JPS63132704A - Inline roll grinding method - Google Patents

Inline roll grinding method

Info

Publication number
JPS63132704A
JPS63132704A JP27842686A JP27842686A JPS63132704A JP S63132704 A JPS63132704 A JP S63132704A JP 27842686 A JP27842686 A JP 27842686A JP 27842686 A JP27842686 A JP 27842686A JP S63132704 A JPS63132704 A JP S63132704A
Authority
JP
Japan
Prior art keywords
grinding
roll
pressure
fluid mixture
grain sizes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27842686A
Other languages
Japanese (ja)
Inventor
Koichi Sakamoto
浩一 坂本
Osamu Fujiwara
修 藤原
Seiya Nitta
新田 征也
Satoshi Teshigawara
勅使河原 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27842686A priority Critical patent/JPS63132704A/en
Publication of JPS63132704A publication Critical patent/JPS63132704A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B28/00Maintaining rolls or rolling equipment in effective condition
    • B21B28/02Maintaining rolls in effective condition, e.g. reconditioning
    • B21B28/04Maintaining rolls in effective condition, e.g. reconditioning while in use, e.g. polishing or grinding while the rolls are in their stands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To improve grinding efficiency, etc., by actually measuring a roll profile, roughly grinding the roll with a fluid mixture of a high pressure having large grain sizes of an abrasive material, and subjecting the roll to finish grinding with the abrasive grains of small grain sizes or the low-pressure fluid mixture. CONSTITUTION:A sand iron feeder 6 having storage tanks 12, 12' for sand iron having different grain sizes is provided and a high-pressure water feeder 7 is disposed. The roll profile is first measured by moving a distance sensor in the axial direction of the roll at a specified spacing therefrom. An unpassing part 4 to be ground at a larger amt. is then roughly ground R by injecting the high-pressure fluid mixture of the sand iron having the larger, grain sizes in the tank 12 to said part. The pressure of the fluid mixture is then lowered and the middle finish grinding F1 is executed; further, the finish grinding F2 is executed by the low-pressure fluid mixture of the sand iron having the smaller grain sizes in the tank 12'. The time for the grinding is thereby shortened, by which the grinding efficiency is improved and the surface roughness of the roll 1 is uniformized.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、圧延により摩耗したロール表面を所定の形
状に整えるために、圧延機スタンド内で行なうインライ
ン研削方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an in-line grinding method carried out within a rolling mill stand in order to adjust the surface of a roll worn by rolling into a predetermined shape.

(従来技術とその問題点) 第1図ないし第3図に示すように、圧延ロール1は、圧
延量が増えるにつれて通板部2が摩耗し特に通板端部3
が激しくなっている。このようなロールは研削して初期
のプロフィルに整える必要がある。、この場合、未通板
部4は多く研削する必要があるため、一定の研削条件で
は多くの時間を費やすので、その間圧延ができず生産能
率が落ちる。才た、所定の仕上粗さに仕上げるためには
、最初から一定条件では研削能率が悪く多くの時間を費
す。
(Prior art and its problems) As shown in FIGS. 1 to 3, as the amount of rolling increases, the rolling portion 2 of the rolling roll 1 wears out, especially at the end portion 3 of the rolling roll.
is becoming more intense. Such rolls must be ground to the initial profile. In this case, since the unthreaded portion 4 needs to be ground a lot, it takes a lot of time under certain grinding conditions, and rolling cannot be done during that time, reducing production efficiency. In order to achieve a desired finish roughness, grinding efficiency is poor and a lot of time is spent under certain conditions from the beginning.

そのため、従来においては、特開昭60−30505号
公報のように、ロール軸方向に沿って注水ノズルを有す
る注水へラダーを多数設け、ロール摩耗プロフィールに
応じて圧力水の注水パターンを決定し、摩耗進行度の少
ない部分への注水圧力を高くしてロール表面の研削を行
なう方法が提案されている。
Therefore, conventionally, as in Japanese Patent Application Laid-Open No. 60-30505, a number of water injection ladders having water injection nozzles are provided along the roll axis direction, and the pressure water injection pattern is determined according to the roll wear profile. A method has been proposed in which the roll surface is ground by increasing the pressure of water injection to areas where the degree of wear is low.

しかしながら、このような研削方法の場合、次のような
問題点がある。
However, such a grinding method has the following problems.

(i)  多数のノズル、ヘッダー、流量調整弁を必要
とし、高価な設備となる。
(i) It requires a large number of nozzles, headers, and flow control valves, resulting in expensive equipment.

Qi)  注水圧力がロール軸方向に沿って異なるため
ロール軸方向知均−な表面粗さを得る。ことができない
。さらに、所望の表面粗さを得ることが難しい。
Qi) Since the water injection pressure differs along the roll axis direction, uniform surface roughness can be obtained in the roll axis direction. I can't. Furthermore, it is difficult to obtain the desired surface roughness.

(ホ) ロール摩耗予想モデル式により圧延する毎のロ
ール摩耗量を計算し累積してゆき、ロールプロフィール
を予想し、この予想ロールプロフィールと理想ロールプ
ロフィールとから研削量を決定しているため、正確な研
削を行なうことができない。
(E) The amount of roll wear for each rolling is calculated and accumulated using the roll wear prediction model formula, the roll profile is predicted, and the amount of grinding is determined from this predicted roll profile and the ideal roll profile, so it is accurate. It is not possible to perform proper grinding.

この発明は、このような問題点を解消すべく提案された
もので、その目的は、研削能率の向上を図れるとともK
、ロール軸方向に均一で所望の表面粗さを容易に得るこ
とができ、さらに正確な研削を行なうことのできるイン
ラインロール研削方法を提供することにある。
This invention was proposed to solve these problems, and its purpose is to improve grinding efficiency and to
An object of the present invention is to provide an in-line roll grinding method that can easily obtain a desired surface roughness that is uniform in the axial direction of the roll, and can perform more accurate grinding.

(問題点を解決するための手段) この発明に係るインラインロール研削方法は、高圧水と
研摩材との混合流体をノズルから噴射しこのノズルをロ
ール軸方向て移動させるとともにロールを回転させ、ロ
ール表面を圧延機スタンド内において研削するインライ
ンロールの研削方法において、 ロール、全長のプロフィールを実測し、研削量の多い部
分のみ、高圧でかつ研摩材粒径の大きい混合流体で粗研
削し、次いで研摩材粒径のより小さいあるいはより低圧
の混合流体で仕上切削を行なうようにしたものである。
(Means for Solving the Problems) The inline roll grinding method according to the present invention injects a mixed fluid of high pressure water and abrasive material from a nozzle, moves this nozzle in the roll axis direction, and rotates the roll. In an in-line roll grinding method in which the surface is ground in a rolling mill stand, the profile of the entire length of the roll is actually measured, and only the areas that require a large amount of grinding are roughly ground using a mixed fluid with high pressure and a large abrasive particle size, and then the grinding process is carried out. Finish cutting is performed using a mixed fluid with a smaller particle size or a lower pressure.

(実 施 例) 以下、この発明を図示する一実施例に基づいて説明する
(Embodiment) The present invention will be described below based on an illustrative embodiment.

これは、ノズルから噴射する高圧水に混合する研摩材に
砂鉄を使用した例であり、第4図、第5図に示すように
、圧力が高く、砂鉄粒径が大きい程、研削量が多く、表
面粗さが粗いので、本発明では、研削量の多い未通板部
4を、高圧でかつ粒径の大きい混合流体でまず粗研削R
を行ない、次に圧力を下げて中仕上研削F1  を行な
い、その後粒径を小さくして仕上研削F2を行なう。
This is an example of using iron sand as the abrasive material mixed with high-pressure water jetted from a nozzle.As shown in Figures 4 and 5, the higher the pressure and the larger the iron sand particle size, the greater the amount of grinding. , since the surface roughness is rough, in the present invention, the unthreaded plate part 4, which requires a large amount of grinding, is first rough-ground R with a mixed fluid having a large particle size and high pressure.
Next, the pressure is lowered and semi-finish grinding F1 is performed, and then the grain size is reduced and finish grinding F2 is performed.

第6図、第7図に示すのは、このような研削を行なう装
置の1例であり、高圧水と砂鉄とを混合し、ロール表面
に向けて噴射する混合ノズル5と混合ノズル5へ砂鉄を
供給する砂鉄供給装置6と混合ノズル5へ高圧水を供給
する高圧水供給装置7と、混合ノズル5をロール軸方向
へ移動させる油圧シリンダ8と、油圧シリンダ8を作動
させる油圧装置9と、ロールプロフィールを実測する距
離センサー10と、前記装置を制御する制御装置11か
ら構成されている。
Fig. 6 and Fig. 7 show an example of a device that performs such grinding, and includes a mixing nozzle 5 that mixes high-pressure water and iron sand and injects it toward the roll surface. a high-pressure water supply device 7 that supplies high-pressure water to the mixing nozzle 5; a hydraulic cylinder 8 that moves the mixing nozzle 5 in the roll axis direction; and a hydraulic device 9 that operates the hydraulic cylinder 8. It is composed of a distance sensor 10 that actually measures the roll profile, and a control device 11 that controls the device.

混合ノズル5は、第8図、第9図に示すように噴射ノズ
ル部5A、混合ノズル部5Bから構成されている。
The mixing nozzle 5 is composed of an injection nozzle section 5A and a mixing nozzle section 5B, as shown in FIGS. 8 and 9.

砂鉄供給装置6は、粒径の異なる砂鉄を貯蔵するタンク
12.12’ を有し、圧空Aにょシ乾燥した砂鉄を混
合ノズル5へ圧送するとともに切換弁13により粗研削
R2仕上研削Fのそれぞれに応じて二つのタンク12.
12’ を選択する。
The iron sand supply device 6 has tanks 12 and 12' for storing iron sand of different particle sizes, and uses compressed air A to forcefully feed the dried iron sand to the mixing nozzle 5, and also uses a switching valve 13 to perform rough grinding, R2, and finish grinding F, respectively. Two tanks according to 12.
Select 12'.

高圧水供給装置7は、ポンプP、圧カ調整弁14.3方
切換弁15を有し、圧力調整弁14により必要圧力を選
択し、研削時に3方切換弁15を介して混合ノズル5へ
高圧水を送るようにされている。
The high-pressure water supply device 7 has a pump P, a pressure adjustment valve 14, and a three-way switching valve 15. The required pressure is selected by the pressure adjustment valve 14, and the water is supplied to the mixing nozzle 5 through the three-way switching valve 15 during grinding. It is designed to send high pressure water.

油圧装置9は、ポンプP、圧力調整弁16.サーボ弁1
7を有し、混合ノズル5の移動速度の調整をサーボ弁1
7によって行なう。さらに、混合ノズル5の位置制御は
、油圧シリンダ8のピストンロッドに連結されたマグネ
スケール18Aなどからなる位置検出器18により行な
われる。
The hydraulic system 9 includes a pump P, a pressure regulating valve 16. Servo valve 1
7, and the servo valve 1 adjusts the moving speed of the mixing nozzle 5.
Do it by 7. Further, the position of the mixing nozzle 5 is controlled by a position detector 18 such as a Magnescale 18A connected to the piston rod of the hydraulic cylinder 8.

距離センサー10は、LEDビームと受光素子からなる
光学式変位センサーを用い、油圧シリンダ19により進
退自在とし、混合ノズル5と同様に油圧シリンダ8のロ
ッド先端に取付け、ロール軸方向に移動自在とする。
The distance sensor 10 uses an optical displacement sensor consisting of an LED beam and a light receiving element, and is movable forward and backward by a hydraulic cylinder 19. Like the mixing nozzle 5, it is attached to the rod end of the hydraulic cylinder 8, and is movable in the roll axis direction. .

次に、具体的な数値をあげて本発明を詳述する。Next, the present invention will be described in detail using specific numerical values.

まず、研削する前にロールプロフィールヲ測定する。こ
の測定は操作盤のロールプロフィール測定スイッチを入
れることにより、制御装置11に組込まれたプログラム
に基づいて次のように行なわれる。
First, measure the roll profile before grinding. This measurement is performed as follows based on a program installed in the control device 11 by turning on the roll profile measurement switch on the operation panel.

(i)油圧装置9が作動し、所定の圧力と油量に調整さ
れる。この場合、圧力は3 Q Kp/d 、油量はノ
ズル5の移動速度が1000 mm/ min  とな
るように設定しておく。
(i) The hydraulic system 9 is activated and the pressure and oil amount are adjusted to a predetermined level. In this case, the pressure is set to 3 Q Kp/d and the oil amount is set so that the moving speed of the nozzle 5 is 1000 mm/min.

中)油圧シリンダ19に、この油圧が作用し、距離セン
サー10がロール表面に近付く。この場合、予めロール
径に合わせて、油圧シリンダ19のストロークを、距離
センサー10とロール表面との間隔が約5朋となるよう
に設定しておく。
Middle) This oil pressure acts on the hydraulic cylinder 19, and the distance sensor 10 approaches the roll surface. In this case, the stroke of the hydraulic cylinder 19 is set in advance in accordance with the roll diameter so that the distance between the distance sensor 10 and the roll surface is approximately 5 mm.

(ホ)タイマーで距離センサー10がロール表面に近付
いたことを確認した後、油圧シリンダ8が作動する。こ
れにより、距離センサー10がロール軸方向に移動し、
ロールプロフィールを測定する。このロールプロフィー
ルは、距離センサー10によるロール表面との隙間Sと
油圧シリンダ8の移動量を測定する位置検出器18の検
出値により得られる。この測定ピッチは5朋で行なう。
(e) After the timer confirms that the distance sensor 10 approaches the roll surface, the hydraulic cylinder 8 is activated. As a result, the distance sensor 10 moves in the roll axis direction,
Measure your role profile. This roll profile is obtained from the gap S between the distance sensor 10 and the roll surface and the detected value of the position detector 18 that measures the amount of movement of the hydraulic cylinder 8. This measurement pitch is performed at five pitches.

(ロ)以上により第1図に示すようなプロフィールを得
る。ここで、段差A、Hの寸法によシ、粗研削、中仕上
研削、仕上研削の判定を行なう。
(b) Through the above steps, a profile as shown in FIG. 1 is obtained. Here, rough grinding, semi-finishing grinding, and finishing grinding are determined based on the dimensions of steps A and H.

例えば、 A≧0.0051uILの場合、粗研削0、0・03≦
A<0.005Bの場合、中仕上研削 A<0.003朋の場合、仕上研削 とする。
For example, if A≧0.0051uIL, rough grinding 0, 0.03≦
If A<0.005B, semi-finish grinding; if A<0.003, finish grinding.

なお、8寸法の場合も、A寸法と同様である。Note that the case of 8 dimensions is also the same as the A dimension.

また、(ホ)の測定終了後、油圧シリンダ8,19をサ
ーボ弁17によ9元の位置へ戻しておく。
Further, after the measurement in (E) is completed, the hydraulic cylinders 8 and 19 are returned to their original positions by the servo valve 17.

このようなロールプロフィール測定後、操作盤の研削ス
イッチを入れれば、制御装置11のプログラムてよシ研
削が次のように行なわれる。
After measuring the roll profile as described above, when the grinding switch on the operation panel is turned on, the grinding according to the program of the control device 11 is performed as follows.

(i)  高圧水供給装置7および油圧装置9が作動す
る。
(i) The high-pressure water supply device 7 and the hydraulic device 9 operate.

Oi)  研削後の理想プロフィールと実測プロフィー
ルから研削量を決める。研削量は、ロール径と研削径と
軸方向距離よシ算定する。軸方向は10Mピッチで計算
させる。
Oi) Determine the amount of grinding from the ideal profile after grinding and the measured profile. The amount of grinding is calculated based on the roll diameter, grinding diameter, and axial distance. The axial direction is calculated at a pitch of 10M.

(ホ)第1図の段差A、Bの寸法によシ粗・中仕上・仕
上研削を行なう。この場合、ノズル5の移動速度を一定
にし、移動距離、移動回数を変えて行なう。
(E) Perform rough, semi-finish and finish grinding according to the dimensions of steps A and B in Figure 1. In this case, the movement speed of the nozzle 5 is kept constant, and the movement distance and number of movements are changed.

粗研削の場合は、 研摩材の粒径:0.3間 圧カニ700Kp/cII! を使用する。この場合、研削粗さはRa 7μm前後と
なる。
For rough grinding, abrasive particle size: 0.3 pressure crab 700Kp/cII! use. In this case, the grinding roughness will be approximately Ra 7 μm.

次に、中仕上をする場合は、 研摩材の粒径:0.3m 圧カニ 500Kp/c1fl とし、粒径は粗研削と同じで圧力を下げて行なう。この
場合、研削粗さはRa5μm前後となる。
Next, when performing semi-finishing, the particle size of the abrasive is 0.3 m and the pressure is 500 Kp/c1fl.The particle size is the same as that for rough grinding, and the pressure is lowered. In this case, the grinding roughness is approximately Ra5 μm.

次に、仕上研削は、 〜 研摩材の粒径:0.1顛 圧カニ 700に9/cr/l とし、粒径を小さくし、粗仕上の圧力と同じ圧力で行な
う。この場合、研削粗さは、Ra2μm前後となる。
Next, the finish grinding is carried out at the same pressure as the rough finishing pressure, with the grain size of the abrasive being reduced to 700 to 9/cr/l. In this case, the grinding roughness is approximately Ra2 μm.

ここで、圧力の変換は圧力調整弁14によシ行なう0圧
力の調整は予め、700,500Kp/dに変換できる
ようにしておく。また、研摩材の粒径の変換はタンク1
2.12’ に粒径0.3朋と0、 l 11Jxを貯
蔵し、切換弁13によシ使い分ける。
Here, the pressure is converted by the pressure regulating valve 14. Adjustment of zero pressure is made in advance so that it can be converted to 700,500 Kp/d. In addition, the particle size of the abrasive can be changed by tank 1.
At 2.12', particles of particle size 0.3 and 11Jx are stored and used depending on the switching valve 13.

研摩材を圧送する圧空の圧力は5 KP / crrf
と一定である0研摩材の輸送量は切換弁13の開度で法
談るが研削実績より3Kp/min  の開度にしてお
く。
The pressure of the compressed air that pumps the abrasive material is 5 KP/crrf
The amount of abrasive transported, which is constant, is determined by the opening of the switching valve 13, but based on the actual grinding results, the opening is set at 3 Kp/min.

特に必要な場合は、開度を調整することも可能である。If particularly necessary, it is also possible to adjust the opening degree.

輸送量を多くすると、研削量も増加するし小なくすると
減少する。なお、移動距離は10朋ピツチで移動可能状
態にし、その位置はプロフィール測定に用いた位置検出
器18によシ行なう。
If the amount of transportation is increased, the amount of grinding will also increase, and if it is decreased, the amount of grinding will be decreased. The moving distance is made movable in 10-inch pitches, and the position is determined by the position detector 18 used for profile measurement.

また、ロール回転は1 o rpm  以上である。Further, the roll rotation is 1 o rpm or more.

なお、研削後には、研削開始前の要領で、ロールプロフ
ィールを測定し、研削量の確認を行なう。
Note that after grinding, the roll profile is measured in the same manner as before the start of grinding, and the amount of grinding is confirmed.

なお、以上は、圧力と粒径を変える例を示したが、圧力
、高圧水量、ノズル移動速度を一定にし粒径をそれぞれ
変えて粗・中仕上・仕上研削を行なってもよいし、高圧
水量、ノズル移動速度、粒径を一定てし高圧から低圧へ
と切替えながら研削を行なうようにしてもよい。
In addition, although the above example shows an example of changing the pressure and particle size, it is also possible to perform rough, semi-finishing, and finishing grinding by keeping the pressure, high-pressure water volume, and nozzle moving speed constant and changing the particle size. Alternatively, the grinding may be performed while keeping the nozzle moving speed and particle size constant and switching from high pressure to low pressure.

さらに、ノズルの移動速度を変化させながら行々うとと
も可能である。この場合、速度調整にはサーボ弁を使用
し、研削量に応じて軸方向に速度を変化させる。
Furthermore, it is also possible to perform the process while changing the moving speed of the nozzle. In this case, a servo valve is used to adjust the speed, and the speed is changed in the axial direction according to the amount of grinding.

また、研摩材は砂鉄に限らず、他の研摩材を使用するこ
ともでき、この場合には、研削する前に第4図、第5図
に示すようなデータをとっておく必要がある。
Further, the abrasive material is not limited to iron sand, but other abrasive materials can also be used. In this case, it is necessary to record data as shown in FIGS. 4 and 5 before grinding.

次に、ロール径7QQmx、胴長1800朋のロールに
適用した結果を示す。
Next, the results of application to a roll with a roll diameter of 7QQmx and a body length of 1800 mm will be shown.

通常2000tでロールが摩耗するためロール替えを行
っている。また、同一板幅を約200t(約スラブ10
枚)以上圧延すると、形状不良が発生するため、広幅材
から徐々に狭幅材へとスケジュールを組んだ圧延を行な
っているのが現状であった。
Normally, the rolls wear out after 2000 tons, so the rolls are replaced. In addition, the same board width is approximately 200 tons (approximately 10 slabs)
Rolling for more than 100 sheets causes shape defects, so currently rolling is performed on a schedule from wide sheets to narrow sheets.

そこで、約200を圧延するごとに、未通板部の摩耗し
ていない部分を圧カフ00に97Crd、砂鉄粒径0.
3 myn 、研削代ψ10μmで粗研削し、その後、
圧力を500 Kp/7に落して研削代ψ3μmで中仕
上研削し、さらに粒径0.lQw、研削代ψ1μmで仕
上研削を行なって2〜3Raμmの表面粗さ・を得、こ
の表面粗さで圧延を行なった結果、圧延量も2.5倍の
5000を圧延しても、まだ圧延量として問題となるも
のがでなかった。また、従来までの板幅のスケジュール
を組んで圧延していたものを狭幅から広幅への圧延も可
能となシ、スケジュールフリー圧延が可能となった。
Therefore, every time about 200 mm is rolled, the unworn part of the unthreaded plate part is made into a pressure cuff 00 of 97 Crd and the iron sand grain size is 0.
3 myn, rough grinding with a grinding allowance of ψ10 μm, and then
The pressure was reduced to 500 Kp/7 and semi-finish grinding was performed with a grinding allowance of ψ3 μm, and the grain size was further reduced to 0. lQw, finish grinding was performed with a grinding allowance of ψ1 μm to obtain a surface roughness of 2 to 3 Raμm, and as a result of rolling with this surface roughness, even if the rolling amount was 2.5 times that of 5000, the rolling amount was still There were no problems in terms of quantity. In addition, it is now possible to roll sheets from narrow widths to wide widths, and schedule-free rolling has become possible, whereas conventionally rolling was done by setting a schedule for sheet width.

この結果、連続鋳造から同一幅のスラブを直接圧延(D
/R)、またはそのままスラブを加熱して圧延(H/C
)することが可能となった。
As a result, slabs of the same width can be directly rolled (D
/R), or heat the slab as it is and roll it (H/C
) became possible.

なお、前述以外の研削条件は、第10図に示すように、
ロール1とノズル5の距離lは100朋噴射水のロール
との衝突角θは60° 、高圧水の吐出量は401/m
in、  砂鉄供給量は3に2/minである。
The grinding conditions other than those mentioned above are as shown in Fig. 10.
The distance l between the roll 1 and the nozzle 5 is 100, the collision angle θ of the jet water with the roll is 60°, and the amount of high-pressure water discharged is 401/m.
in, the iron sand supply rate is 3 to 2/min.

(発明の効果) 前述のとおり、この発明によれば、ロール全長のプロフ
ィールを実測し、研削量の多い部分のみ高圧でかつ研摩
材粒径の大きい混合流体で粗研削し、次いで研摩材粒径
のより小さいあるいはより低圧の混合流体で仕上切削を
行なうようにしたため、研削能率の向上を図れるととも
に、ロール軸方向に均一で所望の表面粗さを容易に得る
ことができる。
(Effects of the Invention) As described above, according to the present invention, the profile of the entire length of the roll is actually measured, only the portion where the amount of grinding is large is roughly ground with a mixed fluid having a high pressure and a large abrasive particle size, and then the abrasive particle size is Since finishing cutting is performed using a mixed fluid with a smaller or lower pressure, it is possible to improve grinding efficiency and easily obtain a desired surface roughness that is uniform in the direction of the roll axis.

また、実測したプロフィールによるため、正確な研削を
行なうことができる。
In addition, since the profile is actually measured, accurate grinding can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る研削方法を示すロール断面図
、第2図、第3図は圧延状態を示す側面図、正面図、第
4図は圧力と研削量の関係を示すグラフ、第5図は砂鉄
粒径と表面粗さの関係を示すグラフ、第6図、第7図は
、この発明の研削方法を実施するための装置を示す概略
側面図、概略平面図、第8図は混合ノズルを示す断面図
、第9図は第8図のIX−IX線断面図、第10図はノ
ズルの取付状態を示す側面図である。 1・・ロール、2・・通板部 3・・通板端部、4・・未通板部 5・・混合ノズル、6・・砂鉄供給装置7・・高圧水供
給装置、8・・油圧シリンダ9・・油圧装置、10・・
距離センサー11・・・制御装置、12.12’  ・
・タンク13・・切換弁、14・・圧力調整弁 15・・3方切換弁、16・・圧力調整弁17・・サー
ボ弁、18・・位置検出器19・・油圧シリンダ
FIG. 1 is a cross-sectional view of a roll showing the grinding method according to the present invention, FIGS. 2 and 3 are side views and front views showing the rolling state, and FIG. 4 is a graph showing the relationship between pressure and grinding amount. Fig. 5 is a graph showing the relationship between iron sand particle size and surface roughness, Figs. 6 and 7 are a schematic side view and a schematic plan view showing an apparatus for carrying out the grinding method of the present invention, and Fig. 8 is a graph showing the relationship between iron sand particle size and surface roughness. FIG. 9 is a sectional view showing the mixing nozzle, FIG. 9 is a sectional view taken along the line IX-IX in FIG. 8, and FIG. 10 is a side view showing the nozzle installed. 1. Roll, 2. Threading section 3. Threading end, 4. Unthreaded section 5. Mixing nozzle, 6. Iron sand supply device 7. High pressure water supply device, 8. Hydraulic pressure. Cylinder 9...Hydraulic system, 10...
Distance sensor 11...control device, 12.12'
・Tank 13...Switching valve, 14...Pressure regulating valve 15...3-way switching valve, 16...Pressure regulating valve 17...Servo valve, 18...Position detector 19...Hydraulic cylinder

Claims (1)

【特許請求の範囲】[Claims] (1)高圧水と研摩材との混合流体をノズルから噴射し
、このノズルをロール軸方向に移動させるとともにロー
ルを回転させ、ロール表面を圧延機スタンド内において
研削するインラインロールの研削方法において、 ロール全長のプロフィールを実測し、研削量の多い部分
のみ、高圧でかつ研摩材粒径の大きい混合流体で粗研削
し、次いで研摩材粒径のより小さいあるいはより低圧の
混合流体で仕上切削を行なうことを特徴とするインライ
ンロール研削方法。
(1) In an in-line roll grinding method in which a mixed fluid of high-pressure water and abrasive material is injected from a nozzle, the nozzle is moved in the roll axis direction, the roll is rotated, and the roll surface is ground in a rolling mill stand. Measure the profile of the entire length of the roll, perform rough grinding only on the part that requires a large amount of grinding using a mixed fluid with high pressure and a large abrasive particle size, and then finish cutting with a mixed fluid with a smaller abrasive particle size or a lower pressure. An inline roll grinding method characterized by:
JP27842686A 1986-11-21 1986-11-21 Inline roll grinding method Pending JPS63132704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27842686A JPS63132704A (en) 1986-11-21 1986-11-21 Inline roll grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27842686A JPS63132704A (en) 1986-11-21 1986-11-21 Inline roll grinding method

Publications (1)

Publication Number Publication Date
JPS63132704A true JPS63132704A (en) 1988-06-04

Family

ID=17597178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27842686A Pending JPS63132704A (en) 1986-11-21 1986-11-21 Inline roll grinding method

Country Status (1)

Country Link
JP (1) JPS63132704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184298A (en) * 1998-05-13 2010-08-26 Metglas Inc High stack factor amorphous metal ribbon and transformer core
JP2021053673A (en) * 2019-09-30 2021-04-08 株式会社神戸製鋼所 Rolling method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102858A (en) * 1977-02-21 1978-09-07 Kawasaki Steel Co Online polishing for rolling roll
JPS59156508A (en) * 1983-02-24 1984-09-05 Mitsubishi Heavy Ind Ltd Inline grinding method of roll of rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102858A (en) * 1977-02-21 1978-09-07 Kawasaki Steel Co Online polishing for rolling roll
JPS59156508A (en) * 1983-02-24 1984-09-05 Mitsubishi Heavy Ind Ltd Inline grinding method of roll of rolling mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184298A (en) * 1998-05-13 2010-08-26 Metglas Inc High stack factor amorphous metal ribbon and transformer core
JP2021053673A (en) * 2019-09-30 2021-04-08 株式会社神戸製鋼所 Rolling method

Similar Documents

Publication Publication Date Title
EP1488042B1 (en) Method for optimizing a cutting process in road milling machines and corresponding milling machine
US4658882A (en) Machine for direct rolling of steel casting and producing steel product therefrom
DE102016217560A1 (en) Device and method for descaling a workpiece
EP0645214B1 (en) Grinding method and grinding system for billet
CN103419137A (en) Roller surface strengthening and roughness controlling method
DE102006040219A1 (en) Method and apparatus for polishing with a fluid
JPS63132704A (en) Inline roll grinding method
DE2834850A1 (en) METHOD FOR PROCESSING WORKPIECES USING ELECTROEROSION
US5791968A (en) Grinding method and grinding system for steels
EP0903200B1 (en) Improved grinding process and apparatus
JPH01271049A (en) Secondary cooling method in continuous casting
CN1030042C (en) Method for controlling material feed to roller press for grinding particulate
DE2336350A1 (en) AUTOMATIC GRINDING DEVICE CONTROL IN PULP PRODUCTION
US4627260A (en) Rolling stand with axially shiftable rolls
US3157968A (en) Method and means for belt lapping and finishing
JPS5970418A (en) Method for controlling operation of descaler in hot rolling
US2276329A (en) Apparatus for conditioning metal bodies
JPS61129207A (en) Grinding method of rolling roll
JPH07214120A (en) Method for controlling hot rolling lubrication and device therefor
AT505640B1 (en) DEVICE AND METHOD FOR THE THICKNESS ADAPTATION OF ENDLESS BELTS
JPH0510964Y2 (en)
JPS59229209A (en) Method for patternless rolling
JPH0513729B2 (en)
CN108778545B (en) Apparatus and method for producing workpieces of a predetermined type
JPH0542309A (en) Method and device for grinding rolling roll