energizing chamber 73 increases, next time! When the JiI quantity supply bag supply device 2 material is press-fitted, the internal pressure of the pressure accumulation chamber 2B for shutoff valve double action prevents the spool 72 from rising, and the pressure accumulation volume of the pressure accumulation chamber 27 for pump double action is narrowed. As a result, after fuel is pressurized into the injector 29, when the plunger 81 rises, the amount of fuel pressurized into the pump chamber 82 from the pump reciprocating pressure accumulation chamber 27 is insufficient, and the plunger 81 cannot rise to the top dead center (
As a result, driving noise will be generated. Moreover, if the internal pressure of the shutoff valve double-acting pressure accumulation chamber 28 and the shutoff valve double-acting biasing chamber 73 is reduced, fuel will be pressurized from the metering supply device 2 next time.
When the plunger 81 is lowered, the timing at which the pump communication passage 75 and the pump valve hole 79 are shut off is delayed, resulting in a decrease in the amount of fuel injection.

ここでは、スプール72が下死点に戻されると、蓄圧弁
孔80が再び蓄圧連通路76と連通し、遮断弁復動用蓄
圧室28及び遮断弁復動用付勢室73の内圧が基準圧(
初期圧)に補正されるので、これらの内圧の増圧による
運転騒音の発生や、減圧による噴射量の誤差(減少)の
発生が防止されることになるのである。
Here, when the spool 72 is returned to the bottom dead center, the pressure accumulation valve hole 80 communicates with the pressure accumulation communication passage 76 again, and the internal pressures of the pressure accumulation chamber 28 for shutoff valve return operation and the biasing chamber 73 for cutoff valve return operation are set to the reference pressure (
Since the internal pressure is corrected to the initial pressure, it is possible to prevent the occurrence of operational noise due to an increase in these internal pressures and the occurrence of an error (reduction) in the injection amount due to a decrease in pressure.

尚、ここでは噴射燃料呼吸室21を設けて圧抜燃料を外
部に放出しないようにしであるが、この噴射燃料呼吸室
21を設けることは本発明に必須のことではなく、これ
を設けずに単に進角用受圧室63を介して調圧装置12
に連通された初期圧供給路23を弁箱56の出入通路2
4に調時連通させるだけであっても、調圧装置12から
進角用受圧室63、初期圧供給路23、出入通路24及
び遮断弁25を介してポンプ復動用蓄圧室27、ポンプ
室82及び閉弁加圧用蓄圧室85に燃料を補充して初期
状態に戻すことが可能である。
Here, the injected fuel breathing chamber 21 is provided to prevent the depressurized fuel from being discharged to the outside, but the provision of the injected fuel breathing chamber 21 is not essential to the present invention, and it is possible to omit it. Pressure regulating device 12 simply via advance pressure receiving chamber 63
The initial pressure supply path 23 communicated with the inlet/outlet passage 2 of the valve box 56
4, the pressure regulator 12 is connected to the advance pressure receiving chamber 63, the initial pressure supply passage 23, the inlet/outlet passage 24, and the cutoff valve 25 to the pump reciprocating pressure accumulation chamber 27 and the pump chamber 82. It is also possible to replenish fuel to the valve-closing pressure accumulating chamber 85 and return it to its initial state.

〈発明の効果〉 以上のように、本発明に係るディーゼルエンジンの蓄圧
式燃料噴射装置によれば、進角装置が噴射時期決定用圧
抜通路を有する噴射時期決定用圧抜弁の弁体と、進角用
弁体通路を有する進角用弁体と、この進角用弁体を遅角
方向に付勢する遅角付勢手段と、進角用弁体を進角側に
付勢する進角用受圧室とで1個の弁として構成されてい
るので、進角装置の構成を簡素化できる。また、燃料噴
射装置に噴射時期を決定する機構と噴射時期を調節する
進角装置とが組み込まれているので、エンジンのサイズ
等に無関係に汎用化することができる。
<Effects of the Invention> As described above, according to the pressure accumulation type fuel injection device for a diesel engine according to the present invention, the advance device includes a valve body of a pressure relief valve for determining injection timing, which has a pressure relief passage for determining injection timing; An advance valve body having an advance valve body passage, a retard biasing means for biasing the advance valve disc in a retard direction, and an advance valve disc for biasing the advance valve disc in an advance direction. Since the angle pressure receiving chamber and the angle pressure receiving chamber are configured as one valve, the configuration of the angle advance device can be simplified. Further, since the fuel injection device has a built-in mechanism for determining the injection timing and an advance device for adjusting the injection timing, it can be used for general purposes regardless of engine size or the like.

更に、進角装置の作動原理及び構成が簡単なことから、
故障が発生しに<<、信頼性が高い。また、噴射時の圧
抜きのために逃す燃料に見合う燃料が初期圧供給路を介
して調圧装置から補充され、燃料噴射器、燃料噴射ポン
プ及びポンプ復動用蓄圧室が確実に初期状態に戻される
ので、プランジャが確実に上死点まで上昇し、燃料噴射
ポンプ駆動用の駆動装置の部品間あるいはその駆動装置
とプランジャとの間に隙間が生じることを防止して、駆
動装置の部品どうしあるいは駆動装置とプランジャとの
打撃による運転騒音や、駆動装置の部品の振動による噴
射時期制御の誤差の発生を防止できるとともに、次回の
燃料噴射時の噴射量不足を防止できる。加えて、燃料噴
射器、燃料噴射ポンプ及びポンプ復動用蓄圧室を初期状
態に戻すための機構は、単に進角用弁体に進角用受圧室
から圧抜用弁体通路に調時連通される初期圧供給路を形
成するだけで済み、簡素にできる。
Furthermore, since the operating principle and structure of the advance angle device are simple,
High reliability with no failures. In addition, fuel equivalent to the amount of fuel that is lost due to pressure relief during injection is replenished from the pressure regulator via the initial pressure supply path, and the fuel injector, fuel injection pump, and pump return pressure accumulator are reliably returned to their initial states. This ensures that the plunger rises to the top dead center, prevents gaps from forming between the parts of the drive device for driving the fuel injection pump, or between the drive device and the plunger, and prevents the parts of the drive device from being connected to each other or between them. It is possible to prevent operation noise caused by the impact between the drive device and the plunger, and errors in injection timing control caused by vibrations of parts of the drive device, and also to prevent insufficient injection amount during the next fuel injection. In addition, the mechanism for returning the fuel injector, the fuel injection pump, and the pump reciprocating pressure accumulation chamber to the initial state is simply a timing control system that communicates with the advance valve body from the advance pressure receiving chamber to the pressure release valve body passage. It is only necessary to form an initial pressure supply path, making it simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るディーゼルエンジンの
蓄圧型燃料噴射装置の全体構成を示す等価回路図、第2
図はその燃料調量供給装置及びタイミング制御複合弁装
置の縦断側面図、第3図はそのトランスファポンプの縦
断正面図、第4図はその調圧装置の縦断正面図、第5図
はその圧送ポンプの縦断正面図、第6図はそのタイミン
グ制御複合弁装置の縦断側面図、第7図はそのタイミン
グ図された各弁体通路、圧抜燃料戻し通路及び初期圧供
給路の配置を示す展開図、第11図はそのユニットイン
ジェクタの縦断面図、第12図(1)〜第12図(4)
はそのポンプ復動用蓄圧室の動作を順を追って示す各模
式図、第13図(1)〜第13図(6)はユニットイン
ジェクタの各部分の動作タイミング、圧力変化及びタイ
ミング制御複合弁装置の動作タイミングの関係を示す各
タイミング図、第14図は従来の燃料噴射装置及び進角
装置の構成図である。 1・・・燃料タンク、12・・・調圧装置、14・・・
調量装置(調量供給装置)、19・・・噴射時期決定用
圧抜弁、20・・・噴射時M調整用進角弁、21・・・
圧抜燃料呼吸室、23・・・初期圧供給路、24・・・
出入通路(導入口)、25・・・複合遮断弁(遮断弁)
、26・・・燃料噴射ポンプ、27・・・ポンプ復動用
蓄圧室、29・・・蓄圧式燃料噴射器、5G・・・弁箱
、57・・・工法用弁体、59・・・圧抜用弁体通路、
61・・・進角用弁体、62・・・進角用弁体通路(進
角用通路)、63・・・進角用受圧室、65・・・遅角
付勢手段、85・・・閉弁加圧用蓄圧室、C・・・クラ
ンク軸。 特 許 出 願 人  久保田鉄工株式会社゛lニレ−
′ 第3図 第4図 第5図 第6図 第10図 第12図(1) 昂 第12図(2) □−一)矢 第14図
FIG. 1 is an equivalent circuit diagram showing the overall configuration of a pressure accumulation type fuel injection device for a diesel engine according to an embodiment of the present invention, and FIG.
Figure 3 is a longitudinal sectional side view of the fuel metering supply device and timing control compound valve device, Figure 3 is a vertical sectional front view of the transfer pump, Figure 4 is a vertical sectional front view of the pressure regulating device, and Figure 5 is the pressure pump. FIG. 6 is a longitudinal sectional front view of the pump, FIG. 6 is a longitudinal sectional side view of its timing control compound valve device, and FIG. 7 is an exploded view showing the arrangement of each valve body passage, depressurization fuel return passage, and initial pressure supply passage according to the timing chart. Figure 11 is a longitudinal sectional view of the unit injector, Figure 12 (1) to Figure 12 (4)
13(1) to 13(6) show the operation timing of each part of the unit injector, pressure changes, and timing control complex valve device. Timing diagrams showing the relationship between operation timings and FIG. 14 are configuration diagrams of a conventional fuel injection device and an advance angle device. 1... Fuel tank, 12... Pressure regulator, 14...
Metering device (metering supply device), 19... Pressure relief valve for determining injection timing, 20... Advance angle valve for adjusting M during injection, 21...
Pressure release fuel breathing chamber, 23... Initial pressure supply path, 24...
Inlet/outlet passage (inlet), 25...Compound shutoff valve (shutoff valve)
, 26...Fuel injection pump, 27...Pressure accumulation chamber for pump double action, 29...Pressure accumulation type fuel injector, 5G...Valve box, 57...Valve body for construction method, 59...Pressure Extraction valve body passage,
61... Valve element for advance angle, 62... Valve element passage for advance angle (passage for advance angle), 63... Pressure receiving chamber for advance angle, 65... Retard angle biasing means, 85...・Pressure accumulation chamber for pressurizing valve closing, C...Crankshaft. Patent applicant: Kubota Iron Works Co., Ltd.
' Figure 3 Figure 4 Figure 5 Figure 6 Figure 10 Figure 12 (1) Gong Figure 12 (2) □-1) Arrow Figure 14

Claims (1)

【特許請求の範囲】 1、ディーゼルエンジンの燃料タンク1を調圧装置12
、調量装置14、遮断弁25及び燃料噴射ポンプ26を
介して蓄圧式燃料噴射器29に連通連結し、燃料噴射ポ
ンプ26に遮断弁を介してポンプ復動用蓄圧室27を連
通し、調圧装置12はエンジンの回転速度に対応して燃
料供給圧を高めるように構成したディーゼルエンジンの
蓄圧型燃料噴射装置において、 燃料噴射器29の閉弁加圧用燃料室85に燃料噴射ポン
プ26及び遮断弁25を介して噴射時期決定用圧抜弁1
9及び噴射時期調節用進角弁20を順に接続し、 上記圧抜弁19は弁箱56の導入口24に圧抜用弁体5
7の圧抜用弁体通路59をクランク軸Cに調時連通させ
るように構成し、 上記進角弁20は前記圧抜用弁体通路59を圧抜用弁体
57の回転方向にそって複数個設けるとともに、この複
数個の進角用弁体通路59に進角用弁体61の進角用通
路62を選択連通可能に構成し、 進角用弁体61を遅角付勢手段65で遅角側へ付勢する
とともに、進角用受圧室63の燃料圧で進角側に付勢す
るように構成し、進角用受圧室63を前記調圧装置12
に連通させ、 圧抜用弁体57に圧抜用弁体通路58から独立した初期
圧供給路23を形成し、初期圧供給路23の始端部を前
記進角用受圧室63に連通させるとともに、その終端部
を前記噴射時期決定用圧抜弁19の導入口24に調時連
通可能に構成したことを特徴とするディーゼルエンジン
の蓄圧型燃料噴射装置
[Claims] 1. The fuel tank 1 of a diesel engine is connected to a pressure regulator 12.
, through the metering device 14, the cutoff valve 25, and the fuel injection pump 26, are connected to the pressure accumulation type fuel injector 29, and the fuel injection pump 26 is communicated with the pressure accumulation chamber 27 for pump return action via the cutoff valve, and the pressure is adjusted. The device 12 is a pressure accumulation type fuel injection device for a diesel engine configured to increase the fuel supply pressure in accordance with the rotational speed of the engine. Pressure relief valve 1 for determining injection timing via 25
9 and the injection timing adjustment advance valve 20 are connected in this order, and the pressure relief valve 19 is connected to the pressure relief valve body 5 to the inlet 24 of the valve box 56.
The advance valve 20 is configured to connect the pressure relief valve body passage 59 of No. 7 to the crankshaft C in timing communication, and the advance valve 20 connects the pressure relief valve body passage 59 along the rotational direction of the pressure relief valve body 57. A plurality of advance valve bodies 61 are provided, and the advance passages 62 of the advance valve bodies 61 are selectively communicated with the advance valve bodies 61 through the advance valve body passages 59 . The pressure receiving chamber 63 is configured to be biased toward the retard side and biased toward the advance side by the fuel pressure in the advance pressure receiving chamber 63.
an initial pressure supply path 23 independent from the pressure relief valve body passage 58 is formed in the pressure relief valve body 57, and a starting end of the initial pressure supply path 23 is communicated with the advance pressure receiving chamber 63; , a pressure accumulation type fuel injection device for a diesel engine, characterized in that the terminal end thereof is configured to be able to communicate with the introduction port 24 of the pressure relief valve 19 for determining injection timing.
JP28004586A 1986-11-25 1986-11-25 Accumulation fuel injection device for diesel engine Expired - Lifetime JPH0739825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28004586A JPH0739825B2 (en) 1986-11-25 1986-11-25 Accumulation fuel injection device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28004586A JPH0739825B2 (en) 1986-11-25 1986-11-25 Accumulation fuel injection device for diesel engine

Publications (2)

Publication Number Publication Date
JPS63134851A true JPS63134851A (en) 1988-06-07
JPH0739825B2 JPH0739825B2 (en) 1995-05-01

Family

ID=17619529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28004586A Expired - Lifetime JPH0739825B2 (en) 1986-11-25 1986-11-25 Accumulation fuel injection device for diesel engine

Country Status (1)

Country Link
JP (1) JPH0739825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113262658A (en) * 2020-06-15 2021-08-17 台湾积体电路制造股份有限公司 Slurry blending tool and method of making slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113262658A (en) * 2020-06-15 2021-08-17 台湾积体电路制造股份有限公司 Slurry blending tool and method of making slurry

Also Published As

Publication number Publication date
JPH0739825B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JPH0214542B2 (en)
JPS5939963A (en) Fuel injector
US3409226A (en) Fuel injection apparatus for piston-type internal combustion engines
JPS63134851A (en) Accumulator fuel injection device for diesel engine
JPS63134853A (en) Accumulator fuel injection device for diesel engine
JPS63134852A (en) Spark advance device for accumulator injection diesel engine
JPH0735758B2 (en) Accumulation type fuel injector for diesel engine
JPS63134854A (en) Spark advance device for accumulator injection diesel engine
JPS6146459A (en) Fuel jet pump of internal combustion engine
US6360727B1 (en) Reduce initial feed rate injector with fuel storage chamber
RU2079695C1 (en) Fuel pump
JPH0521659Y2 (en)
JPS60184934A (en) Fuel injection device
JPH07117011B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JPH0735759B2 (en) Accumulator fuel injection system for engine
JPS59173553A (en) Fuel injection pump for internal-combustion engine
JPS62291463A (en) Fuel injection device
JPS6030466A (en) Duplex fuel feed pump
JPH0612102B2 (en) Accumulation type fuel injection device
JPH07109183B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JPS5859362A (en) Fuel injection device
JPS6235056A (en) Fuel injection device
JPH06307308A (en) Multiple fuel supply device
JPH0454273A (en) Pressure storage type unit injector
JPS59119061A (en) Unit injector for diesel engine