JPS63133182A - Method and device for measuring interference of minute phase object - Google Patents

Method and device for measuring interference of minute phase object

Info

Publication number
JPS63133182A
JPS63133182A JP28151686A JP28151686A JPS63133182A JP S63133182 A JPS63133182 A JP S63133182A JP 28151686 A JP28151686 A JP 28151686A JP 28151686 A JP28151686 A JP 28151686A JP S63133182 A JPS63133182 A JP S63133182A
Authority
JP
Japan
Prior art keywords
hologram
light
semi
objective lens
transparent mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28151686A
Other languages
Japanese (ja)
Inventor
Isuke Hirano
平野 伊助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP28151686A priority Critical patent/JPS63133182A/en
Publication of JPS63133182A publication Critical patent/JPS63133182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Holo Graphy (AREA)

Abstract

PURPOSE:To obtain phase difference intensifying information of a minute phase object by introducing the phase difference intensifying method based on holography to a Mach-Zehnder interferometer having the intensifying function. CONSTITUTION:An objective lens 36 is inserted to an optical path II where a sample 35 is placed of the Mach-Zehnder interfereometer to constitute a microscope. An objective lens 37 is arranged in an optical path I so that interference fringes on a hologram become linear diffraction grating. A hologram recording medium 38 is set on the image surface position of the objective lens to form an image surface hologram. At this time, a semitransparent mirror 32 is inclined at an angle alpha/2 to make an angle alpha between the object light and the reference light so that orders of reproduced waves of the hologram do not overlap in the same position, thus separating diffracted waves at the time of hologram reproducing. Thus, phase difference intensifying information of the minute phase object is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はホログラフィ−による位相差拡大法を利用して
微小位相物体を観察し得るようにした微小位相物体干渉
計測方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the interference of a minute phase object, which makes it possible to observe a minute phase object using a phase difference expansion method using holography.

〔従来の技術〕[Conventional technology]

第4図は、従来位相物体観察法として用いられているマ
ツハツエンダ−干渉計を示す図である。
FIG. 4 is a diagram showing a Matsuhatsu Ender interferometer used as a conventional phase object observation method.

図中、1.2は半透鏡、3.4は反射鏡、5はスクリー
ン、6は眼である。
In the figure, 1.2 is a semi-transparent mirror, 3.4 is a reflecting mirror, 5 is a screen, and 6 is an eye.

図において、同一光源からの光線を半透鏡1により2光
路に分け、光路■と光路■を通った光線を半透鏡2を介
してスクリーン5上で干渉させ、その干渉縞を観察する
。この場合、光路IまたはHに位相物体を置くと、位相
物体の入っていない光路を基準とした干渉縞が観察面に
形成され位相情報を得ることができる。
In the figure, light rays from the same light source are divided into two optical paths by a semi-transparent mirror 1, and the light rays passing through optical paths (2) and (2) are caused to interfere on a screen 5 via the semi-transparent mirror 2, and the interference fringes are observed. In this case, if a phase object is placed on the optical path I or H, interference fringes based on the optical path without the phase object are formed on the observation plane, and phase information can be obtained.

ところで第4図の干渉計では、そのままでは微小物体の
観測は不可能である。そこで、第5図に示すように干渉
計を顕微鏡に組み込むことにより、微小位相物体の観測
を可能にすることができる。
By the way, with the interferometer shown in FIG. 4, it is impossible to observe minute objects as is. Therefore, by incorporating an interferometer into a microscope as shown in FIG. 5, it is possible to observe minute phase objects.

第5図はこのような従来の干渉顕微鏡を示す図で、図中
、11は光線分割器、12は試料、13は光線結合器、
14は対物レンズである。
FIG. 5 is a diagram showing such a conventional interference microscope, in which 11 is a beam splitter, 12 is a sample, 13 is a beam combiner,
14 is an objective lens.

図において、光線分割器11で光路■と■に分割し、光
路■中に置かれた位相物体試料12を通った光と光路I
の光を光線結合器13を介して対物レンズ14に入射さ
せることにより、光路Iを基準とした拡大された位相物
体上に干渉縞が形成され、図示しない接眼レンズを通し
て観察される。
In the figure, the beam splitter 11 divides the light into optical paths ■ and ■, and the light passes through the phase object sample 12 placed in the optical path ■ and the optical path I
By making the light incident on the objective lens 14 via the beam coupler 13, interference fringes are formed on the magnified phase object with the optical path I as a reference, and are observed through an eyepiece (not shown).

第6図は従来の干渉顕微鏡の他の例を示す図で、図中、
21〜24は光線分割器、25.26は集光レンズ、2
7.28は板ガラス、29.30は対物レンズである。
FIG. 6 is a diagram showing another example of a conventional interference microscope.
21 to 24 are beam splitters, 25.26 are condensing lenses, 2
7.28 is a plate glass, and 29.30 is an objective lens.

第6図は、集光レンズ25.26を用いて板ガラス試料
の非常に狭い領域を球面波で照明するようにし、光路■
と■を対等の条件にして観察するようにした以外は第5
図のものと全く同様である。
Figure 6 shows that a very narrow area of a plate glass sample is illuminated with a spherical wave using condenser lenses 25 and 26, and the optical path
The fifth exception was that the observation was made with and ■ as equal conditions.
It is exactly the same as the one shown in the figure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の干渉顕微鏡は、ホログラフィ−を用
い、位相差拡大を行って微小位相物体を観察しようとし
ても、位相差拡大で用いるホログラムの同一次数の再生
波が全て同じ位置に重なってしまうため、観察面、即ち
ホログラム記録面において位相差拡大に利用するのに有
効なホログラムを形成することができない。
However, even if conventional interference microscopes use holography to perform phase difference expansion to observe minute phase objects, the reproduced waves of the same order of the hologram used for phase difference expansion all overlap at the same position, making observation difficult. It is not possible to form a hologram that is effective for expanding the phase difference on the hologram recording surface.

本発明は上記問題点を解決するだめのもので、ホログラ
フィ−による位相差拡大法を利用して微小位相物体の位
相差拡大情報を得ることができる微小位相物体干渉計測
方法及び装置を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and provides a microphase object interferometry method and apparatus that can obtain phase difference expansion information of a microphase object using a phase difference expansion method using holography. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の微小位相物体干渉計測方法及び装置
は、干渉顕微鏡の物体光と参照光との間に適当な角度を
もたせてホログラムの記録を行い、2つの再生用光路の
ホログラム面への入射角を異ならせて再生光を照射し、
該ホログラム面を通過した符号の異なる任意の次数の回
折光を所定の点で一致させてホログラムの再生を行うこ
とにより、位相差を拡大して観察するようにしたこと、
及びそれぞれ対物レンズが配置され、一方に試料の置か
れた2つの光路の通過光が入射され、反射光と透過光と
が所定の角度をなすように配置された第1の半透鏡を備
えたホログラム記録手段と、2つの光路の1lTl過光
が入射され、反射光と透過光とが所定の角度をなすよう
に配置された第2の半透鏡、第2の半透鏡からの反射光
と透過光とが入射されるホログラム記録媒体、ホログラ
ム記録媒体からの符号の異なる任意の次数の回折光を所
定位置で一致させるレンズ系、該所定位置に配置された
ピンホールを有するアパーチャー手段、及びピンホール
透過像の観察手段を備えたホログラム再生手段とからな
ることを特徴とする。
To this end, the microphase object interferometry method and apparatus of the present invention records a hologram by setting an appropriate angle between the object beam and the reference beam of the interference microscope, and makes the two reproduction optical paths incident on the hologram surface. Irradiate the reproduction light at different angles,
By reproducing the hologram by aligning diffracted lights of arbitrary orders with different signs that have passed through the hologram surface at a predetermined point, the phase difference can be enlarged for observation;
and a first semi-transparent mirror arranged such that an objective lens is arranged, one of which receives the passing light of the two optical paths on which the sample is placed, and the reflected light and the transmitted light form a predetermined angle. A hologram recording means, a second semi-transparent mirror arranged such that the 1lTl transmitted light of the two optical paths is incident, and the reflected light and the transmitted light form a predetermined angle, and the reflected light and the transmitted light from the second semi-transparent mirror. a hologram recording medium into which the light is incident, a lens system that matches diffracted light of arbitrary orders with different signs from the hologram recording medium at a predetermined position, an aperture means having a pinhole disposed at the predetermined position, and a pinhole. It is characterized by comprising a hologram reproducing means equipped with a means for observing a transmitted image.

〔作用〕[Effect]

本発明は、干渉顕微鏡の物体光と参照光との間に適当な
角度をもたせてホログラムの記録を行い、2つの再生用
光路のホログラム面への入射角を異ならせて再生光を照
射し、該ホログラム面を通過した符号の異なる任意の次
数の回折光を所定の点で一致させてホログラムの再生を
行うことにより1、微小位相物体の位相差拡大情報を得
ることが可能となる。
The present invention records a hologram by setting an appropriate angle between the object beam and the reference beam of an interference microscope, and irradiates the reproduction light with different incident angles on the hologram surface of two reproduction optical paths. By reproducing the hologram by aligning the diffracted lights of arbitrary orders with different signs that have passed through the hologram surface at a predetermined point, it becomes possible to obtain phase difference expansion information of a minute phase object.

〔実施例〕〔Example〕

以下、実施例を図面に基づき説明する。 Examples will be described below based on the drawings.

本発明の微小位相物体干渉計測法は、ホログラフィ−を
用いるため記録、再生という二つのステップから成って
いる。
The minute phase object interferometry method of the present invention uses holography and therefore consists of two steps: recording and reproduction.

第1図は本発明による徽小位相物体干渉計測法に使用す
るホログラム記録装置の構成を示す図で、図中、31,
32は半透鏡、33.34は反射鏡、35は試料、36
.37は対物レンズ、38はホログラム記録媒体である
FIG. 1 is a diagram showing the configuration of a hologram recording device used in the Hui small phase object interferometry method according to the present invention.
32 is a semi-transparent mirror, 33.34 is a reflective mirror, 35 is a sample, 36
.. 37 is an objective lens, and 38 is a hologram recording medium.

図において、マツハツエンダ−干渉計の試料35を置い
た光路■に対物レンズ36を入れることにより顕微鏡と
して構成する。同時に対物レンズ37を光路■に配置し
て、ホログラム上の干渉縞が直線回折格子となるように
する。また、対物レンズの像面位置にホログラム記録媒
体38をセットし、像面ホログラムを形成する。
In the figure, a microscope is constructed by inserting an objective lens 36 into the optical path (2) in which a sample 35 of a Matsuhatsu Ender interferometer is placed. At the same time, the objective lens 37 is placed in the optical path (2) so that the interference fringes on the hologram become a linear diffraction grating. Further, a hologram recording medium 38 is set at the image plane position of the objective lens to form an image plane hologram.

この時半透鏡32を角度α/2傾けることにより物体光
と参照光との間に角度αを与え、ホログラムの再生波の
次数が全て同じ位置に重ならないようにし、ホログラム
再生時の回折波の分離を可能にする。
By tilting the half-transparent mirror 32 at an angle α/2, an angle α is created between the object beam and the reference beam, so that the orders of the hologram reproduction waves do not all overlap at the same position, and the diffracted waves during hologram reproduction are Allows for separation.

第2図は本発明による微小位相物体干渉計測法に使用す
るホログラム再生装置の構成を示す図で、図中、41.
42は半透鏡、43.44は反射鏡、45はホログラム
記録媒体、46.47.48はレンズ、49はアパーチ
ャー、A、Dは0次光、B、Eは+1次回折光、C,F
は一1次回折光である。
FIG. 2 is a diagram showing the configuration of a hologram reproduction device used in the microphase object interferometry method according to the present invention.
42 is a semi-transparent mirror, 43.44 is a reflective mirror, 45 is a hologram recording medium, 46.47.48 is a lens, 49 is an aperture, A, D are 0th order light, B, E are +1st order diffracted light, C, F
is the first-order diffracted light.

図において、半透鏡42を傾けることにより、光路■の
光線がホログラム45を透過したときの0次光A、+1
次回折光D、−1次回折光Cは、光路の光線がホログラ
ム45を透過したときの0次光D、+1次回折光E、−
1次回折光Fと分離する。このとき、半透鏡42の傾は
角を調節することにより一1次回折光Cと+1次回折光
Eとを図示するように、アパーチャー49のピンホール
上で一致させることができ、この像をレンズ47.48
を介して観察する。
In the figure, by tilting the semi-transparent mirror 42, the 0th-order light A, +1
The 0th-order diffracted light D, the −1st-order diffracted light C, and the 0th-order diffracted light D, the +1st-order diffracted light E, and the −1st-order diffracted light C are the 0th-order light D, the +1st-order diffracted light E, and the −
It is separated from the first-order diffracted light F. At this time, by adjusting the angle of the semi-transparent mirror 42, the 1st-order diffracted light C and the +1st-order diffracted light E can be made to coincide on the pinhole of the aperture 49, as shown in the figure, and this image is transferred to the lens 47. .48
Observe through.

上記操作により従来の干渉法に比べ位相差が2倍に拡大
され、2倍の干渉縞数が得られることを第3図により説
明する。
It will be explained with reference to FIG. 3 that the above operation doubles the phase difference and obtains twice the number of interference fringes compared to conventional interferometry.

第3図は本発明による微小位相物体干渉計測法の位相差
拡大を説明するための図で、同図(イ)は従来の干渉顕
微鏡による干渉縞、同図(口〉は本発明による干渉縞を
示す図である。図中、51は位相基準面、52は波面、
53は+1次の再生波面、54は一1次の再生波面、5
5は干渉縞のできる位置である。
FIG. 3 is a diagram for explaining the phase difference expansion of the micro-phase object interferometry method according to the present invention, in which (a) is the interference pattern obtained by a conventional interference microscope, and the figure (opening) is the interference pattern according to the present invention. In the figure, 51 is a phase reference plane, 52 is a wavefront,
53 is the +1st-order reproduced wavefront, 54 is the 11th-order reproduced wavefront, 5
5 is a position where interference fringes are formed.

従来の干渉顕微鏡では、位相物体の有する現実の位相差
情報、即ち第3図(イ)に示すように位相基準面51に
対する波面52しか得られないが、第2図に示すように
+1次と−1次の回折光を一致させた像を得ることによ
り、第3図(ロ)に示すように+1次の再生波面に、−
1次の再生波面が加え合わされることになるので、2倍
の位相差の情報が得られ2倍の干渉縞数が得られる。
With a conventional interference microscope, only the actual phase difference information of a phase object, that is, the wavefront 52 relative to the phase reference plane 51 as shown in FIG. 3(a), can be obtained, but as shown in FIG. By obtaining an image in which the −1st-order diffracted light is aligned, −
Since the first-order reproduced wavefronts are added together, twice as much phase difference information is obtained and twice as many interference fringes are obtained.

なお、干渉縞間隔は半透鏡42の角度を選ぶことにより
任意に選択できるので、第3図(イ)と同一縞間隔とし
た場合には、2倍の位相差が縞の変位となって現れる。
Note that the interference fringe spacing can be arbitrarily selected by selecting the angle of the semi-transparent mirror 42, so if the fringe spacing is the same as in Figure 3 (a), twice the phase difference will appear as a displacement of the fringes. .

また、上記の説明では利用する回折次数を+1次とした
が、同一次数の高次回折波を用いれば2×次数倍の拡大
が可能であり、さらに回折次数は同一次数に限らず、異
なる任意の次数の回折波を用いてもよいことは言うまで
もない。
In addition, in the above explanation, the diffraction order to be used is +1st order, but if higher order diffraction waves of the same order are used, it is possible to expand by 2 times the order, and the diffraction order is not limited to the same order, but can be any different order. It goes without saying that a diffracted wave of the order may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、位相差拡大法を、拡大機
能のついたマツハツエンダ−干渉計に導入することによ
り、微小位相物体の位相差拡大情報を得ることが可能と
なる。
As described above, according to the present invention, by introducing the phase difference expansion method into a Matsuhatsu Ender interferometer equipped with an expansion function, it becomes possible to obtain phase difference expansion information of a minute phase object.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による微小位相物体干渉計測法に使用す
るホログラム記録装置の構成を示す図、第2図は本発明
による微小位相物体干渉計測法に使用するホログラム再
生装置の構成を示す図、第3図は本発明による微小位相
物体干渉計測法の位相差拡大を説明するための図で、同
図(イ)は従来の干渉顕微鏡による干渉縞、同図(ロ)
は本発明による干渉縞を示す図、第4図は従来の位相物
体観察法として用いられているマツハツエンダ−干渉計
を示す図、第5図は従来の干渉顕微鏡を示す図、第6図
は従来の干渉顕微鏡の他の例を示す図である。 31.32・・・半透鏡、33.34・・・反射鏡、3
5・・・試料、36.37・・・対物レンズ、38・・
・ホロダラム記録媒体、41.42・・・半透鏡、43
.44・・・反射鏡、45・・・ホログラム記録媒体、
46.47.48・・・レンズ、49・・・アパーチャ
ー、A、D・・・0次光、B、E・・・+1次回折光、
C,、F・・・−1次回折光、51・・・位相基準面、
52・・・波面、53・・・+1次の再生波面、54・
・・−1次の再生波面、55・・・干渉縞のできる位置
FIG. 1 is a diagram showing the configuration of a hologram recording device used in the micro-phase object interferometry method according to the present invention, and FIG. 2 is a diagram showing the configuration of a hologram reproducing device used in the micro-phase object interferometry method according to the present invention. Fig. 3 is a diagram for explaining the phase difference expansion of the micro phase object interferometry method according to the present invention, in which (a) shows interference fringes by a conventional interference microscope, and (b) shows interference fringes in the conventional interference microscope.
is a diagram showing interference fringes according to the present invention, FIG. 4 is a diagram showing a Matsuhatsu Ender interferometer used as a conventional phase object observation method, FIG. 5 is a diagram showing a conventional interference microscope, and FIG. 6 is a diagram showing a conventional FIG. 3 is a diagram showing another example of the interference microscope. 31.32...Semi-transparent mirror, 33.34...Reflecting mirror, 3
5... Sample, 36.37... Objective lens, 38...
・Holodarum recording medium, 41.42...Semi-transparent mirror, 43
.. 44...Reflecting mirror, 45...Hologram recording medium,
46.47.48...Lens, 49...Aperture, A, D...0th order light, B, E...+1st order diffracted light,
C,, F...-1st order diffracted light, 51... Phase reference plane,
52...Wave surface, 53...+1st-order reproduced wave surface, 54.
... -1st-order reproduced wavefront, 55 ... position where interference fringes are formed.

Claims (4)

【特許請求の範囲】[Claims] (1)干渉顕微鏡の物体光と参照光との間に適当な角度
をもたせてホログラムの記録を行い、2つの再生用光路
のホログラム面への入射角を異ならせて再生光を照射し
、該ホログラム面を通過した符号の異なる任意の次数の
回折光を所定の点で一致させてホログラムの再生を行う
ことにより、位相差を拡大して観察するようにしたこと
を特徴とする微小位相物体干渉計測方法。
(1) Record a hologram by setting an appropriate angle between the object beam and reference beam of the interference microscope, and irradiate the reproduction light with different angles of incidence on the hologram surface of the two reproduction optical paths. Microphase object interference characterized in that the hologram is reproduced by reproducing the hologram by matching the diffracted lights of arbitrary orders with different signs that have passed through the hologram surface at a predetermined point, thereby enlarging the phase difference for observation. Measurement method.
(2)前記物体光と参照光は、それぞれ対物レンズを介
してホログラム面へ入射する特許請求の範囲第1項記載
の微小位相物体干渉計測方法。
(2) The microphase object interference measurement method according to claim 1, wherein the object light and the reference light are each incident on the hologram surface via an objective lens.
(3)それぞれ対物レンズが配置され、一方に試料の置
かれた2つの光路の通過光が入射され、反射光と透過光
とが所定の角度をなすように配置された第1の半透鏡を
備えたホログラム記録手段と、2つの光路の通過光が入
射され、反射光と透過光とが所定の角度をなすように配
置された第2の半透鏡、第2の半透鏡からの反射光と透
過光とが入射されるホログラム記録媒体、ホログラム記
録媒体からの符号の異なる任意の次数の回折光を所定位
置で一致させるレンズ系、該所定位置に配置されたピン
ホールを有するアパーチャー手段、及びピンホール透過
像の観察手段を備えたホログラム再生手段とからなる微
小位相物体干渉計測装置。
(3) The first semi-transparent mirror is arranged such that an objective lens is arranged, one of which receives the passing light from the two optical paths with the sample placed on it, and the reflected light and the transmitted light form a predetermined angle. a second semi-transparent mirror arranged such that the transmitted light of the two optical paths is incident and the reflected light and the transmitted light form a predetermined angle; and the reflected light from the second semi-transparent mirror. A holographic recording medium into which the transmitted light is incident, a lens system that matches diffracted light of arbitrary orders with different signs from the holographic recording medium at a predetermined position, an aperture means having a pinhole disposed at the predetermined position, and a pin. A microphase object interference measurement device comprising a hologram reproduction means equipped with a hole transmission image observation means.
(4)前記第2の半透鏡は、角度調節可能である特許請
求の範囲第3項記載の微小位相物体干渉計測装置。
(4) The minute phase object interference measurement device according to claim 3, wherein the second semi-transparent mirror is adjustable in angle.
JP28151686A 1986-11-26 1986-11-26 Method and device for measuring interference of minute phase object Pending JPS63133182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28151686A JPS63133182A (en) 1986-11-26 1986-11-26 Method and device for measuring interference of minute phase object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28151686A JPS63133182A (en) 1986-11-26 1986-11-26 Method and device for measuring interference of minute phase object

Publications (1)

Publication Number Publication Date
JPS63133182A true JPS63133182A (en) 1988-06-04

Family

ID=17640268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28151686A Pending JPS63133182A (en) 1986-11-26 1986-11-26 Method and device for measuring interference of minute phase object

Country Status (1)

Country Link
JP (1) JPS63133182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375731A (en) * 1989-08-18 1991-03-29 Seiko Instr Inc Phase conjugated wave image generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375731A (en) * 1989-08-18 1991-03-29 Seiko Instr Inc Phase conjugated wave image generator

Similar Documents

Publication Publication Date Title
JP7161777B2 (en) Holographic imaging device and data processing method used in same
WO2015064088A1 (en) Holographic microscope and data processing method for high-resolution hologram image
US4478481A (en) Production of diffraction limited holographic images
KR20030027880A (en) Improvements to acquisition and replay systems for direct-to-digital holography and holovision
JPH10510054A (en) Phase-shift diffraction interferometer
JPWO2020045584A1 (en) Holographic imaging device and holographic imaging method
US4396289A (en) Method and apparatus for holographic testing of optical components
US7471430B1 (en) Holographic image corrector
EA018804B1 (en) Interferometric system with spatial carrier frequency capable of imaging in polychromatic radiation
JPS63133182A (en) Method and device for measuring interference of minute phase object
US4566757A (en) Holographic optical processing method and apparatus
US4783055A (en) Holographic interferometer
US4272192A (en) Holographic shearing interference contrast method and interferometer
Chang Grating-based Interferometers And Their Applications.
US3539242A (en) On-axis holography
JP3523725B2 (en) Differential interference microscope
Emmet et al. A new instrument for routine optical testing of general aspherics
JP4072190B2 (en) Differential interference microscope
SU1140533A1 (en) Device for record and reproduction of interferograms of phase object
JP2535732B2 (en) Optical instrument aberration measurement method using hologram element
JP3285157B2 (en) Phase information observation method and phase information observation interferometer
US3701579A (en) Holographic interference microscopy
JPH05100615A (en) Method and device for hologram reproduction
US20060152732A1 (en) Device for the generation of a carrier for an interferogramme
CN115327876B (en) LED-based partially coherent reflection off-axis digital holographic micro-nano measurement system