JPS63133071A - Current-frequency converter - Google Patents

Current-frequency converter

Info

Publication number
JPS63133071A
JPS63133071A JP61279556A JP27955686A JPS63133071A JP S63133071 A JPS63133071 A JP S63133071A JP 61279556 A JP61279556 A JP 61279556A JP 27955686 A JP27955686 A JP 27955686A JP S63133071 A JPS63133071 A JP S63133071A
Authority
JP
Japan
Prior art keywords
operational amplifier
voltage
input terminal
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61279556A
Other languages
Japanese (ja)
Inventor
Mitsuru Sato
満 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61279556A priority Critical patent/JPS63133071A/en
Publication of JPS63133071A publication Critical patent/JPS63133071A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compensate offset voltage and to reduce an error even when an input current value is minute, by detecting the offset voltage of the operational amplifier in an integration means to apply the same to the non-reversal input terminal of the operational amplifier. CONSTITUTION:The current from an input terminal 1 is integrated by an integrator consisting of a capacitor 2 and an operational amplifier 3 and FF 7 is set by the output of a comparator 6. A pulse of a definite time width is generated from an one-shot circuit 8 by the output of FF 7 to reset FF 7 and a switch 4 is closed and the integration capacitor 2 is discharged by a constant current source 5. The voltage between a ground terminal and the reversal terminal of the operational amplifier 3 is applied to a resistor 30 and the current flowing by the voltage is integrated by an operational amplifier 10 and a capacitor 20 to be applied to the non-reversal input terminal of the operational amplifier 3. By this method, the voltage of the input terminal 1 is always held to a ground potential and offset voltage is compensated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電流−周波数変換器(17Fコンバータ)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a current-frequency converter (17F converter).

[従来の技術] 従来、この種のI/Fコンバータとして、第2図に示す
ような構成の回路か知られている。第2図において、1
は入力端子、2は積分コンデンサ、3は演算増幅器、4
はスイッチ、5は定電流源、6はコンパレータ、7はフ
リップフロップ、8はワンショット回路、9は出力端子
である!ここで、コンデンサ2を演算増幅器3の入出力
端子間に接続して積分器を構成し、入力端子1から人力
される電流を積分する。その積分出力をコンパレータ6
により所定の一定電圧と比較し、その比較出力によりフ
リップフロップ7をセットする。
[Prior Art] Conventionally, as this type of I/F converter, a circuit having a configuration as shown in FIG. 2 is known. In Figure 2, 1
is an input terminal, 2 is an integrating capacitor, 3 is an operational amplifier, 4
is a switch, 5 is a constant current source, 6 is a comparator, 7 is a flip-flop, 8 is a one-shot circuit, and 9 is an output terminal! Here, the capacitor 2 is connected between the input and output terminals of the operational amplifier 3 to form an integrator, and the current input from the input terminal 1 is integrated. The integral output is sent to comparator 6.
The voltage is compared with a predetermined constant voltage, and the flip-flop 7 is set based on the comparison output.

フリップフロップ7のQ出力を出力端子9から取り出す
と共に、ワンショット回路8のトリガ入力端子Tにも供
給する。ワンショット回路8は−定時間幅のパルスを出
力端子Qより発生し、そのパルス出力によりスイッチ4
のオン、オフを行い、以て、電流源5を介しての積分コ
ンデンサ2の放電を制御する。ワンショット回路8の出
力端子Qからの反転パルスをフリップフロップ7のリセ
ット入力端子Rに供給する。
The Q output of the flip-flop 7 is taken out from the output terminal 9 and is also supplied to the trigger input terminal T of the one-shot circuit 8. The one-shot circuit 8 generates a pulse with a fixed time width from the output terminal Q, and the pulse output causes the switch 4 to be activated.
is turned on and off, thereby controlling the discharge of the integrating capacitor 2 via the current source 5. The inverted pulse from the output terminal Q of the one-shot circuit 8 is supplied to the reset input terminal R of the flip-flop 7.

第3図は、第2図の回路の動作を説明する各部の動作波
形である。第3図において、波形(a)は入力端子1か
ら人力される入力端子の波形、波形(b)は演算増幅器
3の出力電圧、すなわち積分出力の波形、波形(c)は
コンパレータ6の出力電圧の波形、波形(b)はフリッ
プフロップ7の出力電圧波形である。T1はフリップフ
ロップ7の非動作時間、T2は動作時間である。
FIG. 3 shows operating waveforms of various parts to explain the operation of the circuit shown in FIG. 2. In FIG. 3, waveform (a) is the waveform of the input terminal input manually from input terminal 1, waveform (b) is the output voltage of operational amplifier 3, that is, a waveform of the integral output, and waveform (c) is the output voltage of comparator 6. The waveform (b) is the output voltage waveform of the flip-flop 7. T1 is the non-operating time of the flip-flop 7, and T2 is the operating time.

次に、第2図および第3図を用いて動作を説明すると、
入力端子1から人力された電流(a)はコンデンサ2と
演算増幅器3により構成された積分器によって期間T1
の間積分されて次式で表わされる出力電圧(b)を得る
Next, the operation will be explained using FIGS. 2 and 3.
The current (a) manually input from the input terminal 1 is passed through an integrator made up of a capacitor 2 and an operational amplifier 3 for a period T1.
The output voltage (b) expressed by the following equation is obtained.

  T1 110s  −−(1) ■。、出力電圧(b)の値 i :入力端子 C:積分コンデンサ2の容量 出力電圧(b)はコンパレータ6において一定電圧と比
較され、比較出力電圧(c)を得る。出力電圧(C) 
 によってブリッププロップ7がセットされ、出力電圧
(d)が発生する。このフリッププロップ出力電圧(d
)は出力端子9およびワンショット回路8に供給され、
このワンショット回路8から一定時間幅T2のパルスが
発生する。ワンショット回路8からのパルスによってプ
リップフロップ7はリセットされ、およびスイッチ4が
閉じて定電流源5によって積分コンデンサ2は放電され
る。この放電によって、積分出力(b)の電圧は次式で
表わされるようになる。
T1 110s --(1) ■. , value i of output voltage (b): Input terminal C: Capacitance of integrating capacitor 2 The output voltage (b) is compared with a constant voltage in a comparator 6 to obtain a comparison output voltage (c). Output voltage (C)
The blip prop 7 is set by , and an output voltage (d) is generated. This flip-flop output voltage (d
) is supplied to the output terminal 9 and the one-shot circuit 8,
This one-shot circuit 8 generates a pulse with a constant time width T2. The flip-flop 7 is reset by a pulse from the one-shot circuit 8, the switch 4 is closed, and the integrating capacitor 2 is discharged by the constant current source 5. Due to this discharge, the voltage of the integral output (b) comes to be expressed by the following equation.

I :定電流源5の放電電流 (1)式および(2)式から、 一1T1= (i−I)T2   T2 一’、(Tl中72) s+=        (3)
ここで、周波数fは f = −(4) TI”T2 であるから(3)式および(4)式から、と表わされ、
入力端子Iに比例した出力周波数fが得られることがわ
かる。
I: Discharge current of constant current source 5 From equations (1) and (2), -1T1= (i-I)T2 T2 -', (72 in Tl) s+= (3)
Here, since the frequency f is f = −(4) TI”T2, it is expressed as from equations (3) and (4),
It can be seen that an output frequency f proportional to the input terminal I can be obtained.

[発明が解決しようとする問題点] ところで、(5)式は、第2図示の回路を構成する演算
増幅器等の構成部品が理想的な状態で使用された場合を
表わしており、実際に回路を構成する場合には、使用部
品の誤差に起因して、(5)式に誤差が発生する。特に
、演算増幅器3のオフセット電圧V。、は、次の(6)
式で表わされるように、誤差に大きな影晋を与える。
[Problems to be Solved by the Invention] By the way, equation (5) represents the case where the components such as the operational amplifier constituting the circuit shown in the second diagram are used in an ideal state, and when the circuit is actually used. , an error occurs in equation (5) due to errors in the parts used. In particular, the offset voltage V of the operational amplifier 3. , is the following (6)
As shown in the equation, it has a large influence on the error.

このため、特に入力端子iが微小な場合には誤差が大き
くなってしまう欠点があった。
For this reason, there is a drawback that the error becomes large, especially when the input terminal i is minute.

そこで、この発明の目的は、前述した従来の欠点を解消
し、微小入力端子値においても誤差の少ない電流−周波
数変換器を提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a current-frequency converter that eliminates the above-mentioned conventional drawbacks and has fewer errors even at minute input terminal values.

[問題点が解決するための手段] このような目的を達成するために、この発明は、入力電
流を積分する第1の積分手段と、その積分された電流値
を基準値と比較する比較器と、積分手段の積分の開始時
より一定時間を計時する手段と、一定の時間が計時され
たときに積分手段における積分された電流を放電する手
段とを具えた電流−周波数変換器において、第1の積分
手段におけるオフセット電圧を検出する抵抗と、抵抗に
より検出された電圧を積分する第2の積分手段と、第2
の積分手段からの出力を第1の積分手段におけるオフセ
ット電圧を相殺するような極性で第1の積分手段に供給
する手段とを具えたことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention includes a first integrating means for integrating an input current, and a comparator for comparing the integrated current value with a reference value. a current-to-frequency converter comprising: a means for timing a predetermined time from the start of the integration of the integrator; and a means for discharging the integrated current in the integrator when the predetermined time has been elapsed; a resistor for detecting the offset voltage in the first integrating means; a second integrating means for integrating the voltage detected by the resistor;
and means for supplying the output from the integrating means to the first integrating means with a polarity that cancels out the offset voltage in the first integrating means.

[作 用j この発明では、第1の積分手段のオフセット電圧、たと
えばその演算増幅器のオフセット電圧をオフセット電圧
検出抵抗により検出し、それに応じて第2の積分手段の
積分動作を行わせ、その第2の積分手段の積分出力をオ
フセット電圧を減少させるような極性で第1の積分手段
に印加するようにしたので、電流−周波数変換の誤差を
微小入力電流の場合にも減少させることができる。
[Function j] In this invention, the offset voltage of the first integrating means, for example, the offset voltage of its operational amplifier, is detected by the offset voltage detection resistor, and the second integrating means is caused to perform the integrating operation in accordance with the offset voltage of the first integrating means, for example, the offset voltage of its operational amplifier. Since the integral output of the second integrating means is applied to the first integrating means with a polarity that reduces the offset voltage, the error in current-frequency conversion can be reduced even in the case of a minute input current.

[実施例] 以下に、図面を参照して、本発明の実施例を詳細に説明
する。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図はこの発明の一実施例を示すもので、入力端子1
と第2の演算増幅器lOの反転入力端子との間にオフセ
ット電圧検出抵抗30を接続する。この演算増幅器10
の入出力端子間にはコンデンサ20を接続する。演算増
幅器lOの出力端子を演算増幅器3の非反転入力端子に
接続し、演算増幅器10の非反転入力端子を接地する。
FIG. 1 shows an embodiment of the present invention, in which an input terminal 1
An offset voltage detection resistor 30 is connected between the inverting input terminal of the second operational amplifier lO and the inverting input terminal of the second operational amplifier lO. This operational amplifier 10
A capacitor 20 is connected between the input and output terminals of. The output terminal of operational amplifier IO is connected to the non-inverting input terminal of operational amplifier 3, and the non-inverting input terminal of operational amplifier 10 is grounded.

第1図におけるその他の構成は第3図と同様であるから
ここではその説明を省略する。
The rest of the configuration in FIG. 1 is the same as that in FIG. 3, so the explanation thereof will be omitted here.

演算増幅器lOの非反転入力端子は接地されているので
、抵抗30には、接地端子と演算増幅器3の反転端子と
の間の電圧が加わる。この電圧によって流れる電流は演
算増幅器10とコンデンサ2oとで積分されて演算増幅
器3の非反転入力端子に印加される。
Since the non-inverting input terminal of the operational amplifier IO is grounded, the voltage between the ground terminal and the inverting terminal of the operational amplifier 3 is applied to the resistor 30. The current flowing due to this voltage is integrated by the operational amplifier 10 and the capacitor 2o, and is applied to the non-inverting input terminal of the operational amplifier 3.

これらの接続により、演算増幅器10の出力端子には次
式の電圧が現われる。
Due to these connections, the following voltage appears at the output terminal of the operational amplifier 10.

V :演算増幅器lOの出力電圧 ■に入力端子1と接地との間の1圧 R:オフセット検出抵抗30の抵抗値 C:コンデンサ20の容量 (7)式において積分時間tを一定とすれば、VはV、
に比例し、極相が反転する。この出力電力Vが演算増幅
器3の非反転入力端子に印加されるので、電圧V、は補
償され、入力端子1の電圧は常に接地電位に保たれ、以
てオフセット電圧は補償される。
V: 1 voltage between the output voltage of the operational amplifier lO and the input terminal 1 and the ground R: The resistance value of the offset detection resistor 30 C: The capacitance of the capacitor 20 If the integration time t is constant in equation (7), V is V,
is proportional to , and the polar phase is reversed. Since this output power V is applied to the non-inverting input terminal of the operational amplifier 3, the voltage V is compensated, and the voltage at the input terminal 1 is always kept at ground potential, thereby compensating the offset voltage.

なお、フリップフロップ7とワンショット回路8とは一
定の時間T2の計時を行っているが、このような計時は
、その他、慣例のカウンタなとでも構成できる。
Note that although the flip-flop 7 and the one-shot circuit 8 measure a certain period of time T2, such time measurement can also be implemented using a conventional counter.

[発明の効果] 以上から明らかなように、この発明によれば、オフセッ
ト電圧検出抵抗と第2の演算増幅器およびコンデンサに
よる第2の積分手段とにより第1の積分手段における演
算増幅器のオフセット電圧を検出し、それを第1の積分
手段における演算増幅器の非反転入力端子に加えてオフ
セット電圧を補償するようにしたので、オフセット電圧
に起因する誤差を小さくでき、したがって、微小入力電
流に対しても誤差を増加することなく、電流−周波数変
換を行うことができる。
[Effects of the Invention] As is clear from the above, according to the present invention, the offset voltage of the operational amplifier in the first integrating means is controlled by the second integrating means including the offset voltage detection resistor, the second operational amplifier, and the capacitor. This is detected and added to the non-inverting input terminal of the operational amplifier in the first integrating means to compensate for the offset voltage, so errors caused by the offset voltage can be reduced, and therefore, even against minute input currents. Current-frequency conversion can be performed without increasing errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は従来
例を示す回路図、 第3図は第2図の各部における信号波形を示す信号波形
図である。 1・・・入力端子、 2・・・積分コンデンサ、 3・・・演算増幅器、 4・・・スイッチ、 5・・・定電流源、 6・・・コンパレータ、 7・・・フリップフロップ、 8・・・ワンショット回路、 9・・・出力端子、 工0・・・オフセット電圧補償用の第2の演算増幅器、
20・・・コンデンサ、 30・・・抵抗。 本詮朗炙施例の回路也 ィ足来ケjの回y参図 第2図
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing a conventional example, and FIG. 3 is a signal waveform diagram showing signal waveforms at various parts in FIG. DESCRIPTION OF SYMBOLS 1... Input terminal, 2... Integrating capacitor, 3... Operational amplifier, 4... Switch, 5... Constant current source, 6... Comparator, 7... Flip-flop, 8... ...One-shot circuit, 9...Output terminal, 0...Second operational amplifier for offset voltage compensation,
20... Capacitor, 30... Resistor. Figure 2 of the circuit diagram of this example of roasting

Claims (1)

【特許請求の範囲】[Claims] 入力電流を積分する第1の積分手段と、その積分された
電流値を基準値と比較する比較器と、前記積分手段の積
分の開始時より一定時間を計時する手段と、前記一定の
時間が計時されたときに前記積分手段における積分され
た電流を放電する手段とを具えた電流−周波数変換器に
おいて、前記第1の積分手段におけるオフセット電圧を
検出する抵抗と、該抵抗により検出された電圧を積分す
る第2の積分手段と、該第2の積分手段からの出力を前
記第1の積分手段におけるオフセット電圧を相殺するよ
うな極性で前記第1の積分手段に供給する手段とを具え
たことを特徴とする電流−周波数変換器。
a first integrating means for integrating an input current; a comparator for comparing the integrated current value with a reference value; a means for measuring a certain period of time from the start of integration by the integrating means; a resistor for detecting an offset voltage in the first integrating means and a voltage detected by the resistor; and means for discharging the integrated current in the integrating means when timed. and means for supplying the output from the second integrating means to the first integrating means with a polarity that cancels out the offset voltage in the first integrating means. A current-frequency converter characterized by:
JP61279556A 1986-11-26 1986-11-26 Current-frequency converter Pending JPS63133071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279556A JPS63133071A (en) 1986-11-26 1986-11-26 Current-frequency converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279556A JPS63133071A (en) 1986-11-26 1986-11-26 Current-frequency converter

Publications (1)

Publication Number Publication Date
JPS63133071A true JPS63133071A (en) 1988-06-04

Family

ID=17612613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279556A Pending JPS63133071A (en) 1986-11-26 1986-11-26 Current-frequency converter

Country Status (1)

Country Link
JP (1) JPS63133071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477537A2 (en) * 1990-09-28 1992-04-01 Yokogawa Electric Corporation Timing generator
CN103713181A (en) * 2013-12-30 2014-04-09 重庆华渝电气集团有限公司 Tiny current signal detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477537A2 (en) * 1990-09-28 1992-04-01 Yokogawa Electric Corporation Timing generator
CN103713181A (en) * 2013-12-30 2014-04-09 重庆华渝电气集团有限公司 Tiny current signal detecting device

Similar Documents

Publication Publication Date Title
US6750796B1 (en) Low noise correlated double sampling modulation system
JPH11248806A (en) Apparatus and method for measuring charged state of battery by using coulometric analysis method
JPH01502933A (en) Frequency counting device and method
JPH07120948B2 (en) Circuit for converting input voltage to output frequency
EP0740234B1 (en) Delta-T measurement circuit
JP3580817B2 (en) Measuring amplifier
JPS63133071A (en) Current-frequency converter
US6930495B1 (en) Digitizing ohmmeter system
US5745062A (en) Pulse width modulation analog to digital converter
JP2988039B2 (en) Frequency / period measurement device
JP2629603B2 (en) Resistance measuring device
JPH0697744B2 (en) Integral type analog / digital conversion method and apparatus
JP3321966B2 (en) Time ratio detection circuit
JPH05333069A (en) Method for measuring electric resistance
RU2024025C1 (en) Pulse current contactless measurement device
JPS6117300B2 (en)
SU1627998A1 (en) Converter converting product of two dc voltages to dc voltage
JPS6410139B2 (en)
JPS6016583B2 (en) digital resistance meter
JPH0337075Y2 (en)
JPH0635195Y2 (en) Time interval measuring circuit
SU1620957A2 (en) Resistance-to-frequency converter
JPH0450496Y2 (en)
JPH0334028B2 (en)
JPH0564431A (en) Stabilized dc power source circuit