JPH0454273A - Pressure storage type unit injector - Google Patents

Pressure storage type unit injector

Info

Publication number
JPH0454273A
JPH0454273A JP2164237A JP16423790A JPH0454273A JP H0454273 A JPH0454273 A JP H0454273A JP 2164237 A JP2164237 A JP 2164237A JP 16423790 A JP16423790 A JP 16423790A JP H0454273 A JPH0454273 A JP H0454273A
Authority
JP
Japan
Prior art keywords
pressure
chamber
fuel
piston
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164237A
Other languages
Japanese (ja)
Inventor
Masayuki Munekiyo
正幸 宗清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2164237A priority Critical patent/JPH0454273A/en
Publication of JPH0454273A publication Critical patent/JPH0454273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To set freely an injection quantity with an appropriate super high pressure being maintained and arrange so that a super high pressure injection may be conducted from a low load to a high load, by providing the 2nd pressure storage chamber at the main body outside communicating with a main body pressure storage chamber, and providing a structure according a variable volume of the pressure storage chamber. CONSTITUTION:As for fuel which is supplied under a predetermined pressure by means of a feed pump 4 through a fuel inlet 6, one part of it is supplied to a pressurizing chamber (a measuring chamber) 3 through a fuel passage 7 and a check valve 7a, and the other part of it is supplied to a pressure increase chamber 9 through a flow passage 8 and a solenoid valve 20. When the chamber 9 and a fuel outlet 10 are connected by the closing operation of the valve 20, a needle 17 ascend, and fuel within a pressure storage chamber 13 is injected through the tip of a nozzle 5. In this instance, the 2nd pressure storage chamber 40 is connected to the main body chamber 13, and division is made by means of the cylinder 38b of an adapter 38 and the piston portion 39 of a piston 39. The 2nd chamber 40 volume and the whole pressure storage chamber volume including that of the chamber 13, are set freely by rotating and reciprocating the piston 39.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、ディーゼル機関に使用される蓄圧式ユニッ
トインジェクタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an accumulator unit injector used in a diesel engine.

(従来の技術) 従来より、ディーゼル機関用インジェクタとして、ピス
トンとプランジャを備えることにより高圧のポンプ及び
配管を廃止した蓄圧式ユニットインジェクタが提案され
ている。
(Prior Art) Conventionally, as an injector for a diesel engine, an accumulator unit injector has been proposed that is equipped with a piston and a plunger and eliminates the need for a high-pressure pump and piping.

このような従来のユニットインジェクタとしては、例え
ば第4図及び第5図に示すようなものがある(本出願人
の出願に係る特願平1−3713及び特開昭59−85
433参照)。いまこれを前者を用いて説明する。フィ
ードポンプ4により所定の圧力で供給した燃料は、燃料
人口6から一部は燃料通路7、逆止弁7aを通り、加圧
室(計量室)3へ供給され、他方は流路8を通り、電磁
弁20を介して増圧室9へ供給される。前記電磁弁20
は、その開作動(A矢視方向)で増圧室9と燃料人口6
とを連通させているかあるいは閉作動で増圧室つと燃料
出口10とを連通させているか、のいずれかの作動を実
行している。電磁弁20で増圧室9と燃料出口10とを
連通した場合、流路8と増圧室9の連通は閉ざされ、燃
料は燃料通路7を通り、加圧室3に充填される。次に電
磁弁20を矢印Aの方向に作動して燃料人口6と増圧室
9とを連通ずると、燃料は増圧室9へ導かれる。このと
き、増圧ピストン12は燃料圧力により押し下げられ、
加圧室3に供給された燃料は、増圧ピストン12とプラ
ンジャ1の受圧部の面積此方だけ増圧され、アキュムレ
ータバルブ18を押し下げ、本体2に設けた蓄圧室13
側へ燃料の体積弾性によって押し縮められた分だけの燃
料が圧送される。蓄圧室13と加圧室3の燃料による力
が平衡すると、バネ14によりアキュムレータバルブ1
8が閉じ、蓄圧室13は密閉される。
Examples of such conventional unit injectors include those shown in FIG. 4 and FIG.
433). This will now be explained using the former. Part of the fuel supplied at a predetermined pressure by the feed pump 4 is supplied from the fuel population 6 to the pressurizing chamber (measuring chamber) 3 through the fuel passage 7 and the check valve 7a, and the other part passes through the flow passage 8. , is supplied to the pressure increase chamber 9 via the solenoid valve 20. The solenoid valve 20
is the pressure booster chamber 9 and the fuel population 6 due to its opening operation (in the direction of arrow A).
Either the intensifying chamber and the fuel outlet 10 are in communication with each other in a closed operation. When the pressure increase chamber 9 and the fuel outlet 10 are communicated with each other by the electromagnetic valve 20, the communication between the flow path 8 and the pressure increase chamber 9 is closed, and the fuel passes through the fuel passage 7 and is filled into the pressure chamber 3. Next, when the electromagnetic valve 20 is actuated in the direction of arrow A to communicate the fuel population 6 and the pressure boosting chamber 9, the fuel is guided to the pressure boosting chamber 9. At this time, the pressure booster piston 12 is pushed down by the fuel pressure,
The pressure of the fuel supplied to the pressurizing chamber 3 is increased by the area of the pressure increasing piston 12 and the pressure receiving part of the plunger 1, pushing down the accumulator valve 18, and increasing the pressure of the fuel supplied to the pressure accumulating chamber 13 provided in the main body 2.
The amount of fuel compressed by the bulk elasticity of the fuel is pumped to the side. When the forces of the fuel in the pressure storage chamber 13 and the pressure chamber 3 are balanced, the spring 14 causes the accumulator valve 1 to
8 is closed, and the pressure accumulation chamber 13 is sealed.

ここて電磁弁20を増圧室9と燃料出口10とを連通す
るように作動すると、増圧室9の圧力は大気圧に開放さ
れ、ピストン12はバネ15に押され上昇する。同時に
加圧室3の圧力もフィードポンプ4による供給圧まで下
がる。このように、電磁弁20の閉作動て増圧室9と燃
料出口10とを連通する事により、加圧室3内の圧力が
下がると蓄圧室13内の圧力によってフランジ16を有
するニードル17の弁部17′を開けようとする力カ、
バネ14とこの下がった加圧室3内の圧力によるニード
ル17の弁部17′を閉じようとする力を上まわるので
ニードル17が上昇し、蓄圧室13内の燃料がノズル5
の先端から噴射する。
When the solenoid valve 20 is operated to communicate the pressure increase chamber 9 and the fuel outlet 10, the pressure in the pressure increase chamber 9 is released to atmospheric pressure, and the piston 12 is pushed by the spring 15 and rises. At the same time, the pressure in the pressurizing chamber 3 also decreases to the pressure supplied by the feed pump 4. In this way, by closing the electromagnetic valve 20 and communicating the pressure intensifying chamber 9 and the fuel outlet 10, when the pressure in the pressurizing chamber 3 decreases, the pressure in the accumulating chamber 13 causes the needle 17 having the flange 16 to open. The force trying to open the valve part 17',
This exceeds the force of the spring 14 and the lowered pressure inside the pressurizing chamber 3 to close the valve portion 17' of the needle 17, so the needle 17 rises and the fuel inside the pressure accumulating chamber 13 flows into the nozzle 5.
Spray from the tip.

噴射が始まると同時に、蓄圧室13内の圧力は下がり始
め、燃料の体積弾性によって押し縮められた分の燃料が
全て噴射し、ニードル17が閉じ、噴射が終了する。以
降はこの動作を繰り返す。かくして、前記動作によって
従来のユニットインジェクタは、超高圧噴射を可能にし
、それにより燃料の微粒化と燃料噴射期間の短縮化を行
い、ディーゼル燃焼を改善し、排気性能、燃費を向上し
ようとするものである。
At the same time as the injection begins, the pressure in the pressure storage chamber 13 begins to decrease, all of the fuel compressed by the bulk elasticity of the fuel is injected, the needle 17 closes, and the injection ends. After that, repeat this operation. Thus, through the above operation, the conventional unit injector enables ultra-high pressure injection, thereby atomizing the fuel and shortening the fuel injection period, improving diesel combustion, and improving exhaust performance and fuel efficiency. It is.

尚、第4図中、21は燃料タンク、22は圧力計、23
はアキュムレータ、24はバルブである。
In addition, in Fig. 4, 21 is a fuel tank, 22 is a pressure gauge, and 23 is a fuel tank.
is an accumulator, and 24 is a valve.

また、第4図の5aはニードル17のガイドて内周でニ
ードル17をガイドし、外周で本体との位置決めをし、
外周部形成の三面幅部で油路を形成している(第5図参
照)。
In addition, 5a in FIG. 4 is a guide for the needle 17, which guides the needle 17 on the inner periphery and positions it with the main body on the outer periphery.
The three-sided width portion formed on the outer periphery forms an oil passage (see Fig. 5).

尚、前述における燃料噴射量Q、は、蓄圧室内容積vs
eと蓄圧室内の加圧開始圧(閉弁圧)P、。と、加圧終
了圧(噴射圧)P、、、、と体積弾性率にで簡単に表す
と次のようになる。
In addition, the fuel injection amount Q mentioned above is the pressure accumulation chamber internal volume vs.
e and the pressurization start pressure (valve closing pressure) P in the pressure accumulator. , the pressurization end pressure (injection pressure) P, ... and the bulk modulus can be simply expressed as follows.

v 。v.

Q+ −(P、、、−P、c)  −(+>即ち、燃料
噴射量は蓄圧室内容積と蓄圧室内の圧力差によって決っ
てしまうものである。
Q+ -(P, , -P, c) -(+> That is, the fuel injection amount is determined by the volume within the pressure accumulator and the pressure difference within the pressure accumulator.

(発明が解決しようとす“る課題) しかしながら、このような従来の蓄圧式ユニットインジ
ェクタにあっては、蓄圧室内容積が一定であるため、噴
射量を任意に変えられず便利性に乏しいという問題点が
あった。即ち前述の(1)式において、閉弁圧P、cは
主としてニードル閉じバネ14の力によって決まるため
、結局、噴射量Q、が噴射圧P、R,xのみによって決
ってくるものである。従来は、このため、例えば、少な
い噴射量Q、とじたいときには噴射圧P1.8を必然的
に少なくしなければならず、燃焼効率の悪化等を招く結
果となる。このため従来では、噴射圧を適度な超高圧に
保持したままでは、燃料噴射量Q。
(Problem to be Solved by the Invention) However, in such a conventional pressure accumulator unit injector, since the internal volume of the pressure accumulation chamber is constant, the injection amount cannot be changed arbitrarily, resulting in a lack of convenience. In other words, in equation (1) above, since the valve closing pressures P, c are mainly determined by the force of the needle closing spring 14, the injection amount Q, is determined only by the injection pressures P, R, x. Conventionally, for this reason, for example, when the injection amount Q is small and the injection pressure P1.8 is desired to be reduced, it is necessary to reduce the injection pressure P1.8, which results in deterioration of combustion efficiency, etc. Conventionally, when the injection pressure is maintained at a moderately high pressure, the fuel injection amount is Q.

が変えられず、少ない噴射量での超高圧噴射が行えない
という問題点があった。
However, there was a problem in that it was not possible to change the injection amount, making it impossible to perform ultra-high pressure injection with a small amount of injection.

しかして、この発明は、このような従来の問題点に関し
、第2蓄圧室を設け蓄圧室の容積を変化させることに着
目したものであるが、従来、このような蓄圧式インジェ
クタでその容積を変化させるように第2蓄圧室を設けた
ものがいくつかある。
The present invention addresses these conventional problems by focusing on providing a second pressure accumulation chamber and changing the volume of the pressure accumulation chamber. There are some types that have a second pressure accumulation chamber to change the pressure.

即ち、これらは、特開昭61−185−9、特開昭61
−182456及び特開昭61−182457の各号公
報に示されている。
That is, these are JP-A-61-185-9, JP-A-61
-182456 and Japanese Unexamined Patent Publication No. 61-182457.

しかしながら、これら従来のもの1よ、いずれも蓄圧室
の容積変化は噴射圧力に感応して行なわれるものである
ため、任意の噴射量下、特に少ない噴射量での超高圧噴
射が達成できない点で、この発明のものとは異なるもの
である。
However, in all of these conventional methods 1, the volume change of the pressure accumulator is carried out in response to the injection pressure, so it is impossible to achieve ultra-high pressure injection under any injection amount, especially at a small injection amount. , which is different from that of this invention.

かかる従来例にかんがみ、この発明は、第2の蓄圧室に
より噴射量に感応して容量を可変にすべく、高圧噴射の
もとで、噴射量を任意の量に設定又は可変にできる蓄圧
式ユニットインジェクタを提供することにより、上記問
題点を解決することを目的としている。
In view of such conventional examples, the present invention provides a pressure accumulating type that can set or vary the injection quantity to an arbitrary amount under high-pressure injection in order to make the capacity variable in response to the injection quantity using a second pressure accumulation chamber. The present invention aims to solve the above problems by providing a unit injector.

[発明の構成] (課題を解決するための手段) この発明は、前記目的を達成するため、第1の発明は、
ピストンとプランジャをインジェクタ本体に設け、電磁
弁の開作動により前記ピストン上面に燃料供給圧を及は
し該ピストンとプランジャを移動させて加圧室への供給
燃料を加圧し該加圧室に弁装置を介して連通する蓄圧室
に高圧の燃料を送って蓄圧すると共に、電磁弁の閉作動
によりピストン上面の圧力を低下させ前記蓄圧室内燃料
を該蓄圧室内圧力により先端弁部より噴射するようにし
た蓄圧式ユニットインジェクタにおいて、前記蓄圧室と
連通ずる第2の蓄圧室を本体に設け蓄圧室容積を可変に
したものである。また、第2の発明は、第2の蓄圧室の
容積を噴射量増大に伴なって増大するようにしたもので
ある。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the first invention has the following features:
A piston and a plunger are provided in the injector body, and when a solenoid valve is opened, fuel supply pressure is applied to the upper surface of the piston, and the piston and plunger are moved to pressurize the fuel to be supplied to a pressurizing chamber, and a valve is placed in the pressurizing chamber. High-pressure fuel is sent to a pressure accumulator chamber communicated through the device to accumulate pressure, and the pressure on the top surface of the piston is reduced by the closing operation of a solenoid valve, so that the fuel in the pressure accumulator chamber is injected from the tip valve part by the pressure in the pressure accumulator chamber. In the pressure accumulating unit injector, a second pressure accumulating chamber communicating with the pressure accumulating chamber is provided in the main body to make the pressure accumulating chamber volume variable. Further, in a second aspect of the invention, the volume of the second pressure accumulating chamber is increased as the injection amount increases.

(作用) 例えば、第2の蓄圧室の容積を小さくすると蓄圧室全体
の容積は少なくなる。この場合噴射圧は燃料供給圧及び
電磁弁の作動時間を同じとすれば同じように超高圧のま
まである。従って、機関を主に低負荷で作動させたいと
きは、その負荷に対応した少ない噴射量を超高圧噴射で
噴射することができ、燃焼効率を向上できる。
(Function) For example, when the volume of the second pressure accumulation chamber is reduced, the volume of the entire pressure accumulation chamber is reduced. In this case, the injection pressure remains at an extremely high pressure if the fuel supply pressure and the operating time of the solenoid valve are the same. Therefore, when it is desired to operate the engine mainly at a low load, a small amount of injection corresponding to the load can be injected using ultra-high pressure injection, and the combustion efficiency can be improved.

また、第2の蓄圧室の容積を噴射量例えば負荷に応じて
可変にすれば、蓄圧室の容積、即ち噴射量が負荷に応じ
て変化することになり、このとき噴射圧が超高圧に保持
されるので、機関全運転範囲において効率が向上するも
のとなる。
Furthermore, if the volume of the second pressure accumulation chamber is made variable depending on the injection amount, for example, the load, the volume of the pressure accumulation chamber, that is, the injection amount, will change depending on the load, and at this time, the injection pressure will be maintained at an ultra-high pressure. As a result, efficiency is improved over the entire operating range of the engine.

(実施例) 以下、この発明の一実施例を第1図及び第2図により説
明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.

まず、・構成を第1図により説明するに、従来と同一の
ものは同一の符号を付し説明を省略する。
First, the configuration will be explained with reference to FIG. 1. Components that are the same as those of the prior art will be designated by the same reference numerals and explanations will be omitted.

この実施例で、従来のものに付加されたものについて述
べると、38はアダプタであり、このアダプタ38には
オネジ38Cとシリンダ38bとメネジ38aが形成さ
れており、オネジ38cにより本体2にねしこまれ締結
されている。39はピストンでありこのピストン39に
はオネジ39aとピストン部39bが形成され、アダプ
タ38のメネジ部38aにねじ込まれている。40は第
2の蓄圧室であり、第2の蓄圧室40は、本体の蓄圧室
13と連通しており、アダプタ38のシリンダ38bと
ピストン39のピストン部39bにより区画構成されて
いる。第2の蓄圧室40は、ピストン39を回転させ、
前後させる事により容量が変化する構成となっている。
In this embodiment, what is added to the conventional one is an adapter 38. This adapter 38 is formed with a male screw 38C, a cylinder 38b, and a female screw 38a. It has been concluded. 39 is a piston, and this piston 39 is formed with a male thread 39a and a piston portion 39b, and is screwed into the female thread portion 38a of the adapter 38. 40 is a second pressure accumulation chamber, and the second pressure accumulation chamber 40 communicates with the pressure accumulation chamber 13 of the main body, and is partitioned by the cylinder 38b of the adapter 38 and the piston portion 39b of the piston 39. The second pressure accumulation chamber 40 rotates the piston 39,
The structure is such that the capacity changes by moving it back and forth.

次に前記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

ピストン39を回転させ、前後させる事により第2の蓄
圧室40の容積が変化し、蓄圧室13と連通している事
によって、蓄圧室全体の容積V atを任意に設定する
事ができる。
By rotating the piston 39 and moving it back and forth, the volume of the second pressure accumulation chamber 40 changes, and by communicating with the pressure accumulation chamber 13, the volume V at of the entire pressure accumulation chamber can be arbitrarily set.

第2図は、噴射量と噴射圧と蓄圧室内容積の関係を示す
図である。例えば、最適の超高圧噴射圧P1.8を設定
したときに、蓄圧室内容積V meをv、lからvl、
まで変化さセル事(V 、、> V 、、−>V、1)
により、噴射量をQlからQ5まて任意に設定する事が
できる。これにより噴射圧P7.8を適度な超高圧に保
持したまま、燃料噴射量Q、を少なくでき、低負荷での
超高圧噴射が行えることになり、燃焼効率を向上できる
FIG. 2 is a diagram showing the relationship between the injection amount, the injection pressure, and the internal volume of the pressure accumulation chamber. For example, when setting the optimum ultra-high injection pressure P1.8, the pressure accumulation chamber internal volume V me is changed from v, l to vl,
Cell things changed up to (V,, > V,, -> V, 1)
Accordingly, the injection amount can be arbitrarily set from Ql to Q5. As a result, the fuel injection amount Q can be reduced while maintaining the injection pressure P7.8 at an appropriate ultra-high pressure, and ultra-high pressure injection can be performed under low load, thereby improving combustion efficiency.

第3図には、実施例を示す。FIG. 3 shows an example.

この実施例は、前実施例のアダプタ38の内部に取付け
たピストン41の内部に穴41bとスプライン41aを
形成し、ステップモータ44の軸44aをスプライン4
1aとキー42か合うように穴41bに挿入し、アダプ
タ38にステップモータ44をネジ43で固定したもの
である。
In this embodiment, a hole 41b and a spline 41a are formed inside the piston 41 attached to the inside of the adapter 38 of the previous embodiment, and the shaft 44a of the step motor 44 is connected to the spline 41a.
1a and the key 42 are inserted into the hole 41b so as to match, and a step motor 44 is fixed to the adapter 38 with screws 43.

ここで、ステップモータ44の回憚云により軸44aと
回転方向で一体になるピストン41が回転しなから螺合
により進退する。このとき、キー42はピストン41の
キー溝内を摺動する。
Here, due to the rotation of the step motor 44, the piston 41, which is integral with the shaft 44a in the rotational direction, does not rotate, but moves forward and backward through screw engagement. At this time, the key 42 slides within the keyway of the piston 41.

機関のクランクシャフト50には回転計48とトルクセ
ンサ49が取付けられ、マイコン47に接続されている
。燃料人口6には圧力センサ52が取付けられマイコン
47に接続されている。
A tachometer 48 and a torque sensor 49 are attached to a crankshaft 50 of the engine, and are connected to a microcomputer 47. A pressure sensor 52 is attached to the fuel port 6 and connected to the microcomputer 47.

マイコン47は、アンプ45.46を介してステップモ
ータ44と電磁弁20に接続され、更に、アンプ55を
介してフィードポンプ4のモータ54に接続されている
The microcomputer 47 is connected to the step motor 44 and the solenoid valve 20 via amplifiers 45 and 46, and further connected to the motor 54 of the feed pump 4 via an amplifier 55.

次にこの実施例の作用を説明する。Next, the operation of this embodiment will be explained.

回転計48とトルクセンサ49と圧力センサ52とアク
セル量53の信号をマイコン47が受けとり、マイコン
47は、例えば第2図の様な最適な噴射圧P1.8を保
ったまま、噴射量Q、を、回転トルクの負荷に応じて、
Q1〜Q5と変化させる為に蓄圧室内容積v、cをv、
1→v、、と変化させる信号をステップモータ44に与
える。同時に、回転とトルクの負荷に応じて、フィード
ポンプ4を駆動させるモータ54の電圧を変化させ、最
適噴射圧を制御する。
The microcomputer 47 receives signals from the tachometer 48, torque sensor 49, pressure sensor 52, and accelerator amount 53, and the microcomputer 47 adjusts the injection amount Q, while maintaining the optimum injection pressure P1.8 as shown in FIG. 2, for example. , depending on the rotational torque load,
In order to change Q1 to Q5, the internal volume of the pressure accumulation chamber v, c is changed to v,
A signal for changing the voltage from 1 to v is given to the step motor 44. At the same time, the voltage of the motor 54 that drives the feed pump 4 is changed depending on the rotation and torque load to control the optimum injection pressure.

かくして、この実施例では、機関全運転範囲において、
自動的に噴射量を変え超高圧噴射を可能とする。
Thus, in this embodiment, in the entire engine operating range,
It automatically changes the injection amount and enables ultra-high pressure injection.

[発明の効果〕 以上、説明してきたように、この発明によれば、その構
成を本体の蓄圧室に通じる本体外部に、第2の蓄圧室を
設け、蓄圧室の容量を可変にできる構造としたため、適
度な超高圧を保持したまま、噴射量を任意に設定でき、
低負荷から高負荷まで、超高圧噴射が行えるという効果
が得られる。
[Effects of the Invention] As described above, according to the present invention, the second pressure accumulation chamber is provided outside the main body communicating with the pressure accumulation chamber of the main body, and the capacity of the pressure accumulation chamber can be made variable. Therefore, the injection amount can be set arbitrarily while maintaining a moderate ultra-high pressure.
The effect is that ultra-high pressure injection can be performed from low to high loads.

又、第2の発明によれば、最適な超高圧の設定と、必要
な燃料噴射量を出すための蓄圧室内容積の設定を自動的
に行えるという効果が得られる。
Further, according to the second aspect of the invention, it is possible to automatically set the optimal ultra-high pressure and the internal volume of the pressure accumulator chamber for producing the required fuel injection amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の1実施例を示す断面図、第2図は
、噴射圧と噴射量の蓄圧室内容積変化による関係を示す
性能曲線グラフ、第3図は、他の実施例の全体構成を示
す断面図、第4図は従来のものの断面図、第5図は第4
図のv−■断面図である。 1・・・プランジャ    2・・・本体3・・・加圧
室(計量室) 4・・・フィードポンプ  5・・・ノズル6・・・燃
料人口     9・・・増圧室12・・・増圧ピスト
ン  13・・・蓄圧室18・・・アキュムレータバル
ブ 20・・・電磁弁     21・・・燃料タンク38
・・・アダプタ    39・・・ピストン40・・・
第2の蓄圧室
Fig. 1 is a cross-sectional view showing one embodiment of the present invention, Fig. 2 is a performance curve graph showing the relationship between injection pressure and injection amount due to changes in the pressure accumulation chamber volume, and Fig. 3 is an overall diagram of another embodiment. A cross-sectional view showing the configuration, Fig. 4 is a cross-sectional view of the conventional one, and Fig. 5 is a cross-sectional view of the conventional one.
It is a v-■ sectional view of the figure. 1... Plunger 2... Main body 3... Pressurizing chamber (metering chamber) 4... Feed pump 5... Nozzle 6... Fuel population 9... Pressure boosting chamber 12... Increase Pressure piston 13...Accumulation chamber 18...Accumulator valve 20...Solenoid valve 21...Fuel tank 38
...Adapter 39...Piston 40...
Second pressure accumulator

Claims (2)

【特許請求の範囲】[Claims] (1)ピストンとプランジャをインジェクタ本体に設け
、電磁弁の開作動により前記ピストン上面に燃料供給圧
を及ぼし該ピストンとプランジャを移動させて加圧室へ
の供給燃料を加圧し該加圧室に弁装置を介して連通する
蓄圧室に高圧の燃料を送って蓄圧すると共に、電磁弁の
閉作動によりピストン上面の圧力を低下させ前記蓄圧室
内燃料を該蓄圧室内圧力により先端弁部より噴射するよ
うにした蓄圧式ユニットインジェクタにおいて、前記蓄
圧室と連通する第2の蓄圧室を本体に設け前記蓄圧室の
容積を可変にしたことを特徴とする蓄圧式ユニットイン
ジェクタ。
(1) A piston and a plunger are provided in the injector body, and when a solenoid valve is opened, fuel supply pressure is applied to the upper surface of the piston, and the piston and plunger are moved to pressurize the fuel supplied to the pressurizing chamber. High-pressure fuel is sent to a pressure accumulator connected through a valve device to accumulate pressure, and the pressure on the top surface of the piston is reduced by the closing operation of a solenoid valve, so that the fuel in the pressure accumulator is injected from the tip valve part by the pressure in the pressure accumulator. A pressure accumulation type unit injector characterized in that a second pressure accumulation chamber communicating with the pressure accumulation chamber is provided in the main body, and the volume of the pressure accumulation chamber is made variable.
(2)前記第2の蓄圧室の容積を噴射量増大に伴なって
増大することを特徴とする請求項(1)記載の蓄圧式ユ
ニットインジェクタ。
(2) The pressure accumulation type unit injector according to claim 1, wherein the volume of the second pressure accumulation chamber is increased as the injection amount increases.
JP2164237A 1990-06-25 1990-06-25 Pressure storage type unit injector Pending JPH0454273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164237A JPH0454273A (en) 1990-06-25 1990-06-25 Pressure storage type unit injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164237A JPH0454273A (en) 1990-06-25 1990-06-25 Pressure storage type unit injector

Publications (1)

Publication Number Publication Date
JPH0454273A true JPH0454273A (en) 1992-02-21

Family

ID=15789278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164237A Pending JPH0454273A (en) 1990-06-25 1990-06-25 Pressure storage type unit injector

Country Status (1)

Country Link
JP (1) JPH0454273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101591A (en) * 1992-09-21 1994-04-12 Nissan Motor Co Ltd Accumulator injector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101591A (en) * 1992-09-21 1994-04-12 Nissan Motor Co Ltd Accumulator injector

Similar Documents

Publication Publication Date Title
US6095118A (en) Fuel injector
US6230684B1 (en) Fuel supply apparatus for direct injection type gasoline engine
JPH0114418B2 (en)
JP2535215B2 (en) Fuel injection device for internal combustion engine
JP3124280B2 (en) Fuel injection device
JPH06323220A (en) Fuel injection device for internal combustion engine
JPS59145360A (en) Fuel jet pump
JPS63147966A (en) Fuel injector
JPH0267456A (en) Fuel injector, particularly pump nozzle for internal combustion engine
JP3334933B2 (en) Fuel injection device for internal combustion engine, especially pump nozzle
JP2006500504A (en) Fuel injection device for internal combustion engine
JPH1061523A (en) Injection device for combined injecting of fuel and addition liquid
US20030213471A1 (en) Fuel injection system for an internal combustion engine
US20030037768A1 (en) Method, computer program, control and/or regulating unit, and fuel system for an internal combustion engine
US7543568B1 (en) Fuel pressure amplifier for improved cranking performance
US6626149B2 (en) Injection system
JPH0454273A (en) Pressure storage type unit injector
US6843641B1 (en) Radial piston pump
EP0441738B1 (en) High pressure fuel injection system
JPS6146459A (en) Fuel jet pump of internal combustion engine
JPS5951156A (en) Fuel injection device of internal-combustion engine
JPS58126458A (en) Fuel injection device of diesel engine
WO1999043941A2 (en) Diesel pump fuel inlet metering using proportional control valve
JP2952963B2 (en) Variable discharge high pressure pump
JPH04191459A (en) Accumulating type unit injector