JPS63132151A - Surface defect detector - Google Patents

Surface defect detector

Info

Publication number
JPS63132151A
JPS63132151A JP27816386A JP27816386A JPS63132151A JP S63132151 A JPS63132151 A JP S63132151A JP 27816386 A JP27816386 A JP 27816386A JP 27816386 A JP27816386 A JP 27816386A JP S63132151 A JPS63132151 A JP S63132151A
Authority
JP
Japan
Prior art keywords
terminals
current
pair
power supply
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27816386A
Other languages
Japanese (ja)
Other versions
JPH0695084B2 (en
Inventor
Masahiro Otaka
大高 正廣
Makoto Hayashi
真琴 林
Kazuo Takaku
高久 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27816386A priority Critical patent/JPH0695084B2/en
Priority to PCT/JP1987/000789 priority patent/WO1988002857A1/en
Priority to DE3751702T priority patent/DE3751702T2/en
Priority to EP87906780A priority patent/EP0289615B1/en
Priority to US07/235,683 priority patent/US4914378A/en
Publication of JPS63132151A publication Critical patent/JPS63132151A/en
Publication of JPH0695084B2 publication Critical patent/JPH0695084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To improve the uniformity of a current distribution in a measurement area and to monitor the progressive state of a surface defect with high accuracy by forming plural couples of feed terminals so that they can be displaced, and providing a terminal position control part which displaces and positions the terminal couples according to the current distribution inside the terminal couples. CONSTITUTION:The plural feed terminal couples 3 are displaceable and displaced by the terminal position control part 6. When a current is supplied to the terminal couples 3 under the command of a computer 7 through a constant current source 9 and a polarity converting device 8, the current distribution is generated inside. The current distribution is measured through a potential difference measurement terminal 4, a scanner 10, and a voltmeter 11 and inputted to and processed by the computer 7. The terminal couples 3 are moved with a control signal from the control part 6 according to the result to uniform the current distribution in the measurement area. In such a state, signals from terminals 4 are processed by the computer 7 to detect whether or not there is a surface defect and its shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属構造部材に発生したき裂を検出する非破
壊検査技術に係り、特に表面欠陥の形状を検出する表面
欠陥検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a non-destructive inspection technique for detecting cracks generated in metal structural members, and particularly to a surface defect detection device for detecting the shape of a surface defect.

〔従来技術とその問題点〕[Prior art and its problems]

従来、ポテンシャル法による部材表面の欠陥検出装置は
、いわゆる4端子法を利用している(特公昭50−25
93号公報、特開昭57−160054号公報等)、こ
の4端子法は、一対の給電端子とその内側に一対の電位
差測定端子を全体として一列に配置した探傷子を使用し
、金属構造部材の表面を走査して電位分布の変化を測定
し、これによりき裂等の表面欠陥を検出するというもの
である。すなわち、欠陥のない領域での電位差を基準電
位として、これより大きい電位となった所に欠陥が存在
すると判定するものである。
Conventionally, a defect detection device on the surface of a member using the potential method uses the so-called four-terminal method (Japanese Patent Publication No. 50-25
This four-terminal method uses a flaw detector in which a pair of power supply terminals and a pair of potential difference measuring terminals are arranged in a line as a whole inside the power supply terminal, and is used to detect metal structural members. This method scans the surface of the sensor and measures changes in potential distribution, thereby detecting surface defects such as cracks. That is, the potential difference in a defect-free area is set as a reference potential, and it is determined that a defect exists where the potential is higher than this.

大型の金属構造物においては、表面欠陥が発生したら即
寿命であるというものではなく、欠陥発生後も相当の長
期間にわたってその構造物を使用できる場合が多い0表
面欠陥が発生後の寿命が該欠陥発生までの期間より長い
こともある。従って表面欠陥の進展状態を監視すること
は、構造物の長期有効使用を可能にし、更に安全を図る
上で重要である。
In large metal structures, the lifespan does not end immediately when a surface defect occurs; in many cases, the structure can be used for a considerable period of time even after the occurrence of a surface defect. Sometimes it is longer than the period until the defect occurs. Therefore, monitoring the progress of surface defects is important to enable long-term effective use of structures and to ensure safety.

ところが、従来の装置は給電端子が1対であるため、測
定領域において部材の形状変化等により電流分布の均一
性が悪くて測定に際しての基準電位の決定が戴かしく、
更に表面欠陥の形状の判定が不正確となり、その結果表
面欠陥の進展状態を精度良く監視することができないと
いう問題があった。また、電流の拡がりにより測定領域
近傍の形状変化や近接する欠陥の影響を受けやすいとい
う問題があった。
However, since conventional devices have one pair of power supply terminals, the uniformity of current distribution is poor due to changes in the shape of members in the measurement area, making it difficult to determine the reference potential during measurement.
Furthermore, there is a problem in that the shape of the surface defect is inaccurately determined, and as a result, the progress of the surface defect cannot be accurately monitored. Furthermore, there is a problem in that the current spread makes it susceptible to shape changes in the vicinity of the measurement area and to nearby defects.

本発明の目的は、測定領域において電流分布の均一性を
高めることができ、これにより高精度で表面欠陥の進展
状態を監視できる表面欠陥検出装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface defect detection device that can improve the uniformity of current distribution in a measurement region and thereby monitor the progress of surface defects with high accuracy.

〔問題点を解決するための手段・作用〕本発明は、給電
端子対を複数対で且つ変位可能に形成すると共に該給電
端子対の内側の電流分布に基づいて当該給電端子対を変
位させて位置決めする端子位置制御部を設けることによ
り、測定領域の形状変化等に起因する電流分布の不均一
信号を端子位置制御部で受けて、その不均一を打ち消す
ように給電端子対の位置を個々に変える制御信号を出力
し、電流分布の均一化を達成するものである。
[Means/effects for solving the problem] The present invention provides a plurality of pairs of power supply terminals that are displaceable and displaces the pair of power supply terminals based on the current distribution inside the pair of power supply terminals. By providing a terminal position control unit for positioning, the terminal position control unit receives signals of nonuniform current distribution caused by changes in the shape of the measurement area, etc., and adjusts the positions of the power supply terminal pairs individually to cancel out the nonuniformity. This outputs a control signal to change the current distribution, thereby achieving uniformity of the current distribution.

また、給電端子対を複数対に形成すると共に該給電端子
対の内側の電流分布に基づいて各給電端子対に供給する
電流を変化させる電流制御部を設けることにより、電流
分布の不均一信号を電流制御部で受けて、その不均一を
打ち消すように各給電端子対に供給する電流値を変える
制御信号を出力し、電流分布の均一化を達成するもので
ある。
In addition, by forming a plurality of power supply terminal pairs and providing a current control unit that changes the current supplied to each power supply terminal pair based on the current distribution inside the power supply terminal pair, uneven signals of current distribution can be suppressed. The current control unit outputs a control signal that is received by the current control unit and changes the current value supplied to each power supply terminal pair so as to cancel out the non-uniformity, thereby achieving uniformity of the current distribution.

更に、給電端子対を複数対に形成すると共に電位差測定
端子対を変化可能に形成し、給電端子対の内側の電流分
布が略均一な領域のみを電位差測定端子対の測定走査領
域と定める測定領域制御部を設けることにより、電位分
布の均一な領域のみの欠陥検出が自動的に行なわれるも
のである。
Further, a plurality of pairs of power supply terminals are formed, and a pair of potential difference measurement terminals is formed to be variable, and only a region where the current distribution inside the pair of power supply terminals is substantially uniform is defined as a measurement scanning region of the pair of potential difference measurement terminals. By providing a control section, defects can be automatically detected only in areas where the potential distribution is uniform.

〔実施例〕。〔Example〕.

第1図は特許請求の範囲第1項記載の発明を含む表面欠
陥検出装置の全体構成図を示す、同図において、1はセ
ンサヘッドであり、該センサヘッド1は構造部材2の表
面欠陥を検出するものである。このセンサヘッド1は構
造部材2に定電流を供給する複数対の給電端子対3、表
面欠陥の有無あるいは形状によって変化する給電端子対
3内側の電位分布を測定する電位差測定端子対4及びこ
れら各端子対を保持するセンサ治具5より成る。
FIG. 1 shows an overall configuration diagram of a surface defect detection device including the invention described in claim 1. In the figure, 1 is a sensor head, and the sensor head 1 detects surface defects of a structural member 2. It is something to detect. This sensor head 1 includes a plurality of pairs of power supply terminals 3 that supply a constant current to a structural member 2, a pair of potential difference measurement terminals 4 that measure the potential distribution inside the power supply terminal pairs 3 that changes depending on the presence or absence or shape of a surface defect, and each of these terminal pairs. It consists of a sensor jig 5 that holds a pair of terminals.

測定時には、センサヘッド1は構造部材2に押圧される
During measurement, the sensor head 1 is pressed against the structural member 2 .

センサ治具5に保持される給電端子対3は、変位可能に
形成され、この変位は端子位置制御部6からの制御信号
により行なわれる。この端子位置制御部6は、インター
フェイスを介してコンピュータ7に接続されている。給
電端子対3は熱起電力を除去するための極性変換装置8
を介して定電流g9に接続されている。定電流源9はコ
ンピュータ7に接続されている。また、電位差測定端子
対4は多点の電位を測定しうるようスキャナー10を介
して高分解能の微少電圧計11に接続され、この電圧計
11が測定データを処理するためインターフェイスを介
してコンピュータ7に接続されている。
The power supply terminal pair 3 held by the sensor jig 5 is formed to be displaceable, and this displacement is performed by a control signal from the terminal position control section 6. This terminal position control section 6 is connected to a computer 7 via an interface. The power supply terminal pair 3 is a polarity converter 8 for removing thermoelectromotive force.
It is connected to constant current g9 via. Constant current source 9 is connected to computer 7. Further, the potential difference measuring terminal pair 4 is connected to a high-resolution micro voltmeter 11 via a scanner 10 so as to be able to measure the potential at multiple points, and this voltmeter 11 is connected to a computer 7 via an interface to process the measurement data. It is connected to the.

コンピュータ7からの指令により定電流源9から給電端
子対4に任意の電流が供給されると各端子対4の相互配
置によってその内側に対応する電流分布が生じる。この
電流分布は電位差測定端子対3により電位分布として測
定され、その測定電位差信号がコンピュータ7に入力さ
れて処理され、これに基づいて端子位置制御部6から前
記電流分布が給電端子対3の内側の測定領域が略均一と
なるように該給電端子対3を移動させる制御信号が出力
されるようになっている0以上は実際の欠陥検出を行な
う前の準備段階で行なわれるものであり、実測する構造
部材と同じものであって表面欠陥のない物を標準素材と
して行なうか、又は実測構造部材の形状や給電端子の配
置をデータとしてコンピュータ解析により行なう、後者
は標準素材が不要の点で極めて簡易に行なえる効果を有
する。
When an arbitrary current is supplied from the constant current source 9 to the power supply terminal pair 4 according to a command from the computer 7, a corresponding current distribution is generated inside the terminal pair 4 depending on the mutual arrangement of the terminal pairs 4. This current distribution is measured as a potential distribution by the potential difference measuring terminal pair 3, and the measured potential difference signal is input to the computer 7 and processed. A control signal is output to move the pair of power supply terminals 3 so that the measurement area is approximately uniform. Either the standard material is the same as the structural member with no surface defects, or the data is analyzed using computer analysis based on the shape of the actually measured structural member and the arrangement of the power supply terminals.The latter method is extremely effective in that no standard material is required. It has the effect of being easy to perform.

そして、電流分布を略均一化する準備段階が済んだ後、
実測構造部材の測定電位差信号をコンピュータ7に入力
するが、この信号は前記準備段階とは異なり、コンピュ
ータ7に内蔵された欠陥判定部(図示せず)にて処理さ
れ1表面欠陥の有無あるいはその形状が検出さとるよう
になっている。
After completing the preparation stage to make the current distribution approximately uniform,
The measured potential difference signal of the actually measured structural member is input to the computer 7, but unlike the preparation stage, this signal is processed by a defect determination section (not shown) built in the computer 7 to determine whether there is a surface defect or not. The shape can be detected.

更に、その検出結果は出力装置(図示せず)に表示され
るようになっている。
Furthermore, the detection results are displayed on an output device (not shown).

センサヘッド1は駆動装置12に取り付けられ、全体の
走査が可能になっている0本実施例は、パイプ内面き裂
測定用の駆動装置を示す、センサヘッド1の構造部材2
への押し付けはエアシリンダ等の押圧手段13によって
行なわれる。センサヘッド1は、回転シャフト14に軸
支されてパイプ内周の周方向に走査できるようになって
いる。この回転シャフト14は、モータ15.ベルト1
6゜プーリ17により回転する。また、パイプ内の軸芯
線方向の移動はモータ17.ローラ18及び連結ベルト
19によってなされる0本駆動装置!12は駆動制御部
20によって制御され、この駆動制御部20はコンピュ
ータ7に接続されている。
The sensor head 1 is attached to a drive device 12, making it possible to scan the entire structure.This embodiment shows a drive device for measuring cracks on the inner surface of a pipe.The structural member 2 of the sensor head 1
The pressing is performed by a pressing means 13 such as an air cylinder. The sensor head 1 is pivotally supported by a rotating shaft 14 so as to be able to scan in the circumferential direction of the inner circumference of the pipe. This rotating shaft 14 is connected to a motor 15. belt 1
It is rotated by a 6° pulley 17. Further, movement in the axial direction within the pipe is carried out by a motor 17. Zero drive device made up of rollers 18 and connecting belts 19! 12 is controlled by a drive control section 20, and this drive control section 20 is connected to the computer 7.

コンピュータ7には、16ビツトマイクロコンピユータ
システムが使用され、検出結果の出力装置及び記録装置
にはプリンタ及び5インチフロッピーディスクが使用さ
れている。駆動制御部20及び端子位置制御部6にはペ
リファリ・インターフェイス・アダプタ(PIA)を使
用し、電圧計11及び定電流源9にはGP−IBインタ
ーフェイスを使用し、コンピュータ7との入出力を行な
った。
A 16-bit microcomputer system is used as the computer 7, and a printer and a 5-inch floppy disk are used as the output device and recording device for the detection results. A peripheral interface adapter (PIA) is used for the drive control section 20 and the terminal position control section 6, and a GP-IB interface is used for the voltmeter 11 and constant current source 9, and input/output with the computer 7 is performed. Ta.

第2図は第1図のセンサ治具の部分を拡大平面で示した
構成図である。給電端子対3の変位可能な構造は、3対
の端子対のうち、中央を固定給電端子対3aと両端をX
及びY軸方向に変位可能な可動給電端子対3bとにより
形成されている。すなわち、可動給電端子対3bは「井
j形に連結されたレバー21,22、該レバー21.2
2と各各螺合するねじ溝シャフト23.24及び各シャ
フト23.24を回転させるモータ25,26によって
変化可能となっている。モータ25,26は端子位置制
御部6と接続されて制御され、コンピュータ7で解析し
た最適配置に給電端子が移動するように作動し、均一な
電流場が得られるようになっている。尚、給電端子対3
の総てを可動端子対としてもよいことは勿論である。
FIG. 2 is an enlarged plan view of the sensor jig shown in FIG. 1. The movable structure of the power supply terminal pair 3 is that among the three terminal pairs, the center is fixed and the both ends are
and a movable power supply terminal pair 3b that is movable in the Y-axis direction. That is, the movable power supply terminal pair 3b consists of "levers 21 and 22 connected in a rectangular shape, and the levers 21.2
2, threaded shafts 23, 24 that are screwed together, and motors 25, 26 that rotate the shafts 23, 24. The motors 25 and 26 are connected to and controlled by the terminal position control unit 6, and are operated so that the power supply terminals are moved to the optimal arrangement analyzed by the computer 7, so that a uniform current field can be obtained. In addition, power supply terminal pair 3
Of course, all of them may be used as movable terminal pairs.

第3図は上記発明の他実施例を示す構成図で、センサ治
具5に多数の端子27をマトリックス状に配設し、給電
端子対を全端子27のうち選定する端子27を変えるこ
とに変位可能としたものである。各端子27は固定され
ていても給電する端子の組合せを変えて選定すれば結果
として変位したことになる。残りの中央郡の端子の一部
が電位差測定端子対となる。すなわち、各端子27はマ
トリックススキャナー28に接続され、給電端子対と電
位差測定端子対の配置は、コンピュータ7で解析した最
適配置となるものである0本実施例によれば、各端子対
の配置が自由に選べるので適用範囲が広いと共に構造が
単純となる。
FIG. 3 is a configuration diagram showing another embodiment of the above invention, in which a large number of terminals 27 are arranged in a matrix on the sensor jig 5, and the terminals 27 selected from among all the terminals 27 as the power supply terminal pair are changed. It is made to be able to be displaced. Even if each terminal 27 is fixed, if a different combination of terminals for power feeding is selected, the terminals 27 will be displaced as a result. Some of the remaining terminals in the central group become a pair of potential difference measurement terminals. That is, each terminal 27 is connected to the matrix scanner 28, and the arrangement of the power supply terminal pair and the potential difference measurement terminal pair is the optimum arrangement analyzed by the computer 7. According to this embodiment, the arrangement of each terminal pair is can be freely selected, the range of application is wide and the structure is simple.

第4図は特許請求の範囲第3項記載の第2発明の実施例
を示す構成図である0本実施例では、給電端子対3は7
対よりなると共に、第1発明とは異なり、その位置が可
変でなく固定されている。
FIG. 4 is a configuration diagram showing an embodiment of the second invention as set forth in claim 3. In this embodiment, the power supply terminal pair 3 has seven
It consists of a pair, and unlike the first invention, its position is not variable but fixed.

この給電端子対3は各々独立に定電流源9に接続されて
おり、コンピュータ7に内蔵された電流制御部(図示せ
ず)からの制御信号によって各端子対3は個々に電流値
が可変となっている。W流制御部は、任意に供給された
電流によって給電端子対3の内側に生じる電流分布を前
記第1発明と同様に電位差測定端子対4で検出し、その
測定信号に基づいて略均一な電流分布となるように当該
電流制御部は制御信号を出力する。これにより、測定領
域には略均一な電流場が形成され、準備段階は済み実測
段階に移れる。
The power supply terminal pairs 3 are each independently connected to a constant current source 9, and the current value of each terminal pair 3 can be individually varied by a control signal from a current control section (not shown) built into the computer 7. It has become. The W flow control section detects the current distribution generated inside the power supply terminal pair 3 due to the arbitrarily supplied current using the potential difference measuring terminal pair 4 as in the first invention, and determines a substantially uniform current based on the measurement signal. The current control section outputs a control signal so as to have a distribution. As a result, a substantially uniform current field is formed in the measurement area, and the preparation stage is completed, allowing the actual measurement stage to proceed.

第5図は、本発明に係る装置で構造部材の表面欠陥を検
出するフローチャートを示す、このフローチャートは前
記第1及び第2発明の両方が適用され、いずれかを選択
して使用できる場合を示す。
FIG. 5 shows a flowchart for detecting surface defects in a structural member using the apparatus according to the present invention. This flowchart shows a case where both the first and second inventions are applied and one can be selected and used. .

更に、標準素材を用いて準備段階で均一な電流場を形成
する場合ではなく、測定する構造部材の形状等のデータ
、li電流値給電端子対の配置についてのデータを入力
してコンピュータ解析により準備段階で均一な電流場を
形成する場合を示す。
Furthermore, instead of using standard materials to form a uniform current field in the preparation stage, preparation is performed by computer analysis by inputting data such as the shape of the structural member to be measured and data regarding the arrangement of the li current value power supply terminal pair. The case where a uniform current field is formed in stages is shown.

く給電端子対の配置最適化(第1発明)〉ステップ29
で実際に測定する構造部材の測定領域の形状のデータを
入力する。この形状は電流分布に最も大きく影響する。
Optimization of placement of power supply terminal pairs (first invention)> Step 29
Input data on the shape of the measurement area of the structural member to be actually measured. This shape has the greatest effect on current distribution.

その他欠陥以外のもので電流分布に影響するものを適宜
入力する。ステップ30で給電端子対の配置最適化を選
択する。
Input other items other than defects that affect the current distribution as appropriate. In step 30, optimization of the arrangement of power supply terminal pairs is selected.

通常は、この選択の方が望ましい、ステップ31で各給
電端子対3に供給する電流値を入力する。
Normally, this selection is more desirable; in step 31, the current value to be supplied to each power supply terminal pair 3 is input.

この電流値は各端子対3すべで同じ値である。ステップ
32で給電端子対3の初期設定配置のデータを入力する
。これにより測定領域にある電流分布が生じる。この電
流分布をステップ33でコンピュータ解析する。すなわ
ち、その電流分布を電位差測定端子対4により電位分布
として測定し、その測定信号をコンピュータ7に入力し
、FEM解析あるいは理論式による簡易解析を実行する
This current value is the same for all three terminal pairs. In step 32, data on the initial setting arrangement of the power supply terminal pair 3 is input. This results in a certain current distribution in the measurement area. This current distribution is analyzed by computer in step 33. That is, the current distribution is measured as a potential distribution by the potential difference measuring terminal pair 4, and the measured signal is input to the computer 7, and FEM analysis or simple analysis using a theoretical formula is executed.

ステップ34でその解析結果より電流分布の均一性が許
容範囲の内か外かを判断する。範囲外のときはステップ
35で給電端子対3の配置データを変え、ステップ33
にリターンし、再度電流分布の解析を行い、最終的に許
容範囲内の均一な電流分布が得られるまで同様の手順を
繰り返す。ステップ36でセンサ治具5上における給f
t端子対3の位置決めを終了させる。
In step 34, it is determined from the analysis result whether the uniformity of the current distribution is within or outside the allowable range. If it is outside the range, change the arrangement data of the power supply terminal pair 3 in step 35, and then proceed to step 33.
Return to , analyze the current distribution again, and repeat the same procedure until a uniform current distribution within the allowable range is finally obtained. In step 36, the supply f on the sensor jig 5 is
The positioning of the t-terminal pair 3 is completed.

以上の準備段階で均一な電流分布が得られ、ステップ3
7以降で実際の表面欠陥の検出を行なう。
A uniform current distribution can be obtained in the above preparation stages, and step 3
7 and subsequent steps, actual surface defects are detected.

先ず、ステップ37でステップ31で入力した電流値と
同じ電流を位置決めされた給電端子対3に供給する。ス
テップ38で電位差測定端子対4を走査して測定領域の
電位分布を測定する。ステップ39で前記測定電位差信
号に基づいて欠陥判定部にて部材表面の欠陥の有無及び
形状を判定する。
First, in step 37, the same current as the current value input in step 31 is supplied to the positioned power supply terminal pair 3. In step 38, the potential difference measuring terminal pair 4 is scanned to measure the potential distribution in the measurement area. In step 39, the defect determining section determines the presence or absence and shape of defects on the surface of the member based on the measured potential difference signal.

ここで、電位分布が均一であればその領域に表面欠陥は
無いことになり、ピーク等の不均一部分があれば、構造
部材の対応位置に表面欠陥があることになる。また欠陥
の形状は予め求めておいたマスターカーブ等との対比に
より判定する1判定終了後、ステップ40で駆動装W1
12によりセンサヘッド1を他の測定領域に移動する。
Here, if the potential distribution is uniform, it means that there is no surface defect in that region, and if there is a non-uniform portion such as a peak, it means that there is a surface defect at the corresponding position of the structural member. In addition, the shape of the defect is determined by comparing it with a master curve etc. determined in advance. After completion of the first determination, in step 40, the drive unit
12, the sensor head 1 is moved to another measurement area.

構造部材の測定領域の形状等のデータが変化ない場合は
、ステップ37から同様の手順で繰返す。形状等の変化
がある場合はステップ41からステップ29にリターン
し、最初から同手順で行なう、センサヘラド1が測定範
囲外に位置した場合、ENDとなる。
If the data such as the shape of the measurement area of the structural member does not change, the same procedure is repeated from step 37. If there is a change in shape, etc., the process returns from step 41 to step 29, and the same procedure is repeated from the beginning.If the sensor head 1 is located outside the measurement range, the process ends.

く供給電流の最適化(第2発明)〉 ステップ29は変わらず、ステップ30で供給電流の最
適化を選択する。ステップ42で給電端子対3の配置デ
ータを入力する。この配置は固定されている。ステップ
43で初期設定の供給電流値を入力する。これにより、
測定領域にある電流分布が生じる。この電流分布をステ
ップ44でコンピュータ解析する。解析方法は第1発明
の詳細な説明したものと同様である。ステップ45で電
流分布の均一性が許容範囲外と判新されたとき、ステッ
プ46で供給する電流値を変え、ステップ44にリター
ンし、最終的に均一な電流分布が得られるまで同様の手
順を繰返す、ステップ47で給電端子対3に供給される
最終的な電流値に合すせて電源のセットを行なう1以上
の準備段階で均一な電流分布が得られ、ステップ37以
降で前記と同様の手順により実際の表面欠陥の検出を行
なう。
Optimization of Supply Current (Second Invention)> Step 29 remains unchanged, and optimization of supply current is selected in Step 30. In step 42, the arrangement data of the power supply terminal pair 3 is input. This arrangement is fixed. In step 43, the initial setting supply current value is input. This results in
A certain current distribution occurs in the measurement area. This current distribution is analyzed by computer in step 44. The analysis method is the same as that described in detail in the first invention. When it is determined in step 45 that the uniformity of the current distribution is outside the allowable range, the supplied current value is changed in step 46, the process returns to step 44, and the same procedure is repeated until a uniform current distribution is finally obtained. Repeatedly, in step 47, a uniform current distribution is obtained in one or more preparatory stages in which the power supply is set in accordance with the final current value supplied to the power supply terminal pair 3, and in step 37 and onwards, the same current distribution as above is obtained. The procedure is used to detect actual surface defects.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

電流場の解析には有限要素法を用いる方法があるが、均
一な連続体中における電流の流れは電荷と電気力線に相
当するため解析的に求めることができる。すなわち、電
流密度は求める座標での表面電荷として置き換えられる
。よって次式の基本式により求められる。
The finite element method can be used to analyze current fields, but since the flow of current in a uniform continuum corresponds to electric charges and lines of electric force, it can be determined analytically. That is, the current density is replaced by the surface charge at the desired coordinates. Therefore, it is determined by the following basic formula.

工→q              ・・・(1)I:
電流、q:!荷、x1 :座標、 ixl:xi酸成分電流密度、 ffKt?Xi成分^祈密度 この基本式を使用したプログラムをコンピュータ7に組
み込むことにより簡易の電流場解析を行なえる。尚、特
に複雑な形状の場合は有限要素法で求める。
Engineering → q ... (1) I:
Current, q:! load, x1: coordinate, ixl: xi acid component current density, ffKt? Xi component ^ Prayer density By incorporating a program using this basic formula into the computer 7, a simple current field analysis can be performed. In addition, in the case of a particularly complicated shape, the finite element method is used to find it.

解析結果を以下で説明する。The analysis results are explained below.

第6図(a)は給電端子対3が1対の場合で従来の4端
子法における該端子対3の配置図を示し、同図(b)は
給電端子対3の内側の電流分布図である。中央での電流
の大きさを1とすると、中央から端子対間距離の−の位
置では35%に減少している。
FIG. 6(a) shows a layout diagram of the terminal pair 3 in the conventional four-terminal method when there is one pair of power supply terminals 3, and FIG. 6(b) shows a current distribution diagram inside the power supply terminal pair 3. be. If the magnitude of the current at the center is 1, it decreases to 35% at the negative position of the distance between the terminal pairs from the center.

第7図(a)は4対の給電端子対3を隣同士等間隔で設
けた場合の配置図であり、同図(b)は各端子対3に同
じ電流を供給した場合の内側の電流分右図である。中央
から端子間距離の−の位置で78%に改善されている。
Figure 7 (a) is a layout diagram when four pairs of power supply terminal pairs 3 are provided adjacently at equal intervals, and Figure 7 (b) is an illustration of the inner current when the same current is supplied to each terminal pair 3. This is the figure on the right. The improvement is 78% at the negative position of the distance between the terminals from the center.

第6図と第7図の結果を整理したものが第8図であり、
給電端子対3の数nと電流分布との関係図である。n=
1すなわち従来の給電端子対3が1対の場合に比して複
数対にすることにより電流分布が平坦化することが解る
。n=4以上では端子間の干渉も改善される。
Figure 8 is a summary of the results in Figures 6 and 7.
FIG. 3 is a relationship diagram between the number n of power supply terminal pairs 3 and current distribution. n=
1, that is, it can be seen that the current distribution is flattened by providing a plurality of pairs of power supply terminals 3 compared to the case where there is only one pair of conventional power supply terminals 3. When n=4 or more, interference between terminals is also improved.

第9図(a)は給電端子対3間の距離2Qが1.5 (
中央からn=0.75 )の場合の配置図であり、同図
(b)は対応する電流分布図である。
In Fig. 9(a), the distance 2Q between the power supply terminal pair 3 is 1.5 (
This is a layout diagram for the case where n=0.75 from the center, and (b) of the same figure is a corresponding current distribution diagram.

第10図(a)は端子対間の距離2Ωを1.0(1=0
.6 )にした場合の配置図であり、同図(b)は対応
する電流分布図である。第9図と第10図の結果を整理
したものが第11図である。
In Figure 10(a), the distance between the terminal pair is 2Ω, which is 1.0 (1=0
.. 6), and FIG. 6(b) is a corresponding current distribution diagram. FIG. 11 is a summary of the results shown in FIGS. 9 and 10.

給電端子間の距離怠が小さくなる程電流分布の均一性が
よくなることが解る。しかし、菖が小さくなりすぎると
隣同士の端子の相互干渉が小さくなり、却って均一性が
悪くなる。これは給電端子対3の隣接距離mとの関係で
定まり、種々の実験の結果m>aでは均一性が悪いこと
を確認できた。
It can be seen that the smaller the distance between the power supply terminals, the better the uniformity of the current distribution. However, if the irises become too small, mutual interference between adjacent terminals will decrease, and uniformity will worsen. This is determined by the relationship with the adjacent distance m between the pair of power feeding terminals 3, and as a result of various experiments, it was confirmed that uniformity is poor when m>a.

第12図(a)は両端の給電端子対3の距離n′を中央
の端子対3の距離nより小さくした場合の配置図であり
、同図(b)は対応する電流分布図である。ここでは0
=1とし、Q’ =0.8とした。第13図(a)はΩ
’ =0.7 とした場合の配置図であり、同図(b)
は対応する電流分布図である。第12図と第13図の結
果をまとめたのが第14図である。Q’ =0.7.1
2=1.0゜m=0.66  のとき電流分布は一1≦
X≦1の範囲で5%の変動しかなく、略均一であること
がわかる(第12図(b))、L、かじ、4′ を小さ
くしすぎると両端の給電端子対の影響が大きくなるため
均一性が悪くなっている(第13図、第14図)、給電
端子対が4対で3m=2.2=3−のときは、Ω’ =
0.8〜0.9のとき最も均一性がよくなることが解る
FIG. 12(a) is a layout diagram when the distance n' between the pair of power supply terminals 3 at both ends is made smaller than the distance n between the pair of terminals 3 at the center, and FIG. 12(b) is a corresponding current distribution diagram. here 0
=1, and Q' =0.8. Figure 13(a) is Ω
This is a layout diagram when ' = 0.7, and the same figure (b)
is the corresponding current distribution diagram. FIG. 14 summarizes the results of FIGS. 12 and 13. Q' =0.7.1
When 2=1.0゜m=0.66, the current distribution is -1≦
It can be seen that there is only a 5% variation in the range of X≦1, and it is almost uniform (Figure 12 (b)).If L, rudder, and 4' are made too small, the influence of the power supply terminal pair at both ends becomes large. Therefore, the uniformity is poor (Figs. 13 and 14). When there are 4 pairs of power supply terminals and 3m = 2.2 = 3-, Ω' =
It can be seen that the uniformity is best when the value is 0.8 to 0.9.

第15図(a)は給電端子対3の両端に供給される電流
CI)より内側の端子対に供給される電流(0,5I)
  を小さくした場合の配置図であり、同図(b)は対
応する電流分布図である。第16図(a)は内側の端子
対に供給される電流を更に小さく  (0,3I)  
L、た場合の配置図であり、同図(b)は対応する電流
分布図である。供給する電流値の差が50%(第15図
)では電流分布の変動は7%であるが、差を70%(第
16図)に広げると中央での電流密度が減少するため電
流分布の均一性は悪くなることが解る。これらの結果を
まとめたものが第17図である。
Figure 15(a) shows the current (0,5I) supplied to the inner terminal pair than the current CI supplied to both ends of power supply terminal pair 3.
This is a layout diagram in the case where is made small, and the diagram (b) is a corresponding current distribution diagram. In Figure 16(a), the current supplied to the inner terminal pair is further reduced (0,3I).
This is a layout diagram for the case L, and FIG. 3(b) is a corresponding current distribution diagram. If the difference in the supplied current values is 50% (Figure 15), the current distribution will fluctuate by 7%, but if the difference is increased to 70% (Figure 16), the current density at the center will decrease, resulting in a change in the current distribution. It can be seen that the uniformity deteriorates. FIG. 17 shows a summary of these results.

以上原理を説明したように、給電端子対3を複数対とし
、各端子対の配置を変える、あるいは供給する電流値を
各端子対の個々に変えることにより電流分布の均一化を
図れることが解る。これを基礎として構造部材等の形状
が異っても、その差異に基づく電流分布の不均一を前記
の如く給電端子対の配置を変える等により打ち消して均
一化を図ることが可能である。
As the principle has been explained above, it can be seen that the current distribution can be made uniform by forming multiple pairs of power supply terminal pairs 3 and changing the arrangement of each terminal pair, or by changing the supplied current value to each terminal pair individually. . Based on this, even if the shapes of the structural members etc. differ, it is possible to cancel out the non-uniformity of the current distribution due to the difference and make it uniform by changing the arrangement of the power supply terminal pairs as described above.

第18図は特許請求の範囲第4項記載の第3発明の実施
例を示す構成図である。給電端子対3は3対より成り、
その配置は固定されていると共に、供給される電流値も
固定されている。この配置及び電流値に基づいである電
流分布が給電端子対3の内側に生じる。このようにして
生じた電流分布のうち、均一な領域だけを電位差測定端
子対4の測定走査領域として定めるというのがこの発明
である。すなわち、電位差測定端子対4は変位可能に形
成されている。ここでは一方が固定端子4a、他方が可
動端子4bとして形成され、構造の単純化が図られてい
る。可動端子4bは測定領域制御部48からの制御信号
により一定の領域を走査するようになっている。この測
定領域制御部48は生じている電流分布のうち均一とな
る領域を前記給電端子対3の配置、供給電流値及び構造
部材の形状等から前述と同様のコンピュータ7での解析
により求め、前記制御信号を出力するものである。
FIG. 18 is a configuration diagram showing an embodiment of the third invention as set forth in claim 4. The power supply terminal pair 3 consists of three pairs,
Its arrangement is fixed, and the supplied current value is also fixed. A current distribution based on this arrangement and current value is generated inside the power supply terminal pair 3. In the present invention, only a uniform region of the current distribution generated in this manner is determined as the measurement scanning region of the pair of potential difference measurement terminals 4. That is, the potential difference measuring terminal pair 4 is formed to be movable. Here, one is formed as a fixed terminal 4a and the other is formed as a movable terminal 4b, thereby simplifying the structure. The movable terminal 4b is adapted to scan a certain area in response to a control signal from the measurement area control section 48. This measurement area control unit 48 determines a uniform area of the current distribution that is occurring from the arrangement of the power supply terminal pair 3, the supply current value, the shape of the structural member, etc. by analysis using the computer 7 similar to that described above. It outputs a control signal.

可動端子4bはモータ49,50、レバー51゜52、
ねじ溝シャフト53.54によりX軸及びY軸方向に移
動可能になっている。モータ49゜50は測定領域制御
部48に接続されて制御され、この制御部48はインタ
ーフェイスを介してコンピュータ7に接続されている0
本発明は均・−な電流分布の領域のみを電位差測定端子
対4を査定させ、不均一領域は走置さないというもので
ある。
The movable terminal 4b has motors 49, 50, levers 51, 52,
It is movable in the X-axis and Y-axis directions by threaded shafts 53 and 54. The motors 49 and 50 are connected to and controlled by a measurement area control section 48, which is connected to the computer 7 via an interface.
The present invention allows the potential difference measuring terminal pair 4 to assess only areas with a uniform current distribution, and does not cover non-uniform areas.

第19図は第3発明の他実施例を示し、電位差測定端子
対4をマトリックス状に配置したものである0本実施例
によれば電位差測定端子対4を直接移動させることなく
、使用端子の選定を適宜変えることにより対応できるた
め測定が容易となる。
FIG. 19 shows another embodiment of the third invention, in which the potential difference measuring terminal pairs 4 are arranged in a matrix. According to this embodiment, the potential difference measuring terminal pairs 4 are not directly moved, and the terminals to be used are This can be handled by changing the selection as appropriate, making measurement easier.

第20図は第3発明の異なる他実施例を示す。FIG. 20 shows another embodiment of the third invention.

給電端子対3は二重同心円状に配置され、内外の各端子
に正と負の逆極性電流が供給される。給電端子対3は切
換装!!55を介して定電流源9と接続されている1本
実施例ではすべての給電端子対3に電流を供給して使用
するのではなく、内外の各一部の端子にのみ電流を供給
して、均一な電流分布を発生させるものであり、電流を
供給する端子を選定し又他と換えられるよう前記切換装
!2E56が設けられている。均一な電流場が得られた
後、電流が供給されている端子の相対配置及び電流値を
保持して全端子上を切換移動させて回転電流場を形成す
るようになっている。電位差測定端子対4はマトリック
ス状に形成され、回転電流場に同期して追従できるよう
になっている。尚、本実施例では給電端子対3の内外に
逆極性電流を供給するため測定領域外への漏電がなくな
り、近接する欠陥や構造部材の形状変化の影響を受けに
くい効果がある。
The power supply terminal pair 3 is arranged in a double concentric circle, and positive and negative polarity currents are supplied to each of the inner and outer terminals. Power supply terminal pair 3 is a switching device! ! In this embodiment, current is not supplied to all the power supply terminal pairs 3, but only to some of the internal and external terminals. The switching device generates a uniform current distribution, and allows you to select the terminal that supplies the current and replace it with another! 2E56 is provided. After a uniform current field is obtained, a rotating current field is formed by switching over all the terminals while maintaining the relative positions and current values of the terminals to which current is supplied. The potential difference measuring terminal pairs 4 are formed in a matrix shape and can follow the rotating current field in synchronization. Incidentally, in this embodiment, since reverse polarity current is supplied to the inside and outside of the power supply terminal pair 3, there is no leakage of current outside the measurement area, and there is an effect that it is less affected by adjacent defects or changes in the shape of structural members.

次に、この実施例のyX現を説明する。第21図(a)
は供給する電流値と端子位置を示す配置図であり、同図
(b)は対応する電流分布図である。
Next, the yX expression of this embodiment will be explained. Figure 21(a)
1 is a layout diagram showing supplied current values and terminal positions, and FIG. 5B is a corresponding current distribution diagram.

第22図(a)は内周端子を3個に増加した配置図であ
り、同図(b)は対応する電流分布図である。第22図
(a)のような配置とすることにより、均一な電流分布
が得られることが解る。この状態で切換装!i!55に
より使用する端子を切換え移動させれば均一な回転電流
場が得られる。回転電流場によりセンサヘッド1を動か
すことなく、構造部材の斜めき裂の検出を容易に行なえ
る。
FIG. 22(a) is a layout diagram in which the number of inner peripheral terminals is increased to three, and FIG. 22(b) is a corresponding current distribution diagram. It can be seen that a uniform current distribution can be obtained by using the arrangement as shown in FIG. 22(a). Switching in this condition! i! A uniform rotating current field can be obtained by switching and moving the terminals to be used using 55. A diagonal crack in a structural member can be easily detected without moving the sensor head 1 using the rotating current field.

〔発明の効果〕 特許請求の範囲第1項記載の第1発明によりば、構造部
材の測定領域の形状等に起因する電流分布の不均一を端
子位置制御部によりその不均一を打ち消す方向に変位可
能な給電端子対を移動させて電流分布を前記形状等の影
響を受けることなく均一にすることができるため、表面
欠陥の有無及びその欠陥形状を精度よく検出でき、欠陥
進展状態を高精度で観視することが可能となる。
[Effects of the Invention] According to the first invention described in claim 1, the terminal position control section displaces the non-uniformity of the current distribution due to the shape of the measurement area of the structural member in a direction to cancel the non-uniformity. Since the current distribution can be made uniform by moving the possible power supply terminal pairs without being affected by the shape, etc., the presence or absence of surface defects and the defect shape can be detected with high precision, and the defect progress state can be determined with high precision. It becomes possible to observe.

特許請求の範囲第3項記載の第2発明によれば、複数対
の各給電端子対に供給する電流値を電流制御部により個
々に制御して電流分布を均一化できるので、第1発明と
同様の効果が得られる。
According to the second invention described in claim 3, the current value supplied to each of the plurality of pairs of power supply terminals can be individually controlled by the current control section to make the current distribution uniform, so that the current distribution can be made uniform. A similar effect can be obtained.

特許請求の範囲第4項記載の第3発明によれば、電位差
測定端子対の測定査走領域を電流分布に基づいて定め、
均一分布領域を走査領域とするものであるため、高精度
で表面欠陥の検出をすることができる。
According to the third invention described in claim 4, the measurement scanning area of the potential difference measurement terminal pair is determined based on the current distribution,
Since the scanning area is a uniformly distributed area, surface defects can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の全体構成図、第2図は第1
図のセンサ治具部分の拡大平面図、第3図は上記発明の
他実施例を示す拡大平面図、第4図は第2発明の一実施
例を示す拡大平面図、第5図は表面欠陥検出のフローチ
ャート、第6図(a)(b)は給電端子対の配置!図と
対応する電流分布図、第7図(a)(b)は異なる同配
置図と対応する電流分布図、第8図は給電端子対の数n
と電流分布の関係図、第9図(a)(b)は給電端子対
の配置図と対応する電流分布図、第10図(a)(b)
は端子間距離盆の異なる同配置図と対応する電流分布図
、第11図拍酵=袖幸は給電端子対の端子間距!1gと
電流分布の関係図、第12図(a)(b)は端子間距離
が各々異なる場合の配置図と対応する電流分布図、第1
3図(a)(b)は異なる同配置図と対応する電流分布
図、第14図は端子間距離の異なり程度と電流分布の関
係図、第15図は供給電流が異なる場合の配置図と対応
する電流分布図、第16図(a)(b)は異なる供給電
流の配置図と対応する電流分布図、第17図は供給電流
の異なり程度と電流分布の関係図、第18図は第3発明
の一実施例を示す拡大平面図、第19図は他実施例を示
す拡大平面図、第20図も異なる他実施例を示す拡大平
面図、第21図(a)(b)は端子配置図と対応する電
流分布図、第22図(a)(b)は異なる端子配置図と
対応する電流分布図である。 3・・・給電端子対、4・・・電位差測定端子対、9・
・・電流源、20・・・端子位置制御部、48・・・測
定領域制御部。
FIG. 1 is an overall configuration diagram of the device according to the present invention, and FIG.
FIG. 3 is an enlarged plan view showing another embodiment of the above invention; FIG. 4 is an enlarged plan view showing an embodiment of the second invention; FIG. 5 is an enlarged plan view showing surface defects. The detection flowchart, Figure 6 (a) and (b) shows the arrangement of the power supply terminal pair! Figure 7 (a) and (b) are current distribution diagrams corresponding to the same layout diagram, Figure 8 is the number n of power supply terminal pairs.
Figures 9(a) and (b) are diagrams showing the relationship between current distribution and current distribution, and Figures 9(a) and (b) are layout diagrams of power supply terminal pairs and corresponding current distribution diagrams, and Figures 10(a) and (b).
is the current distribution diagram corresponding to the same arrangement diagram with different terminal distance trays, and Figure 11 is the distance between the terminals of the power supply terminal pair! 1g and current distribution, Figure 12 (a) and (b) are layout diagrams and corresponding current distribution diagrams when the distance between terminals is different, Figure 1
Figures 3 (a) and (b) are current distribution diagrams corresponding to different layout diagrams, Figure 14 is a diagram showing the relationship between the degree of difference in distance between terminals and current distribution, and Figure 15 is a diagram showing the layout when the supply current is different. Corresponding current distribution diagrams, Figures 16(a) and (b) are layout diagrams of different supply currents and corresponding current distribution diagrams, Figure 17 is a diagram of the relationship between the degree of difference in supply current and current distribution, and Figure 18 is a diagram of the relationship between the degree of difference in supply current and current distribution. 3. FIG. 19 is an enlarged plan view showing another embodiment. FIG. 20 is an enlarged plan view showing another embodiment. FIGS. 21(a) and 21(b) are terminals. Current distribution diagrams corresponding to layout diagrams, FIGS. 22(a) and 22(b) are current distribution diagrams corresponding to different terminal layout diagrams. 3...Power supply terminal pair, 4...Potential difference measurement terminal pair, 9...
... Current source, 20... Terminal position control section, 48... Measurement area control section.

Claims (1)

【特許請求の範囲】 1、電流源と、この電流源から部材表面に直流電流を供
給する給電端子対と、この給電端子対の内側の電位差を
測定する電位差測定端子対と、この測定電位差信号に基
づいて表面欠陥を判定する欠陥判定部とからなる表面欠
陥検出装置において、給電端子対を複数対で且つ変位可
能に形成すると共に該給電端子対の内側の電流分布に基
づいて当該給電端子対を変位させて位置決めする端子位
置制御部を設けたことを特徴とする表面欠陥検出装置 2、特許請求の範囲第1項において、多数の端子をマト
リックス状に配設し、給電端子対を選定する前記端子を
変えることにより変位可能とし、他の端子の一部を電位
差測定端子対とする表面欠陥検出装置。 3、電流源と、この電流源から部材表面に直流電流を供
給する給電端子対と、この給電端子対の内側の電位差を
測定する電位差測定端子対と、この測定電位差信号に基
づいて表面欠陥を判定する欠陥判定部とからなる表面欠
陥検出装置において、給電端子対を複数対に形成すると
共に該給電端子対の内側の電流分布に基づいて各給電端
子対に供給する電流を変化させる電流制御部を設けたこ
とを特徴とする表面欠陥検出装置。 4、電流源と、この電流源から部材表面に直流電流を供
給する給電端子対とこの給電端子対の内側の電位差を測
定する電位差測定端子対と、この測定電位差信号に基づ
いて表面欠陥を判定する欠陥判定部とからなる表面欠陥
検出装置において、給電端子対を複数対に形成すると共
に電位差測定端子対を変位可能に形成し、該給電端子対
の内側の電流分布が略均一な領域のみを電位差測定端子
対の測定走査領域と定める測定領域制御部を設けたこと
を特徴とする表面欠陥検出装置。 5、特許請求の範囲第4項において、電位差測定端子対
の一方を固定端子、他方を可動端子とした表面欠陥検出
装置。 6、特許請求の範囲第4項において、電位差測定端子対
をマトリックス状に配置した表面欠陥検出装置。 7、特許請求の範囲第4項、第5項又は第6項において
、給電端子対を二重同心円状に配置し、内外の各端子に
逆極性電流を供給すると共に内外の全端子の内で電流を
供給する端子及び電流値の組合せにより略均一な電流分
布を形成し、電流が供給されている端子の相対配置及び
電流値を保持して全端子上を移動させて回転電流場を形
成する表面欠陥検出装置。
[Claims] 1. A current source, a pair of power supply terminals that supply direct current from the current source to the surface of a member, a pair of potential difference measurement terminals that measure the potential difference inside the pair of power supply terminals, and a signal of the measured potential difference. In a surface defect detection device comprising a defect determining section that determines a surface defect based on A surface defect detection device 2 characterized in that it is provided with a terminal position control section for displacing and positioning a terminal, in claim 1, a large number of terminals are arranged in a matrix, and a pair of power feeding terminals is selected. A surface defect detection device that is movable by changing the terminal, and in which some of the other terminals are used as a pair of potential difference measurement terminals. 3. A current source, a pair of power supply terminals that supply direct current from this current source to the surface of the member, a pair of potential difference measurement terminals that measure the potential difference inside this power supply terminal pair, and a surface defect detection method based on this measured potential difference signal. In a surface defect detection device comprising a defect determination unit that performs a determination, a current control unit that forms a plurality of pairs of power supply terminals and changes the current supplied to each pair of power supply terminals based on the current distribution inside the pair of power supply terminals. A surface defect detection device characterized by being provided with. 4. A current source, a pair of power supply terminals that supply direct current from this current source to the surface of the member, a pair of potential difference measurement terminals that measure the potential difference inside this power supply terminal pair, and determine surface defects based on this measured potential difference signal. In the surface defect detection device, a plurality of pairs of power supply terminals are formed, a pair of potential difference measurement terminals is formed to be movable, and only a region where the current distribution inside the pair of power supply terminals is substantially uniform is detected. A surface defect detection device comprising a measurement area control section that defines a measurement scanning area of a pair of potential difference measurement terminals. 5. A surface defect detection device according to claim 4, in which one of the pair of potential difference measuring terminals is a fixed terminal and the other is a movable terminal. 6. A surface defect detection device according to claim 4, in which pairs of potential difference measuring terminals are arranged in a matrix. 7. In claim 4, 5, or 6, the pair of power supply terminals is arranged in a double concentric circle, and reverse polarity current is supplied to each of the inner and outer terminals, and a current of opposite polarity is supplied to each of the inner and outer terminals. A substantially uniform current distribution is formed by a combination of current supplying terminals and current values, and a rotating current field is formed by moving over all terminals while maintaining the relative arrangement and current value of the terminals to which current is supplied. Surface defect detection device.
JP27816386A 1986-10-20 1986-11-21 Surface defect detector Expired - Lifetime JPH0695084B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP27816386A JPH0695084B2 (en) 1986-11-21 1986-11-21 Surface defect detector
PCT/JP1987/000789 WO1988002857A1 (en) 1986-10-20 1987-10-16 Surface defect inspection method and surface defect inspection apparatus
DE3751702T DE3751702T2 (en) 1986-10-20 1987-10-16 METHOD AND APPARATUS FOR EXAMINING SURFACE DEFECTS
EP87906780A EP0289615B1 (en) 1986-10-20 1987-10-16 Surface defect inspection method and surface defect inspection apparatus
US07/235,683 US4914378A (en) 1986-10-20 1987-10-16 Method and apparatus for inspecting surface defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27816386A JPH0695084B2 (en) 1986-11-21 1986-11-21 Surface defect detector

Publications (2)

Publication Number Publication Date
JPS63132151A true JPS63132151A (en) 1988-06-04
JPH0695084B2 JPH0695084B2 (en) 1994-11-24

Family

ID=17593463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27816386A Expired - Lifetime JPH0695084B2 (en) 1986-10-20 1986-11-21 Surface defect detector

Country Status (1)

Country Link
JP (1) JPH0695084B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478552U (en) * 1990-11-20 1992-07-08
JP2008191169A (en) * 2008-05-12 2008-08-21 Railway Technical Res Inst Crack monitoring material, and crack monitoring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478552U (en) * 1990-11-20 1992-07-08
JP2008191169A (en) * 2008-05-12 2008-08-21 Railway Technical Res Inst Crack monitoring material, and crack monitoring system

Also Published As

Publication number Publication date
JPH0695084B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US4914378A (en) Method and apparatus for inspecting surface defects
JP4672462B2 (en) Apparatus and method for inspecting leakage current characteristics of dielectric film
US4764970A (en) Method and apparatus for detecting cracks
JPH0783884A (en) Flaw examination method, flow examination device and flaw examination sensor
JP2010210510A (en) Insulation inspection apparatus and method
JPS63132151A (en) Surface defect detector
JP3262884B2 (en) Shape evaluation method
JP3802283B2 (en) Inspection result display method, inspection result display device, and recording medium
US6886394B1 (en) Roughness measuring method and apparatus
CN109211082B (en) Detection method and detector for thickness of metal sheet
JPH105871A (en) Shape straightening equipment
JP2598948Y2 (en) Automatic distance sensitivity correction device for multi-channel penetrating electromagnetic induction flaw detection
KR101769951B1 (en) Crack detecting apparatus and crack detecting method
CN109444256A (en) A kind of the channel preset method and detection method of detector
JP3981911B2 (en) Manufacturing process monitoring method
JPH0933244A (en) Shape measuring method
JPH02213923A (en) Inspection back-up device
JPH02205766A (en) Generator inspecting apparatus
JPS63191048A (en) Crack detector
JPH01191069A (en) Surface charge measuring instrument
JPH01227450A (en) Prober for wafer
JPH01227448A (en) Prober for wafer
JPH01227449A (en) Prober for wafer
JPH03131452A (en) Dynamic error of nc machine tool and automatic correcting method for working error
JPH05272961A (en) Method and apparatus for measuring partial circle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term