JPH04191459A - Accumulating type unit injector - Google Patents

Accumulating type unit injector

Info

Publication number
JPH04191459A
JPH04191459A JP2318047A JP31804790A JPH04191459A JP H04191459 A JPH04191459 A JP H04191459A JP 2318047 A JP2318047 A JP 2318047A JP 31804790 A JP31804790 A JP 31804790A JP H04191459 A JPH04191459 A JP H04191459A
Authority
JP
Japan
Prior art keywords
pressure
chamber
fuel
accumulator
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2318047A
Other languages
Japanese (ja)
Inventor
Masayuki Munekiyo
正幸 宗清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2318047A priority Critical patent/JPH04191459A/en
Publication of JPH04191459A publication Critical patent/JPH04191459A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To secure the minimum fuel injection quantity under the super high pressure, and maintain the injection pressure at the super high pressure and while change the injection quantity from idle to full open. CONSTITUTION:The fuel inside of a pressure chamber 3, which is pressurized to the super high pressure by a pressure increase piston 12 and a plunger 1, pushes an accumulator valve 18b down, and starts to flow into a first accumulator chamber 13a and a second accumulator chamber 13b through a flow passage 18c, and the pressure of the first accumulator chamber 13a and the second accumulator chamber 13b rises to the super high pressure simultaneously. Under this condition, when the injection signal is input to a solenoid valve 20 and a pressure increase chamber 9 is communicated with an outlet 10, the force of the plunger 1 is reduced to lower the pressure of the pressure chamber 3. Then, the fuel in the first accumulator chamber 13a flows to the pressure chamber 3 through a check valve 19. A needle valve (needle) 17 is pushed up by the super high pressure fuel of the second accumulator chamber 13b, and the super high pressure fuel of the second accumulator chamber 13 is injected from an injection port of the tip 17'.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、デイゼル機関に使用される蓄圧式ユニット
インジェクタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) This invention relates to a pressure accumulating unit injector used in a diesel engine.

(従来の技術) 従来より、ディーゼ元機関用インジェクタとして、ピス
トンとプランジャを備えることにより高圧のポンプ及び
配管を廃止した蓄圧式ユニットインジェクタが提案され
ている。
(Prior Art) Conventionally, an accumulator unit injector has been proposed as an injector for a diesel engine, which is equipped with a piston and a plunger and eliminates the need for a high-pressure pump and piping.

このような従来のユニ・ソトインジエクタとしては、例
えば第6図に示すようなものがある(本出願人の出願に
係る特願平1−3713及び特開昭59−85433参
照)。いまこれを前者を用いて説明する。フィードポン
プ4により所定の圧力で供給した燃料は、燃料人口6か
ら一部は燃料通路7、逆止弁7aを通り、加圧室(計量
室)3へ供給され、他方は流路8を通り、電磁弁20を
介して増圧室9へ供給される。前記電磁弁20は、その
開作動(A矢視方向)で増圧室9と燃料人口6とを連通
させているかあるいは閉作動て増圧室9と燃料出口10
とを連通させているか、のいずれかの作動を実行してい
る。電磁弁20て増圧室9と燃料出口10とを連通した
場合、流路8と増圧室9の連通は閉ざされ、燃料は燃料
通路7を通り、加圧室3に充填される。次に電磁弁20
を燃料人口6と増圧室9とを連通すると、燃料は増圧室
9へ導かれる。このとき、増圧ピストン12は燃料圧力
により押し下げられ、加圧室3に供給された燃料は、増
圧ピストン12とプランジャ1の受圧部の面積化分だけ
増圧され、アキュムレータバルブ18を押し下げ、本体
2に設けた蓄圧室13側へ燃料の体積弾性によって押し
縮められた分だけの燃料が圧送される。蓄圧室13と加
圧室3の燃料による力が平衡すると、ニードルスプリン
グ(バネ)14によりアキュムレータバルブ18が閉じ
、蓄圧室13は密閉される。
An example of such a conventional uni-soto injector is the one shown in FIG. 6 (see Japanese Patent Application No. 1-3713 and Japanese Patent Application Laid-Open No. 59-85433 filed by the present applicant). This will now be explained using the former. Part of the fuel supplied at a predetermined pressure by the feed pump 4 is supplied from the fuel population 6 to the pressurizing chamber (measuring chamber) 3 through the fuel passage 7 and the check valve 7a, and the other part passes through the flow passage 8. , is supplied to the pressure increase chamber 9 via the solenoid valve 20. The electromagnetic valve 20 communicates between the pressure intensifying chamber 9 and the fuel outlet 6 when it is opened (in the direction of arrow A), or communicates between the pressure intensifying chamber 9 and the fuel outlet 10 when it is closed.
is in communication with or is performing one of the following operations. When the solenoid valve 20 connects the pressure increase chamber 9 and the fuel outlet 10, communication between the flow path 8 and the pressure increase chamber 9 is closed, and fuel passes through the fuel passage 7 and fills the pressure chamber 3. Next, the solenoid valve 20
When the fuel population 6 and the pressure intensification chamber 9 are communicated, the fuel is guided to the pressure intensification chamber 9. At this time, the pressure booster piston 12 is pushed down by the fuel pressure, and the pressure of the fuel supplied to the pressure chamber 3 is increased by the area of the pressure booster piston 12 and the pressure receiving part of the plunger 1, pushing down the accumulator valve 18. The amount of fuel compressed by the bulk elasticity of the fuel is pumped to the pressure storage chamber 13 provided in the main body 2. When the forces of the fuel in the pressure accumulation chamber 13 and the pressure chamber 3 are balanced, the needle spring 14 closes the accumulator valve 18, and the pressure accumulation chamber 13 is sealed.

ここで電磁弁20を増圧室9と燃料出口10とを連通す
るように作動すると、増圧室9の圧力は大気圧に開放さ
れ、ピストン12はバ*15に押され上昇する。同時に
加圧室3の圧力もフィードポンプ4による供給圧まで下
がる。このように、電磁弁20の閉作動で増圧室9と1
0とを連通ずる事により、加圧室3内の圧力か下がると
蓄圧室13内の圧力によってフランジ(シム)16を有
するニードル17の弁部17′を開けようとする力が、
バネ14とこの下がった加圧室3内の圧力によるニード
ル17の先端弁部(噴射機構)17′を閉じようとする
力を上まわるのでニードル17が上昇し、蓄圧室13内
の燃料がノズル5の先端から噴射する。
When the solenoid valve 20 is operated to communicate the pressure increase chamber 9 and the fuel outlet 10, the pressure in the pressure increase chamber 9 is released to atmospheric pressure, and the piston 12 is pushed by the bar 15 and rises. At the same time, the pressure in the pressurizing chamber 3 also decreases to the pressure supplied by the feed pump 4. In this way, when the solenoid valve 20 closes, the pressure increase chambers 9 and 1
0, when the pressure in the pressurizing chamber 3 decreases, the pressure in the accumulating chamber 13 causes a force to try to open the valve portion 17' of the needle 17 having the flange (shim) 16.
This exceeds the force of the spring 14 and the lowered pressure inside the pressurizing chamber 3 that tries to close the tip valve part (injection mechanism) 17' of the needle 17, so the needle 17 rises and the fuel inside the pressure accumulating chamber 13 flows into the nozzle. Spray from the tip of 5.

噴射が始まると同時に、蓄圧室13内の圧力は下がり始
め、燃料の体積弾性によって押し縮められた分の全てが
噴射し、ニードル17が閉し、噴射が終了する。以降は
この動作を繰り返す。かくして、前記動作によって従来
のユニットインジェクタは、超高圧噴射を可能にし、そ
れにより燃料の微粒化と燃料噴射期間の短縮化を行い、
ディーゼル燃焼を改善し、排気性能、燃費を向上しよう
とするものである。
At the same time as the injection begins, the pressure in the pressure storage chamber 13 begins to decrease, and all of the compressed fuel due to the bulk elasticity of the fuel is injected, the needle 17 closes, and the injection ends. After that, repeat this operation. Thus, by said operation, the conventional unit injector enables ultra-high pressure injection, thereby atomizing the fuel and shortening the fuel injection period,
The aim is to improve diesel combustion, improve exhaust performance, and improve fuel efficiency.

尚、第6図中、21は燃料タンク、22は圧力計、23
はアキュムレータ、24はバルブである。
In addition, in Fig. 6, 21 is a fuel tank, 22 is a pressure gauge, and 23 is a fuel tank.
is an accumulator, and 24 is a valve.

尚、前述における燃料噴射量Q、は、蓄圧室内容積va
cと蓄圧室内の加圧開始圧(閉弁圧)P、1と、加圧終
了圧(噴射圧)Pゆ、8と体積弾性率にで簡単に表すと
次のようになる。
In addition, the fuel injection amount Q mentioned above is the pressure accumulation chamber internal volume va
c, the pressurization start pressure (valve closing pressure) P in the pressure accumulator chamber, 1, the pressurization end pressure (injection pressure) P, 8, and the bulk modulus can be expressed simply as follows.

Q+ =       (P−−−P、t)・・・(1
)即ち、燃料噴射量は蓄圧室内容積と蓄圧室内の圧力差
によって決ってしまうものである。
Q+ = (P---P, t)...(1
) That is, the fuel injection amount is determined by the internal volume of the pressure accumulator and the pressure difference within the pressure accumulator.

(発明が解決しようとする課題) しかしながら、このような従来の蓄圧式ユニットインジ
ェクタにあっては、蓄圧室内容積が一定であるため、噴
射量を任意に変えられず便利性に乏しいという問題点が
あった。即ち前述の(1)式において、閉弁圧P、cは
主としてニードル閉じバネ14の力によって決まるため
、結局、噴射量Q、が噴射圧P7.!のみによって決っ
てくるものである。従来は、このため、例えば、少ない
噴射量Q、とじたいときには噴射圧P eastを必然
的に少なくしなければならず、燃焼効率の悪化等を招く
結果なる。このため、従来では噴射圧を適度な超高圧に
保持したままでは、燃料噴射JIQ、が変えられず、少
ない噴射量での超高圧噴射が行えないという問題点があ
った。
(Problem to be Solved by the Invention) However, in such a conventional pressure accumulator unit injector, since the internal volume of the pressure accumulator chamber is constant, there is a problem that the injection amount cannot be changed arbitrarily, making it lacking in convenience. there were. That is, in the above-mentioned equation (1), since the valve closing pressures P and c are mainly determined by the force of the needle closing spring 14, the injection amount Q ends up being equal to the injection pressure P7. ! It is determined only by Conventionally, for this reason, for example, when it is desired to reduce the injection amount Q, the injection pressure P east must necessarily be reduced, resulting in deterioration of combustion efficiency and the like. For this reason, in the past, there was a problem in that the fuel injection JIQ could not be changed while the injection pressure was maintained at an appropriate ultra-high pressure, and ultra-high pressure injection with a small injection amount could not be performed.

換言すれば、従来は、蓄圧室13がニードルスプリング
14を内部に格納している構造であるため、この内容積
を望み通りの小さい室に設定できず、必然的にある容積
を占める構造になり、そしてこのある大きさの室から蓄
圧燃料を噴射するようにしているため、どうしても、所
定の噴射圧を保持したまま、最小噴射量から最大噴射量
までの量を確保することが困難になるという問題点があ
った。
In other words, conventionally, the pressure accumulation chamber 13 has a structure in which the needle spring 14 is housed inside, so the internal volume cannot be set to be as small as desired, and the structure inevitably occupies a certain volume. Since the pressure-accumulated fuel is injected from a chamber of a certain size, it becomes difficult to maintain the injection amount from the minimum to maximum injection amount while maintaining the predetermined injection pressure. There was a problem.

この発明は、このような従来の問題点に着目してなされ
たもので、燃料噴射の為の蓄圧室容積を従来の蓄圧室と
分離した構成することにより、超高圧下で最小の燃料噴
射量を確保し、上記問題点を解決することを目的として
いる。
This invention was made by focusing on these conventional problems, and by configuring the pressure accumulation chamber volume for fuel injection to be separated from the conventional pressure accumulation chamber, it is possible to minimize the amount of fuel injection under ultra-high pressure. The aim is to ensure that the above-mentioned problems are solved.

[発明の構成コ (課題を解決するための手段) この発明は、前記目的を達成するため、増圧ピストンと
プランジャと加圧室とアキュムレータバルブを設け、燃
料供給圧を利用して蓄圧室内に燃料を超高圧で加圧し超
高圧にて蓄圧室内の燃料を弾性変形させ、この弾性変形
させられた量の燃料を噴射するようにした蓄圧式ユニッ
トインジェクタにおいて、ニードルとニードルを閉弁方
向に付勢するニードルスプリングを第1蓄圧室内に設け
、この第1蓄圧室を、該第1蓄圧室側から加圧室への燃
料の流出を許すが逆には許さない逆止弁を有する通路と
アキュムレータバルブの通路とを介して加圧室と連通す
るように構成すると共に、可変容量設定機構とニードル
先端部の噴射機構を内部に有する第2蓄圧室を設け、該
第2蓄圧室を前記アキュムレータバルブの通路を介して
のみ前記加圧室及び第1蓄圧室に連通するように構成し
、前記第2蓄圧室の蓄圧燃料を噴射するようにしたもの
である。
[Structure of the Invention (Means for Solving the Problems)] In order to achieve the above object, the present invention provides a pressure booster piston, a plunger, a pressurization chamber, and an accumulator valve, and utilizes fuel supply pressure to increase the pressure inside the pressure accumulation chamber. In an accumulator unit injector that pressurizes fuel at ultra-high pressure, elastically deforms the fuel in the accumulator chamber, and injects the elastically deformed amount of fuel, the needle is attached in the valve-closing direction. A needle spring is provided in a first pressure accumulating chamber, and the first pressure accumulating chamber is connected to an accumulator and a passage having a check valve that allows fuel to flow from the first pressure accumulating chamber side to the pressurizing chamber but not vice versa. A second pressure accumulation chamber is configured to communicate with the pressurizing chamber via the passage of the valve and has a variable capacity setting mechanism and a needle tip injection mechanism therein, and the second pressure accumulation chamber is connected to the accumulator valve. The pressurizing chamber and the first pressure accumulating chamber are communicated only through the passage, and the pressure accumulating fuel in the second pressure accumulating chamber is injected.

(作用) 第1蓄圧室は噴射量の調整に何ら関与せず、専らニード
ルを押すスプリングの格納機能を果すので、このスプリ
ングの設計を望み通りにてき、燃料の蓄圧を超高圧とす
ることができる。第2蓄圧室は第1蓄圧室と逆止弁を有
する通路及びアキュムレータバルブの通路を介して通じ
ているため、同じく超高圧の蓄圧燃料を保有する。而し
て、第2蓄圧室はスプリングを内蔵していないため、望
み通りの小さい室にも設定できる。よって、第2蓄圧室
より噴射した燃料は噴射圧を最大に保持したまま、最大
から最小の噴射量までを確保できることになる。
(Function) The first pressure accumulation chamber does not take any part in adjusting the injection amount, but only serves the function of storing the spring that presses the needle. Therefore, if the design of this spring is adjusted as desired, the fuel pressure accumulation can be made to an ultra-high pressure. can. Since the second pressure accumulation chamber communicates with the first pressure accumulation chamber through a passage having a check valve and a passage of an accumulator valve, it also holds pressure accumulation fuel at an extremely high pressure. Since the second pressure accumulating chamber does not have a built-in spring, it can be set as small as desired. Therefore, the amount of fuel injected from the second pressure accumulator can be maintained from the maximum to the minimum injection amount while maintaining the injection pressure at the maximum.

(実施例) 以下、この発明の一実施例を第1図及び第2図に基づい
て説明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2.

第1図は、この発明の一実施例を示す全体的断面図であ
る。
FIG. 1 is an overall sectional view showing one embodiment of the present invention.

まず構成を説明すると、13aは第1蓄圧室であって、
この第1蓄圧室13aは、ニードルホルダ部23と逆止
弁19とアキュムレータバルブ18bにより密閉するこ
とができる室となっている。
First, to explain the configuration, 13a is a first pressure accumulation chamber,
This first pressure accumulation chamber 13a is a chamber that can be sealed by the needle holder portion 23, the check valve 19, and the accumulator valve 18b.

また、第1蓄圧室13aは逆止弁19またはアキュムレ
ータバルブ18bの流路18c(第2図参照)を介して
加圧室3と連通する事ができるようになっている。逆止
弁19は第1蓄圧室13aから燃料を流出する方向には
開くが逆には流入させない構造である。13bは第2蓄
圧室であって、この第2蓄圧室13bは噴射機構即ち噴
射口を有するニードル先端部17′、アキュムレータバ
ルブ18b及びピストン30により密閉する事ができる
室となっている。2aは本体2に形成したシリンダであ
って、このシリンダ2aの内部にはピストン30が螺合
により取付けられである。即ちピストン30にはまって
いるっまみ25を回転させる事により、ネジ部2bによ
って、ピストン30は矢印方向に移動し、第2蓄圧室1
3bの容積を変化させる事ができるものである。18b
はアキュムレータバルブであって、このアキュムレータ
バルブ18bにはバルブ18bが下った状態で、加圧室
3と第1蓄圧室13aと第2蓄圧室13bとを連通ずる
事のできる縦方向の流路18cとこれに直角な方向の流
路18dが設けられている(第2図参照)。
Further, the first pressure accumulating chamber 13a can communicate with the pressurizing chamber 3 via the check valve 19 or the flow path 18c (see FIG. 2) of the accumulator valve 18b. The check valve 19 has a structure that opens in the direction in which fuel flows out from the first pressure accumulation chamber 13a, but prevents it from flowing in the opposite direction. 13b is a second pressure accumulation chamber, and this second pressure accumulation chamber 13b is a chamber that can be sealed by an injection mechanism, that is, a needle tip 17' having an injection port, an accumulator valve 18b, and a piston 30. 2a is a cylinder formed in the main body 2, and a piston 30 is screwed into the cylinder 2a. That is, by rotating the knob 25 fitted into the piston 30, the piston 30 is moved in the direction of the arrow by the threaded portion 2b, and the second pressure accumulation chamber 1 is moved.
It is possible to change the volume of 3b. 18b
is an accumulator valve, and this accumulator valve 18b has a vertical passage 18c that allows communication between the pressurizing chamber 3, the first pressure accumulating chamber 13a, and the second pressure accumulating chamber 13b when the valve 18b is lowered. A flow path 18d is provided in a direction perpendicular to this (see FIG. 2).

尚、シリンダ2 a s ピストン30、つまみ25に
より可変容量設定機構50が構成されている。
Incidentally, the cylinder 2 a s piston 30 and the knob 25 constitute a variable capacity setting mechanism 50 .

その他の構成は従来例(第6図)と同じであるので、説
明を省略する。
The rest of the configuration is the same as the conventional example (FIG. 6), so the explanation will be omitted.

次に前記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

増圧ピストン12とプランジャ1で超高圧に加圧された
加圧室3内の燃料はアキュムレータバルブ18bを押し
下げ、流路18cを通り第1蓄圧室13aと第2蓄圧室
13bに流入し始め、第1蓄圧室13a及び第2蓄圧室
13bは同時に超高圧になる。
The fuel in the pressure chamber 3 pressurized to an extremely high pressure by the pressure booster piston 12 and the plunger 1 pushes down the accumulator valve 18b and begins to flow into the first pressure accumulation chamber 13a and the second pressure accumulation chamber 13b through the flow path 18c. The first pressure accumulation chamber 13a and the second pressure accumulation chamber 13b become extremely high pressure at the same time.

前記過程で噴孔を閉塞しシールするニードル17の先端
部17′はニードルスプリング14の押付力により閉じ
たままである。
The tip 17' of the needle 17, which closes and seals the nozzle hole during the above process, remains closed due to the pressing force of the needle spring 14.

加圧室3と、第1蓄圧室13a及び第2蓄圧室13bの
圧力が平衡すると、ニードルスプリング14によりアキ
ュムレータバルブ18bが押し上げられ第1蓄圧室13
aと第2蓄圧室13bと加圧室3はそれぞれ密閉される
When the pressures in the pressurizing chamber 3, the first pressure accumulating chamber 13a, and the second pressure accumulating chamber 13b are balanced, the accumulator valve 18b is pushed up by the needle spring 14, and the first pressure accumulating chamber 13 is pushed up.
a, the second pressure accumulation chamber 13b, and the pressurization chamber 3 are each sealed.

この状態で電磁弁20に噴射の信号がはいると、即ち増
圧室9を出口10に連通させ大気圧に低下させるように
すると、加圧室3を加圧するプランジャ1の力がなくな
り、加圧室3の圧力が下り始める。
In this state, when an injection signal is input to the solenoid valve 20, that is, when the pressure intensifying chamber 9 is communicated with the outlet 10 to lower the pressure to atmospheric pressure, the force of the plunger 1 pressurizing the pressurizing chamber 3 is lost, and the pressure increases. The pressure in pressure chamber 3 begins to drop.

加圧室3の圧力が下り始めると、第1蓄圧室13aの燃
料は、逆止弁19を通って加圧室3へ抜け、加圧室3の
圧力とともに燃料供給のフィード圧まで下っていく。
When the pressure in the pressurizing chamber 3 begins to decrease, the fuel in the first pressure accumulating chamber 13a passes through the check valve 19 to the pressurizing chamber 3, and the pressure in the pressurizing chamber 3 decreases to the fuel supply feed pressure. .

加圧室3内の圧力が降下する過程において、第2蓄圧室
13b中の超高圧燃料によって針弁(ニードル)17を
押し上げる力が、加圧室3の燃料圧によって針弁17を
押し下げる力とニードルスプリング14によって針弁を
押し下げるカを上回るので、針弁は押し上げられ、第2
蓄圧室13内の超高圧燃料が先端部17′の噴口から噴
射される。
In the process of decreasing the pressure in the pressurizing chamber 3, the force pushing up the needle valve 17 due to the ultra-high pressure fuel in the second pressure accumulating chamber 13b is combined with the force pushing down the needle valve 17 due to the fuel pressure in the pressurizing chamber 3. Since the needle spring 14 exceeds the force pushing down the needle valve, the needle valve is pushed up and the second
The ultra-high pressure fuel in the pressure accumulation chamber 13 is injected from the nozzle at the tip 17'.

噴射と同時に、第2蓄圧室13b内の圧力は下り始め、
針弁17か押し下げられ噴射が終了する。
Simultaneously with the injection, the pressure in the second pressure accumulator 13b begins to decrease,
The needle valve 17 is pushed down and injection ends.

その他の動作は従来と同りである。Other operations are the same as before.

ここで、本実施例により噴射される燃料は第2蓄圧室1
3bのみの燃料でありその最小設定容積を構造上極めて
小さくてきると同時に、可変にてきるものである。この
ため、噴射圧力に比例して増大する燃料噴射量を、蓄圧
室容積を極めて小さい容積V、。から最大容積まて可変
にできる為、噴射圧力を超高圧に保ったまま最小噴射量
(アイドル時)Ql、から最大噴射量(全開時)Qm、
、まで自由に設定できる。さらに、噴射量Qを一定に保
ったまま圧力を可変にする事もてきるので、各運転条件
下で最もよい燃焼を作り出す事ができる。
Here, the fuel injected according to this embodiment is in the second pressure accumulation chamber 1.
3b is the only fuel, and its minimum setting volume can be made extremely small structurally, and at the same time, it can be made variable. For this reason, the fuel injection amount increases in proportion to the injection pressure, while the pressure accumulation chamber volume is reduced to an extremely small volume V. Since the maximum volume can be varied from the minimum injection amount (when idling) to the maximum injection amount (when fully open) Qm, while maintaining the injection pressure at an ultra-high pressure,
You can freely set up to . Furthermore, since the pressure can be made variable while keeping the injection amount Q constant, the best combustion can be produced under each operating condition.

第4図は従来例の噴射圧と噴射量の関係を表す図であり
、この従来例では噴射量が、噴射圧のみに依存する事が
分り、自由度が少ない。これに対して第3図は発明の蓄
圧室容積v、cによる噴射量Qと噴射圧Pを表す図であ
り、噴射量と噴射圧の組み合せを例えば噴射圧を最高の
Pm1、に保持したまま噴射量をQl、、からQ□8に
変えるということができ、その組合せを全く自由に作り
出す事ができるものである。
FIG. 4 is a diagram showing the relationship between injection pressure and injection amount in the conventional example. It can be seen that in this conventional example, the injection amount depends only on the injection pressure, and there is little freedom. On the other hand, FIG. 3 is a diagram showing the injection amount Q and injection pressure P depending on the pressure accumulator volumes v and c of the invention, and the combination of the injection amount and injection pressure is maintained, for example, at the highest injection pressure Pm1. It is possible to change the injection amount from Ql, . . . to Q□8, and the combination can be created completely freely.

第5図には、他の実施例を示す。FIG. 5 shows another embodiment.

この実施例は、第1実施例のピストン3oの作動をコン
トロールユニット40を用いて自動的に行うものである
。21はステップモーターで、ステップモータ21の軸
22とピストン3oは螺合しており、ピストン30とシ
リンダ2aとはスプライン結合しており、ピストン3o
が回転すると、ピストン30が移動する様構成されてい
る。
In this embodiment, the piston 3o of the first embodiment is automatically operated using a control unit 40. 21 is a step motor, the shaft 22 of the step motor 21 and the piston 3o are screwed together, the piston 30 and the cylinder 2a are spline connected, and the piston 3o
When the piston 30 rotates, the piston 30 moves.

コントロールユニット40はENG回転数、トルク、ア
クセル開度の信号を受は電磁弁20.ステップモータ2
1、燃料供給源5oのフィード圧をコントロールし、さ
まざまな運転状況下で最適の燃料噴射量と、燃料噴射圧
を設定することができる。
The control unit 40 receives signals of the ENG rotation speed, torque, and accelerator opening. step motor 2
1. By controlling the feed pressure of the fuel supply source 5o, it is possible to set the optimum fuel injection amount and fuel injection pressure under various driving conditions.

[発明の効果コ 以上説明してきたように、この発明によれば、その構成
を極めて小さい蓄圧室容積から任意な大きさの容積まで
可変にてきる構造としたため、噴射圧力を超高圧に保っ
たままアイドルから全開まで噴射量を変化させる事がで
きるという効果か得られる。
[Effects of the Invention] As explained above, according to the present invention, the structure of the pressure accumulator chamber can be varied from an extremely small volume to an arbitrarily large volume, so that the injection pressure can be maintained at an ultra-high pressure. The effect is that the injection amount can be varied from idle to full throttle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す全体的断面図、第
2図は第1図の要部を示す斜視図、第3図はこの発明に
よる噴射圧と噴射量の関係を示す性能曲線図、第4図は
従来例の噴射圧と噴射量の関係を示す性能曲線図、第5
図はこの発明の他の実施例を示す断面図、第6図は従来
例の断面図である。 1・・・プランジャ 2・・・本体 2a・・・シリンダ 3・・・加圧室 12・・・増圧ピストン 13a・・・第1蓄圧室 13b・・・第2蓄圧室 14・・・ニードルスプリング 17・・・ニードル(針弁) 18b・・・アキュムレータバルブ 18c・・・流路 19・・・逆止弁 20・・・電磁弁 23・・・ニードルホルダ 30・・・ピストン 代理人 弁理士  三 好 秀 和 噴射圧P 第 3図 噴射圧P 第 4図
FIG. 1 is an overall sectional view showing an embodiment of the present invention, FIG. 2 is a perspective view showing the main parts of FIG. 1, and FIG. 3 is a performance showing the relationship between injection pressure and injection amount according to the present invention. Curve diagram, Figure 4 is a performance curve diagram showing the relationship between injection pressure and injection amount in the conventional example, and Figure 5 is
The figure is a sectional view showing another embodiment of the present invention, and FIG. 6 is a sectional view of a conventional example. 1... Plunger 2... Main body 2a... Cylinder 3... Pressurizing chamber 12... Pressure increasing piston 13a... First pressure accumulating chamber 13b... Second pressure accumulating chamber 14... Needle Spring 17... Needle (needle valve) 18b... Accumulator valve 18c... Channel 19... Check valve 20... Solenoid valve 23... Needle holder 30... Piston agent Patent attorney Hide Miyoshi Sum injection pressure P Figure 3 Injection pressure P Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)増圧ピストンとプランジャと加圧室とアキュムレ
ータバルブを設け、燃料供給圧を利用して蓄圧室内に燃
料を超高圧で加圧し超高圧にて蓄圧室内の燃料を弾性変
形させ、この弾性変形させられた量の燃料を噴射するよ
うにした蓄圧式ユニットインジェクタにおいて、ニード
ルとニードルを閉弁方向に付勢するニードルスプリング
を第1蓄圧室内に設け、この第1蓄圧室を、該第1蓄圧
室側から加圧室への燃料の流出を許すが逆には許さない
逆止弁を有する通路とアキュムレータバルブの通路とを
介して加圧室と連通するように構成すると共に、可変容
量設定機構とニードル先端部の噴射機構を内部に有する
第2蓄圧室を設け、該第2蓄圧室を前記アキュムレータ
バルブの通路を介してのみ前記加圧室及び第1蓄圧室に
連通するように構成し、前記第2蓄圧室の蓄圧燃料を噴
射するようにしたことを特徴とする蓄圧式ユニットイン
ジェクタ。
(1) A pressure booster piston, a plunger, a pressurizing chamber, and an accumulator valve are provided, and the fuel is pressurized in the pressure accumulating chamber at an ultra-high pressure using the fuel supply pressure, and the fuel in the accumulating chamber is elastically deformed at the ultra-high pressure. In a pressure accumulator unit injector that injects a deformed amount of fuel, a needle and a needle spring that biases the needle in the valve closing direction are provided in a first pressure accumulation chamber, and the first pressure accumulation chamber is connected to the first pressure accumulation chamber. It is configured to communicate with the pressurizing chamber via the passage of the accumulator valve and a passage having a check valve that allows fuel to flow from the pressure accumulating chamber side to the pressurizing chamber but not vice versa, and has a variable capacity setting. A second pressure accumulation chamber having a mechanism and a needle tip injection mechanism therein is provided, and the second pressure accumulation chamber is configured to communicate with the pressure chamber and the first pressure accumulation chamber only through a passage of the accumulator valve. A pressure accumulation type unit injector, characterized in that the pressure accumulation fuel in the second pressure accumulation chamber is injected.
JP2318047A 1990-11-26 1990-11-26 Accumulating type unit injector Pending JPH04191459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318047A JPH04191459A (en) 1990-11-26 1990-11-26 Accumulating type unit injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318047A JPH04191459A (en) 1990-11-26 1990-11-26 Accumulating type unit injector

Publications (1)

Publication Number Publication Date
JPH04191459A true JPH04191459A (en) 1992-07-09

Family

ID=18094902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318047A Pending JPH04191459A (en) 1990-11-26 1990-11-26 Accumulating type unit injector

Country Status (1)

Country Link
JP (1) JPH04191459A (en)

Similar Documents

Publication Publication Date Title
US6513497B1 (en) Fuel injection system for internal combustion engines
US6752325B2 (en) Fuel injection device
JP2591772B2 (en) Fuel injection system for internal combustion engines, especially diesel engines
JP2535215B2 (en) Fuel injection device for internal combustion engine
WO1998009068A1 (en) Fuel injection device
JPH02294551A (en) Fuel injector of internal combustion engine
JPH02233814A (en) Engine brake for service cars
JPH06510581A (en) injection device
JPH02221672A (en) Fuel injection device
US4080942A (en) Metering fuel by compressibility
JP2004518872A (en) Fuel injection device
US6725840B1 (en) Fuel injection device
US6626149B2 (en) Injection system
US6688537B2 (en) Injector loaded from collecting chamber and provided with cascade-shaped control device
JP2001073900A (en) Fuel injection method and fuel injection system for internal combustion engine
JPH11257182A (en) Fuel injection system of internal combustion engine
JP2004521242A (en) Fuel injection device with booster
US6345605B1 (en) Configuration and method for amplifying the pressure of fuel for a fuel injector
JPH04191459A (en) Accumulating type unit injector
US6688278B2 (en) Method and device for shaping the injection pressure course in injectors
JP3904121B2 (en) Accumulated fuel injection valve
JPS6146459A (en) Fuel jet pump of internal combustion engine
JP2610367B2 (en) Various fuel injection devices
JPH0643489Y2 (en) Fuel injection device for internal combustion engine
JPS626291Y2 (en)