JPS63131883A - Vane pump - Google Patents

Vane pump

Info

Publication number
JPS63131883A
JPS63131883A JP61276690A JP27669086A JPS63131883A JP S63131883 A JPS63131883 A JP S63131883A JP 61276690 A JP61276690 A JP 61276690A JP 27669086 A JP27669086 A JP 27669086A JP S63131883 A JPS63131883 A JP S63131883A
Authority
JP
Japan
Prior art keywords
vane
rotor
housing
retainer
vanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61276690A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakamaki
酒巻 浩
Yukio Horikoshi
堀越 行雄
Kenji Tanzawa
丹沢 賢次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP61276690A priority Critical patent/JPS63131883A/en
Priority to KR870012427A priority patent/KR880006463A/en
Priority to GB8726171A priority patent/GB2197688B/en
Priority to IT8767959A priority patent/IT1211514B/en
Priority to DE19873738943 priority patent/DE3738943A1/en
Priority to FR8715998A priority patent/FR2607196A1/en
Priority to US07/197,548 priority patent/US4958995A/en
Publication of JPS63131883A publication Critical patent/JPS63131883A/en
Priority to US07/394,773 priority patent/US5033946A/en
Priority to US07/394,779 priority patent/US4998867A/en
Priority to US07/394,785 priority patent/US5032070A/en
Priority to US07/394,774 priority patent/US4997351A/en
Priority to US07/394,780 priority patent/US4997353A/en
Priority to US07/394,778 priority patent/US5030074A/en
Priority to US07/394,771 priority patent/US4955985A/en
Priority to US07/394,777 priority patent/US5011390A/en
Priority to US07/394,772 priority patent/US5002473A/en
Priority to US07/394,776 priority patent/US4998868A/en
Priority to US07/508,743 priority patent/US5022842A/en
Priority to US07/590,568 priority patent/US5044910A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To prevent sliding resistance from being produced by inserting and fitting a retainer or a bearing inside the end wall of a housing so as to form a back pressure adjustment groove relative to a vane groove bottom portion. CONSTITUTION:Retainer plates 15a and 15b are inserted and fitted freely rotatably in annular recesses 14a and 14b formed on the inner surfaces of opposing end walls of housings 1 and 2 via ball bearings 17a and 17b. A back pressure adjustment groove 18 is formed coaxially with a rotary shaft 10 on the inner diameter side of the annular recess 14b on the inner surface of the end wall of the rear housing 2. As a result, lowering in rotary efficiency caused by sliding resistance is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スーパーチャージャやコンプレッサ等に使用
される回転型ポンプのひとつであるベーンポンプに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vane pump, which is one type of rotary pump used in superchargers, compressors, and the like.

〔従来の技術〕[Conventional technology]

従来から、第8図に概略構成を示すようなベーンポンプ
が広く知られている。
Conventionally, a vane pump whose schematic configuration is shown in FIG. 8 has been widely known.

同図において、 (51)はハウジング、(52)は該
ハウジング(5りの内周空間に偏心した状態で内挿され
、回転軸(53)によって回転自在に支持されたロータ
、(55a) (55b) (55c)はロータ(52
)(7)外周側を周方向に3分割するごとく等配凹設さ
れたベーン溝(54a)(54b) (54c)に径方
向突没自在に配設された板状のベーンである0回転軸(
53)によってロータ(52)が図中矢印(X)方向へ
回転すると、ベーン(55a) (55b) (55c
)は遠心力によって外径方向に飛び出し、その先端縁が
ハウジング(51)の内周面に摺接しながら回転する。
In the same figure, (51) is a housing, (52) is a rotor that is eccentrically inserted into the inner circumferential space of the housing (55) and rotatably supported by a rotating shaft (53), (55a) ( 55b) (55c) is the rotor (52
) (7) 0-rotation vanes are plate-shaped vanes installed in vane grooves (54a), (54b), and (54c) recessed at equal intervals so as to divide the outer circumferential side into thirds in the circumferential direction so as to be able to protrude and retract in the radial direction. shaft(
53) rotates the rotor (52) in the direction of the arrow (X) in the figure, the vanes (55a) (55b) (55c
) protrudes in the outer radial direction due to centrifugal force, and rotates while its tip edge slides against the inner circumferential surface of the housing (51).

既述したように。As already mentioned.

ロータ(52)がハウジング(51)に対して偏心して
いるため、この回転に伴ない、ハウジング(51)。
Since the rotor (52) is eccentric with respect to the housing (51), the housing (51) is rotated due to this rotation.

ロータ(52)およびベーy (55a)(55b)(
55c)で区画された作動空間(58a)(58b) 
(58c)の容積が繰返し拡縮変化して、吸入口(57
)から吸い込んだ流体を吐出口(58)から吐出させる
Rotor (52) and bay (55a) (55b) (
Working space (58a) (58b) divided by 55c)
The volume of the suction port (58c) changes repeatedly to expand and contract.
) is discharged from the discharge port (58).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来のベーンポンプは、ベーンがハウジン
グの内周面を高速で摺動するため、ベーン先端縁とハウ
ジング内周面との摺動抵抗による回転効率の低下を避け
ることができず、また、摺動発熱により搬送流体の大幅
な体積効率の低下を避は得ないとともにベーンが膨張し
てハウジングの軸方内円内側面とのかじりを生じること
があり、摩耗も著しいといった問題があった。
However, in the conventional vane pump described above, since the vanes slide at high speed on the inner circumferential surface of the housing, a decrease in rotational efficiency due to sliding resistance between the vane tip edge and the inner circumferential surface of the housing cannot be avoided. The sliding heat generation inevitably leads to a significant drop in the volumetric efficiency of the conveyed fluid, and the vanes may expand, causing galling with the axially inner circular inner surface of the housing, resulting in significant wear.

本発明は、このような問題に鑑み、摺動による抵抗の発
生や発熱を防止して上記回転や体積についての効率を向
上する目的をもってなされたものである。
In view of these problems, the present invention was made with the objective of preventing the generation of resistance and heat generation due to sliding and improving the efficiency with respect to rotation and volume.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明のベーンポンプは、ハ
ウジングの内周空間に偏心した状態で回転自在に軸支さ
れたロータと、該ロータに凹設された複数のベーン溝に
突没自在に配設された板状のベーンとを有し、ロータお
よびベーンの回転に伴なう各ベーン間の作動空間の緑返
し容積変化を利用して流体を一方から吸入し、他方へ吐
出する構造において、前記ハウジングの端壁の内側に前
記内周空間と同軸に、なるリテーナまたはベアリングを
回転自在に嵌挿し、該リテーナまたはベアリングと前記
各ベーンを係合して前記ベーン溝からのベーンの飛び出
しを規制するとともに、各ベーンの背面に位置するベー
ン溝底部に対し背圧調整溝を導く構成とした。
In order to achieve this object, the vane pump of the present invention includes a rotor that is eccentrically and rotatably supported in the inner circumferential space of a housing, and a rotor that is arranged to be able to protrude and sink into a plurality of vane grooves that are recessed in the rotor. A structure in which fluid is sucked in from one side and discharged to the other by utilizing the change in volume of the working space between each vane as the rotor and vanes rotate, A retainer or bearing is rotatably fitted inside the end wall of the housing coaxially with the inner peripheral space, and the retainer or bearing is engaged with each of the vanes to prevent the vanes from protruding from the vane groove. At the same time, the back pressure adjustment groove is guided to the bottom of the vane groove located on the back surface of each vane.

〔作 用〕[For production]

すなわち本発明のベーンポンプは、ベーン溝からのベー
ンの飛び出しをハウジング内周面との当接によって規制
するものではなく、ハウジング内に嵌挿したリテーナま
たはベアリングと各ベーンの保合によってベーンの先端
縁が一定の軌跡を描くよう規制するものであるため、ベ
ーンをハウジングの内面に対して非接触の状態として回
転させることができ、さらに該ベーンの突没動作時にベ
ーンの背面に位置するベーン溝底部の圧力を調整可能と
して突没動作するベーンに過大な負担をかけないように
構成してなる。
In other words, the vane pump of the present invention does not restrict the protrusion of the vane from the vane groove by contact with the inner circumferential surface of the housing, but by engaging each vane with a retainer or bearing inserted into the housing. Since the vane is regulated to draw a constant trajectory, the vane can be rotated without contacting the inner surface of the housing, and furthermore, when the vane moves to protrude and retract, the bottom of the vane groove located on the back side of the vane The pressure of the vane can be adjusted so as not to place an excessive burden on the vane that operates in a protruding and retracting manner.

〔実 施 例〕〔Example〕

以下、本発明に係るベーンポンプの実施例を図面にした
がって説明する。
Embodiments of the vane pump according to the present invention will be described below with reference to the drawings.

第1実施例に係る第1図および第2図において、(1)
はフロントハウジング、(2)はリアハウジングで、と
もに軽量で熱膨張率の小さいアルミニウム等の非鉄金属
で製せられ、ボルト(3)によって互いに一体的に固着
されている。(4)はハウジング内周空間(5)に偏心
した状態で内挿された鉄製のロータで、フロントハウジ
ング(1)の軸孔段部内にあって固定リング(6)によ
って抜は止めされたポールベアリング(7a)およびリ
アハウジング(2)の軸孔段部内にあってベアリングカ
バー(8)によって抜は止めされたポールベアリング(
7b)を介してこれら両ハウジング(1)(2)に貫挿
されプーリ(8)から駆動力が伝達される回転軸(10
)に軸着されている。 (lla)(llb)(llc
)は摺動性に優れたカーボン材を主材とする板状のベー
ンで。
In FIG. 1 and FIG. 2 according to the first embodiment, (1)
(2) is a front housing, and (2) is a rear housing, both of which are made of nonferrous metal such as aluminum that is lightweight and has a small coefficient of thermal expansion, and are integrally fixed to each other by bolts (3). (4) is an iron rotor that is eccentrically inserted into the inner peripheral space (5) of the housing, and a pole that is located inside the step of the shaft hole of the front housing (1) and is prevented from being removed by a fixing ring (6). The bearing (7a) and the pole bearing (located in the stepped part of the shaft hole of the rear housing (2) and prevented from being removed by the bearing cover (8)
A rotary shaft (10
) is attached to the shaft. (lla) (llb) (llc
) is a plate-shaped vane whose main material is carbon material with excellent sliding properties.

ロータ(4)に該ロータ(4)の外周側を周方向3分割
するごとく等配凹設されたベーン溝(12a)(12b
)(12c)にそれぞれ径方向突没(摺動)自在に配設
されている。ロータ(4)の軸方向両側に対応する各ベ
ーン(tta)(ttb)(txc) a>両端部には
それぞれスチール製のピン(+3) (+3)が突設さ
れており、該各ピン(13)には必要に応じて摺動性お
よび耐摩耗性に優れた樹脂材製のスリーブベアリング(
図示せず)が外挿されている。フロントハウジング(1
)およびリアハウジング(2)の互いに対向する端壁の
内側面にそれぞれハウジング内周空間(5)と同軸的(
フロントハウジング(1)の内周面(ビ)と同軸的)に
形成された環状四部(目a)(14b)には、アルミニ
ウム等の非鉄金属よりなり環状軌道(1B)を有するリ
テーナプレート(15a)(15b)がそれぞれポール
ベアリング(17a)(17b)を介して回転自在に嵌
挿されている。各ベーン(lla)(Ilb)(llc
)に突設されたピン(13)(13)は、このリテーナ
プレート(15a)(15b)の環状軌道(1B)(1
B)に周方向摺動自在に係合するもので、該係合により
1回転時におけるベーy (11a011b011c)
の径方向への動きが規制され、その先端縁とフロントハ
ウジング(1)の内周面(lo)との間に僅かなりリア
ランスを介在させた状態を維持するようになっている。
Vane grooves (12a) (12b) are formed in the rotor (4) at equal intervals so as to divide the outer circumferential side of the rotor (4) into three parts in the circumferential direction.
) (12c) so as to be freely protrusive and retractable (slidable) in the radial direction. Each vane (tta) (ttb) (txc) a> corresponds to both sides of the rotor (4) in the axial direction. Steel pins (+3) (+3) are protruded from both ends, and each of the pins ( 13) If necessary, a resin sleeve bearing (
(not shown) are extrapolated. Front housing (1
) and on the inner surfaces of the mutually opposing end walls of the rear housing (2), coaxially with the housing inner circumferential space (5) (
A retainer plate (15a) made of non-ferrous metal such as aluminum and having an annular track (1B) is attached to the four annular parts (eyes a) (14b) formed on the inner peripheral surface (B) of the front housing (1) (coaxially). ) (15b) are rotatably fitted through pole bearings (17a) and (17b), respectively. Each vane (lla) (Ilb) (llc
) The pins (13) (13) protruding from the retainer plates (15a) (15b) are connected to the annular track (1B) (1
B) is slidably engaged in the circumferential direction, and due to this engagement, the bay y during one rotation (11a011b011c)
The radial movement of the front housing (1) is restricted, and a slight clearance is maintained between the leading edge of the front housing (1) and the inner circumferential surface (lo) of the front housing (1).

またリアハウジング(2)の端壁内面において環状凹部
(14b)の内径側には環状を呈する背圧調整溝(18
)が回転軸(lO)に対して同軸的に形成されており、
第2図に示すようにベーン(lla) (llb)(l
lc)の背面(内端側)に位置する各ベーン溝(12a
)(12b)(12c)の底部(12a’)(12b’
)(12c’)を相互に連通している。
Further, on the inner surface of the end wall of the rear housing (2), an annular back pressure adjustment groove (18
) is formed coaxially with respect to the rotation axis (lO),
Vane (lla) (llb) (l
Each vane groove (12a
) (12b) (12c) bottoms (12a') (12b'
) (12c') are interconnected.

つぎに、当該ベーンポンプの作動について説明する。プ
ーリ(9)からの駆動力によって回転軸(lO)および
ロータ(4)が回転すると、ベーン(lla) (ll
b)(llc)も回転し、該ベーン(lla)(llb
)(llc)のそれぞれに突設されたピン(13)(1
3)が環状軌道(1B)(18)に沿って回転する。第
2図に示すように、ハウジング内周面(1゛)と環状軌
道(16)は同軸的関係、環状軌道(till)とロー
タ(4)は偏心的関係にあるため、前記回転に伴なって
、ベーン(lla) (llb)(Ilc)はロータ(
4)ノベーン溝(12a)(12b)、(12c)を径
方向に摺動して繰返し突没し、両ハウジング(1)(2
)、ロータ(4)およびベーン(lla) (llb)
(llc)で区画された作動空間(5a) (5b)(
5c)の容積は繰返し増減する。すなわち、第2図にお
いて作動空間(5a)は回転とともにその容積が拡大し
て該部分に開口する吸入口から流体を吸込み、作動空間
(5C)は回転とともにその容積が縮小して該部分に開
口する吐出口へ流体を吐出し1作動室間(5b)は、吸
い込んだ流体を吐出口へ向けて移送している過程を示し
ている。上記作動において、ベーン(lla)(llb
)(llc) (7)先端縁は既述したように、フロン
トハウジング内周面(1°)と摺接しないため、摩耗や
高熱の発生は起こり得ない、また、各ピン(13)はリ
テーナプレート(15a)(15b)(7)環状軌道(
16)内を遠心力によって外径側へ圧接した状態で摺回
動を行なうが、リテーナプレート(+5a) <15b
)はそれぞれポールベアリング(17a)(+7b)に
よって回転自在な状態にあるため、ピン(13)に追随
して回転し、ピン(13)と環状軌道(16)との相対
的な摺動速度は小さく、よってこれら環状軌道(1B)
 (リテーナプレート(15a)(+5b)) 、ピン
(13)等の摩耗は極小に抑えられる。
Next, the operation of the vane pump will be explained. When the rotating shaft (lO) and rotor (4) rotate due to the driving force from the pulley (9), the vanes (lla) (ll
b) (llc) also rotates and the vane (lla) (llb
) (llc) protruding pins (13) (1
3) rotates along the annular orbit (1B) (18). As shown in Fig. 2, the inner circumferential surface of the housing (1゛) and the annular raceway (16) are in a coaxial relationship, and the annular raceway (till) and the rotor (4) are in an eccentric relationship. Therefore, the vanes (lla) (llb) (Ilc) are rotor (
4) Slide the no-vane grooves (12a), (12b), and (12c) in the radial direction to repeatedly protrude and retract, and both housings (1) and (2)
), rotor (4) and vane (lla) (llb)
Working space (5a) (5b) (
The volume of 5c) is increased and decreased repeatedly. That is, in FIG. 2, the volume of the working space (5a) expands as it rotates and sucks in fluid from the suction port that opens into the portion, and the volume of the working space (5C) decreases as it rotates and opens into the portion. Between one working chamber (5b) shows a process in which the sucked fluid is transferred toward the discharge port. In the above operation, the vanes (lla) (llb
) (llc) (7) As mentioned above, the tip edge does not come into sliding contact with the inner circumferential surface (1°) of the front housing, so wear and high heat cannot occur, and each pin (13) is attached to the retainer. Plate (15a) (15b) (7) Annular orbit (
16) Sliding rotation is performed with the inside pressed against the outside diameter side by centrifugal force, but retainer plate (+5a) <15b
) are rotatable by the pole bearings (17a) (+7b), so they rotate following the pin (13), and the relative sliding speed between the pin (13) and the annular track (16) is small, thus these circular orbits (1B)
(Retainer plate (15a) (+5b)), wear of the pin (13), etc. is suppressed to a minimum.

上記作動に際してベーン溝(12a)(12b)(12
c)の底部(12a’)(12b’)(12c’)に注
目すると、該底部(12a’)(12b’)(12c’
)の容積はロータ(0の回転に伴なうベーン(lla)
(11b011c) (7)突没により繰り返し増減し
、第2図に示すようにベーン(lla)が最も引込むト
ップ位置において最小、ベーンが最も飛び出すボトム位
置において最大となり、この容積の増減によりベーン(
lla)(llb)(llc)に対して背圧として作用
する該底部(12a’)(12b’)(12c’)の内
圧が増減して環状軌道(16)に係合するピン(13)
に多大な負荷をかける事態を生じることが考えられる。
During the above operation, the vane grooves (12a) (12b) (12
If we pay attention to the bottom parts (12a') (12b') (12c') of c), we can see that the bottom parts (12a') (12b') (12c'
) is the volume of the vane (lla) accompanying the rotation of the rotor (0).
(11b011c) (7) It increases and decreases repeatedly by protruding and retracting, and as shown in Fig. 2, it reaches a minimum at the top position where the vane (lla) retracts the most and reaches a maximum at the bottom position where the vane protrudes the most.
pin (13) that engages the annular track (16) by increasing and decreasing the internal pressure of the bottom (12a') (12b') (12c') acting as a back pressure against lla) (llb) (llc);
It is conceivable that a situation may occur that places a large burden on the system.

すなわち第2図において(12b’)のベーン溝底部は
その容積を増大する過程にあり、該底部(12b’)の
内圧は徐々に低くなる。ボトム位置を過ぎた位置にある
(12c’)のベーン溝底部は反対にその容積を減少す
る過程にありその内圧は徐々に高くなる。ロータ(4)
が高速で回転した場合、この内圧増減の繰り返しはベー
y (lla)(llb)(llc)に対する背圧とし
てピン(13)に多大な負担をかけるようになり、最悪
の場合は該ピン(13)の折損に至る。
That is, in FIG. 2, the vane groove bottom (12b') is in the process of increasing its volume, and the internal pressure at the bottom (12b') is gradually lowered. On the other hand, the bottom of the vane groove (12c') located past the bottom position is in the process of decreasing its volume, and its internal pressure gradually increases. Rotor (4)
When the pin (13) rotates at high speed, this repeated increase and decrease of internal pressure will put a large burden on the pin (13) as back pressure against the bay (lla) (llb) (llc), and in the worst case, the pin (13) will ) leading to breakage.

当該ポンプはこの点を考慮し、上記背圧調整溝(18)
を設けてベーン溝底部(12a’)(12b’)(12
c’)の内圧を調整回部としている。第1図および第2
図に示した背圧調整溝([1)は既述したようにリアハ
ウジング(2)の端壁内面に回転軸(io)に対して同
軸的になる環状に形成されており、ベーン溝底部(12
a’ )(12b’)(12c’)を相互に連通してい
る。すなわちこの背圧調整溝(1日)は、各ベーン溝底
部(12a’)(12b’012c’)の容積の増減周
期がずれており3つの底部(12a’)(12b’)(
12c’)の容積の和が常に略等しいことに着目し、増
圧過程にある底部(12c’)から減圧過程にある底部
(12b’)へ圧力の一部を移送して該圧力を常に平均
化させ、各底部(12a’)(12b’)(12c’)
に極端な増減圧を生じさせないように構成してなるもの
である。
Considering this point, the pump has the above-mentioned back pressure adjustment groove (18).
The vane groove bottoms (12a') (12b') (12
The internal pressure of c') is used as an adjustment circuit. Figures 1 and 2
As mentioned above, the back pressure adjustment groove ([1) shown in the figure is formed in the inner surface of the end wall of the rear housing (2) in an annular shape coaxial with the rotation axis (io), and is located at the bottom of the vane groove. (12
a' ) (12b') (12c') are communicated with each other. In other words, in this back pressure adjustment groove (1 day), the volume increase/decrease period of each vane groove bottom (12a') (12b'012c') is shifted, and the three bottoms (12a') (12b') (
Focusing on the fact that the sum of the volumes of 12c') is always approximately equal, a part of the pressure is transferred from the bottom part (12c') which is in the process of increasing pressure to the bottom part (12b') which is in the process of reducing pressure, and the pressure is always averaged. and each bottom (12a') (12b') (12c')
It is constructed so as not to cause an extreme increase or decrease in pressure.

第3図はこの背圧all整転18)をトップ位置からボ
トム位置にかけての減圧過程部分(18a)とボトム位
置からトップ位置にかけての増圧過程部分(18b)に
部分し、前者減圧過程部分(18a)と吸入口連通空間
(18)、後者増圧過程部分(18b)と吐出口連通空
間(20)をそれぞれ配管(21)(22)で接続した
ものを示しており、ベーン(lla)(llb)(ll
c)の内外(各ベーン溝底部と作動空間)を連通し該内
外の圧力を略平均化させるように構成してなる。
In Figure 3, this back pressure all adjustment 18) is divided into a pressure reduction process part (18a) from the top position to the bottom position and a pressure increase process part (18b) from the bottom position to the top position, and the former pressure reduction process part ( 18a) and the suction port communication space (18), and the latter pressure increase process part (18b) and the discharge port communication space (20) are shown connected by piping (21) and (22), respectively, and the vane (lla) ( llb)(ll
c) is configured to communicate between the inside and outside (the bottom of each vane groove and the operating space) so that the pressures inside and outside are approximately averaged.

また第4図は環状の背圧調整溝(18)と吸入口連通空
間(18)を配管(21)を介して接続し、さらに第5
図はこの背圧調整溝(18)と吐出口連通空間(20)
を配!(22)を介して接続したものを示し、それぞれ
べ−7(lla)(llb)(llc)の内外を大まか
に均圧化してベーンにかかる負担を軽減している。
In addition, FIG. 4 shows that the annular back pressure adjustment groove (18) and the suction port communication space (18) are connected via the pipe (21), and the fifth
The figure shows this back pressure adjustment groove (18) and the discharge port communication space (20)
Arranged! The pressure on the inside and outside of the vanes (lla, llb, and llc) is roughly equalized to reduce the load on the vanes.

つぎに本発明の第2実施例を上記第1実施例と相違する
部分についてのみ説明すると、第6図に示すように当該
ポンプは第1実施例における環状軌道(16)を有する
リテーナプレート(15a)(15b)に代えて単純な
矩形断面になるリテーナリング(23a)(23b)を
環状四部(14a)(14b)に嵌挿し、該リテーナリ
ング(23a) (23b)の製作にかかる手数やコス
トの削減を図っている。ベーン(lla) (llb)
(llc)の側面に突設したビン(13)はこのリテー
ナリング(23a)(23b)の内周面に係合し、ベー
ン溝(12a)(12b)(12c)からの飛び出し量
を規制されてハウジング(りの内周面(lo)に対して
非接触に保たれる。この構成によると各ベーン(lla
)(llb)(lie)がベーン溝(12a)(12b
)(12c)内に引込む方向にフリーとなって当該ポン
プの停止時や低速回転時にべ−7(Ila)(llb)
(llc)が勝手に引込んでしまい、この動きによって
衝撃荷重を受けて早期に破損するおそれがあるため、ベ
ーン(lla)(llb)(lie) (7)内径側に
ストッパとしてボス(24a)(24b)を突設して各
ベーン(lla)(llb)(llc)の勝手な動きを
規制している。環状を呈するこのボス(24a)(24
b)はハウジング(1)の内周空間(5)と同軸的に設
定され、フロントハウジング(1)およびリアハウジン
グ(2)の端壁に一体成形されており、リアハウジング
(2)側のボス(24b)の端面に上記各図に示した構
成になる背圧調整溝(18)(18a)(18b)が形
成されている。前記リテーナリング(23a) (23
b)はこれをポールベアリングに代えることができる。
Next, the second embodiment of the present invention will be explained only with respect to the parts that are different from the first embodiment. As shown in FIG. 6, the pump has a retainer plate (15a ) (15b), retainer rings (23a) (23b) having a simple rectangular cross section are inserted into the four annular parts (14a) (14b), and the labor and cost required to manufacture the retainer rings (23a) (23b) are reduced. We are trying to reduce the number of Vane (lla) (llb)
The pin (13) protruding from the side surface of the retainer ring (llc) engages with the inner circumferential surface of the retainer ring (23a) (23b) to restrict the amount of protrusion from the vane groove (12a) (12b) (12c). With this configuration, each vane (lla
) (llb) (lie) are vane grooves (12a) (12b
) (12c) becomes free in the direction of retraction, and when the pump is stopped or rotates at low speed, base 7 (Ila) (llb)
(llc) may retract on its own and this movement may receive an impact load and cause early damage. 24b) is provided to protrude to restrict arbitrary movement of each vane (lla) (llb) (llc). This boss (24a) (24
b) is set coaxially with the inner peripheral space (5) of the housing (1), is integrally molded on the end walls of the front housing (1) and the rear housing (2), and is attached to the boss on the rear housing (2) side. Back pressure adjustment grooves (18), (18a), and (18b) having the configuration shown in each of the above figures are formed on the end face of (24b). The retainer ring (23a) (23
In b), this can be replaced with a pole bearing.

第7図は本発明の第3実施例を示しており、リテーナプ
レート(15a)(15b)の外周端部に軸線と平行な
方向に突出するストッパ(25a)(25b)を形成し
、べ−7(lla)(llb)(llc)の飛び出しを
規制している。 (2B)と(27)はロータ(4)と
りテーナプレー) (15a)(15b)をその対向端
面間で回動連結するカムで、ロータ(4)の片面に等配
状に3個ずつ設けられている。ロータ(0の端面に等配
状に形成した凹部(32)(33)に嵌挿されるこのカ
ム(2B)(27)は1円形の回転盤の一面(内側面)
の中心に該ロータ(0に係合する第1のビン(28)(
29)を突設し、ポールベアリング(34)(35)を
介して該ロータ(4)に対して回転自在(自転)に軸着
されるとともに、前記回転盤の他面(外側面)の周縁近
傍にリテーナプレー) (15a)(15b)に係合す
る第2のビン(30) (31)を突設し、該第2のビ
ン(30)(31)をリテーナプレート(15a)(1
5b)に形成した四部(36)(37)にポールベアリ
ング(38)(39)を介して回転自在に係合してなる
。第1のビン(28)(29)と第2のビン(30)(
31)はロータ(4)の偏心量だけ互いに偏心した同径
の円周上にあり、リテーナプレート(15a)(15b
)はこのカム(28)(27)によッテロータ(4)と
同期回転する。当該ポンプもストッパ(25a)(25
b)の働きによりベーン(lla)(:1b)(llc
)の飛び出しを規制してベーン(lla)(1’1b)
(Ilc)とハウジング(りを非接触に保つように構成
してなりさらにカム(2B)(27)をつかってロータ
(4)とリテーナプレート(15a) (15b)を同
期回転させるものであるため回転に伴なうトルクの損失
を抑えて摩耗や発熱等の不具合を抑えることができる。
FIG. 7 shows a third embodiment of the present invention, in which stoppers (25a) (25b) protruding in the direction parallel to the axis are formed at the outer peripheral ends of the retainer plates (15a) (15b). 7 (lla) (llb) (llc) is regulated from popping out. (2B) and (27) are cams that rotatably connect the rotor (4) and the retainer plate (15a) and (15b) between their opposing end faces, and three cams are provided at equal intervals on one side of the rotor (4). ing. These cams (2B) (27), which are fitted into the recesses (32) and (33) equally spaced on the end surface of the rotor (0), are one surface (inner surface) of the circular rotary disk.
At the center of the rotor (0) there is a first pin (28) (
29) protrudes from the rotor (4) via pole bearings (34) and (35), and is rotatably (rotation) attached to the rotor (4), and is attached to the periphery of the other surface (outer surface) of the rotary disk. Second pins (30) (31) that engage with the retainer plates (15a) (15b) are protrudingly provided in the vicinity, and the second pins (30) (31) are connected to the retainer plates (15a) (15a) (15b).
It is rotatably engaged with the four parts (36) and (37) formed in 5b) via pole bearings (38 and 39). The first bin (28) (29) and the second bin (30) (
31) are on the circumference of the same diameter which are eccentric to each other by the amount of eccentricity of the rotor (4), and the retainer plates (15a) and (15b
) is rotated in synchronization with the rotor (4) by the cams (28) and (27). The pump also has stoppers (25a) (25
b) Vane (lla) (:1b) (llc
) to prevent the protrusion of the vane (lla) (1'1b)
The rotor (4) and the retainer plate (15a) (15b) are rotated synchronously using the cams (2B) and (27). Torque loss associated with rotation can be suppressed, and problems such as wear and heat generation can be suppressed.

なお当該ポンプについてはカム(2B)(27)を取り
去って構造を簡略化することができ、さらに上記第2実
施例に述べたボスを付加してベーン(lla)(llb
)(llc)の動きを規制する手段を用いることができ
る。
The structure of the pump can be simplified by removing the cams (2B) and (27), and the boss described in the second embodiment can be added to form the vanes (lla) and (llb).
) (llc) may be used.

上記ベーン(lla)(Ilb)(llc) ノ飛び出
し量を規制する手段としては、そのほか上記カム(2B
) (27)をつかって各ベーン(lla)(llb)
(llc)とリテーナプレート(15a)(15b)を
係合連結することが考えられる。
In addition to the means for regulating the protrusion amount of the vanes (lla) (Ilb) (llc), the cam (2B
) (27) to calculate each vane (lla) (llb)
(llc) and the retainer plates (15a) (15b) may be engaged and connected.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明のベーンポンプは、ハウジ
ングの内周空間に偏心した状態で回転自在に軸支された
ロータと、該ロータに凹設された複数のベーン溝に突没
自在に配設された板状のベーンとを有し、ロータおよび
ベーンの回転に伴なう各ベーン間の作動空間の繰返し容
積変化を利用して流体を一方から吸入し、他方へ吐出す
る構造において、前記ハウジングの端壁の内側に前記内
周空間と同軸になるリテーナまたはベアリングを回転自
在に嵌挿し、該リテーナまたはベアリングと前記各ベー
ンを係合して前記ベーン溝からのベーンの飛び出しを規
制し、ハウジング内周面に対してベーンが非接触状態で
回転するように構成してなることから該部摺動抵抗によ
る回転効率の低下やベーンの摩耗を防止し、かつ摺動発
熱の増大による体積効率の低下等の不具合の発生を防止
することができる。またベーン溝底部に対して背圧調整
溝を形成して該溝底部の背圧を調整可能としたため、ベ
ーンに過大な負荷をかけることなくこれをスムーズに動
作させることができ、ポンプ全体としてスムーズな作動
を確保するものである。
As explained above, the vane pump of the present invention includes a rotor eccentrically and rotatably supported in the inner peripheral space of a housing, and a plurality of vane grooves recessed in the rotor. The housing has a structure in which fluid is sucked from one side and discharged to the other by utilizing repeated volume changes of the working space between the vanes as the rotor and the vanes rotate. A retainer or a bearing that is coaxial with the inner peripheral space is rotatably fitted inside the end wall, and the retainer or bearing engages each of the vanes to restrict the vanes from protruding from the vane groove. Since the vanes are configured to rotate without contacting the circumferential surface, a decrease in rotational efficiency due to sliding resistance and wear of the vanes is prevented, and a decrease in volumetric efficiency due to increased heat generation due to sliding is prevented. It is possible to prevent such problems from occurring. In addition, a back pressure adjustment groove is formed at the bottom of the vane groove to make it possible to adjust the back pressure at the bottom of the groove, allowing the vane to operate smoothly without putting an excessive load on it, making the pump as a whole smoother. This ensures proper operation.

【図面の簡単な説明】 第1図は本発明の第1実施例に係るベーンポンプの断面
図、第2図は同作動説明図、第3図ないし第5図はそれ
ぞれ背圧調整溝の異なる態様を示す説明図、第6図は本
発明の第2実施例に係るベーンポンプの断面図、第7図
は本発明の第3実施例に係るベーンポンプの断面図、第
8図は従来のベーンポンプの概略構成を示す説明図であ
る。 (1)フロントハウジング  (2)リアハウジング(
4)ロータ  (5)内周空間 (lO)回転軸  (lla)(11b011c)ベー
ン(12a)(12b)(12c)ベーン溝(12a’
)(12b’)(12c’)ベーン溝底部  (13)
ビン(15a)(15b)リテーナプレート(16)環
状軌道  (18)背圧調整溝(18a)減圧過程部分
  (18b)増圧過程部分(18)吸入口連通空間 
 (20)吐出口連通空間(21)(22)配管  (
23a) (23b)リテーナリング(25a)(25
b)ストッパ 第1図 1−−707トハウジング   12a、12b、12
cmベーン溝2−一すアへウジング      12i
、12g、12rニー−ベーン溝底部4−一ロータ  
          15a 15b−−リテーナプレ
ート5−一内周空間              18
−一背圧調整溝11a、1 lb、11cm−ベーン 第2図 第3図 第4図 第5図 13   1”:1l)IJ 第6図 第7図
[Brief Description of the Drawings] Fig. 1 is a sectional view of a vane pump according to a first embodiment of the present invention, Fig. 2 is an explanatory view of the same operation, and Figs. 3 to 5 respectively show different aspects of the back pressure adjustment groove. FIG. 6 is a cross-sectional view of a vane pump according to a second embodiment of the present invention, FIG. 7 is a cross-sectional view of a vane pump according to a third embodiment of the present invention, and FIG. 8 is a schematic diagram of a conventional vane pump. FIG. 2 is an explanatory diagram showing the configuration. (1) Front housing (2) Rear housing (
4) Rotor (5) Inner space (lO) Rotating axis (lla) (11b011c) Vane (12a) (12b) (12c) Vane groove (12a'
) (12b') (12c') Vane groove bottom (13)
Bottle (15a) (15b) Retainer plate (16) Annular orbit (18) Back pressure adjustment groove (18a) Pressure reduction process part (18b) Pressure increase process part (18) Suction port communication space
(20) Discharge port communication space (21) (22) Piping (
23a) (23b) Retainer ring (25a) (25
b) Stopper Fig. 1--707 Housing 12a, 12b, 12
cm vane groove 2-one housing 12i
, 12g, 12r knee-vane groove bottom 4-1 rotor
15a 15b--retainer plate 5--inner peripheral space 18
-1 Back pressure adjustment groove 11a, 1 lb, 11cm-Vane Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 13 1": 1l) IJ Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] ハウジングの内周空間に偏心した状態で回転自在に軸支
されたロータと、該ロータに凹設された複数のベーン溝
に突没自在に配設された板状のベーンとを有し、ロータ
およびベーンの回転に伴なう各ベーン間の作動空間の繰
返し容積変化を利用して流体を一方から吸入し、他方へ
吐出する構造において、前記ハウジングの端壁の内側に
前記内周空間と同軸になるリテーナまたはベアリングを
回転自在に嵌挿し、該リテーナまたはベアリングと前記
各ベーンを係合して前記ベーン溝からのベーンの飛び出
しを規制するとともに、各ベーンの背面に位置するベー
ン溝底部に対し背圧調整溝を導いてなることを特徴とす
るベーンポンプ。
The rotor has a rotor eccentrically and rotatably supported in the inner circumferential space of the housing, and plate-shaped vanes that are disposed so as to be protrusive and retractable into a plurality of vane grooves recessed in the rotor. and a structure in which fluid is sucked in from one side and discharged to the other by utilizing repeated volume changes of the working space between each vane as the vanes rotate, and the fluid is disposed coaxially with the inner circumferential space inside the end wall of the housing. A retainer or bearing is rotatably inserted into the retainer or bearing, and the retainer or bearing is engaged with each of the vanes to prevent the vanes from protruding from the vane groove, and the bottom of the vane groove located on the back side of each vane is A vane pump characterized by a guiding back pressure adjustment groove.
JP61276690A 1986-07-22 1986-11-21 Vane pump Pending JPS63131883A (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP61276690A JPS63131883A (en) 1986-11-21 1986-11-21 Vane pump
KR870012427A KR880006463A (en) 1986-11-21 1987-11-05 Vane Pump
GB8726171A GB2197688B (en) 1986-11-21 1987-11-09 Pumps
IT8767959A IT1211514B (en) 1986-11-21 1987-11-12 VANE PUMP
DE19873738943 DE3738943A1 (en) 1986-11-21 1987-11-17 WING CELL PUMP
FR8715998A FR2607196A1 (en) 1986-11-21 1987-11-19 VANE PUMP
US07/197,548 US4958995A (en) 1986-07-22 1988-05-23 Vane pump with annular recesses to control vane extension
US07/394,776 US4998868A (en) 1986-07-22 1989-08-16 Vane pump with sliding members on axial vane projections
US07/394,779 US4998867A (en) 1986-07-22 1989-08-16 Rotary machine having axial projections on vanes closer to outer edge
US07/394,773 US5033946A (en) 1986-07-22 1989-08-16 Rotary vane machine with back pressure regulation on vanes
US07/394,785 US5032070A (en) 1986-07-22 1989-08-16 Rotary machine having axially biased ring for limiting radial vane movement
US07/394,774 US4997351A (en) 1986-07-22 1989-08-16 Rotary machine having vanes with embedded reinforcement
US07/394,780 US4997353A (en) 1986-07-22 1989-08-16 Vane pump with dynamic pressure bearing grooves on vane guide ring
US07/394,778 US5030074A (en) 1986-07-22 1989-08-16 Rotary machine with dynamic pressure bearing grooves on vane guide ring
US07/394,771 US4955985A (en) 1986-07-22 1989-08-16 Vane pump with annular ring for engaging vanes and drive means in which the rotor drives the annular ring
US07/394,777 US5011390A (en) 1986-07-22 1989-08-16 Rotary vane machine having stopper engaging recess in vane means
US07/394,772 US5002473A (en) 1986-07-22 1989-08-16 Vane pump with annular ring and cylindrical slide as vane guide
US07/508,743 US5022842A (en) 1986-07-22 1990-04-12 Vane pump with rotatable annular ring means to control vane extension
US07/590,568 US5044910A (en) 1986-07-22 1990-09-28 Vane pump with rotatable drive means for vanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276690A JPS63131883A (en) 1986-11-21 1986-11-21 Vane pump

Publications (1)

Publication Number Publication Date
JPS63131883A true JPS63131883A (en) 1988-06-03

Family

ID=17572966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276690A Pending JPS63131883A (en) 1986-07-22 1986-11-21 Vane pump

Country Status (6)

Country Link
JP (1) JPS63131883A (en)
KR (1) KR880006463A (en)
DE (1) DE3738943A1 (en)
FR (1) FR2607196A1 (en)
GB (1) GB2197688B (en)
IT (1) IT1211514B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010108556A (en) * 2000-05-29 2001-12-08 박상록 Discharge pressure conpensation form feed pump of diesel injection device
JP2011169199A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Vane rotary type fluid device and compressor
WO2014024517A1 (en) * 2012-08-06 2014-02-13 三菱電機株式会社 Vane compressor
US9382907B2 (en) 2012-01-11 2016-07-05 Mitsubishi Electric Corporation Vane-type compressor having an oil supply channel between the oil resevoir and vane angle adjuster
US9388807B2 (en) 2012-01-11 2016-07-12 Mitsubishi Electric Corporation Vane compressor having a second discharge port that includes an opening portion to a compression space
US9399993B2 (en) 2012-01-11 2016-07-26 Mitsubishi Electric Corporation Vane compressor having a vane supporter that suppresses leakage of refrigerant
US9458849B2 (en) 2012-01-11 2016-10-04 Mitsubishi Electric Corporation Vane compressor that suppresses the wear at the tip of the vane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373056C (en) * 2004-12-09 2008-03-05 李东林 Variable sliding-vane central rotation compressor
CN102345604A (en) * 2011-07-30 2012-02-08 浙江鸿友压缩机制造有限公司 Vane type translational rotor compressor
CN103062053B (en) * 2012-06-07 2016-11-23 罗智中 Friction speed rotary vane type compressor
CN108501915B (en) * 2018-04-25 2021-02-02 罗德凯 Blade type brake system
DE102018112523A1 (en) * 2018-05-24 2019-11-28 Airbus Operations Gmbh Reservoir for a hydraulic system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867988A (en) * 1981-10-16 1983-04-22 Amadera Kuatsu Kogyo Kk Rotary vane compressor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE286795C (en) *
GB255036A (en) * 1925-07-07 1927-09-15 Wilhelm Waldemar Johannes Hein Improvements in or relating to rotary pumps
GB280253A (en) * 1926-05-17 1927-11-17 William Reavell Improvements in rotary compressors, exhausters and engines
GB284362A (en) * 1926-08-25 1928-01-25 Arnold Goodwin Improvements in or relating to apparatus suitable for use as a rotary air compressor or as a vacuum pump or exhauster
DE690863C (en) * 1937-08-25 1940-05-09 Wm Reising Fa Rotary piston machine with eccentric rotor running around the housing
GB510621A (en) * 1938-02-22 1939-08-04 Arthur William Maseyk Improvements in high speed rotary pumps
US2362420A (en) * 1941-02-06 1944-11-07 Hydraulic Dev Corp Inc Vane pump
GB630260A (en) * 1945-11-12 1949-10-10 Jean Joseph Nicolas Improvements in and relating to hydraulic rotary blade apparatus adapted to operate as pump or as a motor
GB606413A (en) * 1946-04-18 1948-08-12 Sidney Zaleski Hall Improvements in rotary pumps of the fixed abutment type
US2714858A (en) * 1950-11-03 1955-08-09 Kepka Frank Rotary compressors or pumps, in combination with hydraulic controls, and mechanical controls in co-ordination therewith
DE1728268A1 (en) * 1968-09-19 1972-03-30 Bosch Gmbh Robert Vane pump or motor
GB1295473A (en) * 1969-02-26 1972-11-08
FR2121920A5 (en) * 1971-01-12 1972-08-25 Moteur Moderne Le
BE777628A (en) * 1971-01-14 1972-06-30 Marcel Jean P PRESSURE FLUID PUMPS, COMPRESSORS AND MOTORS
US3988083A (en) * 1971-08-28 1976-10-26 Daihatsu Kogyo Company Limited Non-contact vane pump
US4021162A (en) * 1975-04-22 1977-05-03 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Vane-type rotary machines
KR920007283B1 (en) * 1986-07-22 1992-08-29 Eagle Ind Co Ltd E pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867988A (en) * 1981-10-16 1983-04-22 Amadera Kuatsu Kogyo Kk Rotary vane compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010108556A (en) * 2000-05-29 2001-12-08 박상록 Discharge pressure conpensation form feed pump of diesel injection device
JP2011169199A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Vane rotary type fluid device and compressor
CZ306330B6 (en) * 2010-02-17 2016-12-07 Mitsubishi Electric Corporation Fluid device with rotary vane and compressor
US9382907B2 (en) 2012-01-11 2016-07-05 Mitsubishi Electric Corporation Vane-type compressor having an oil supply channel between the oil resevoir and vane angle adjuster
US9388807B2 (en) 2012-01-11 2016-07-12 Mitsubishi Electric Corporation Vane compressor having a second discharge port that includes an opening portion to a compression space
US9399993B2 (en) 2012-01-11 2016-07-26 Mitsubishi Electric Corporation Vane compressor having a vane supporter that suppresses leakage of refrigerant
US9458849B2 (en) 2012-01-11 2016-10-04 Mitsubishi Electric Corporation Vane compressor that suppresses the wear at the tip of the vane
WO2014024517A1 (en) * 2012-08-06 2014-02-13 三菱電機株式会社 Vane compressor
JPWO2014024517A1 (en) * 2012-08-06 2016-07-25 三菱電機株式会社 Vane type compressor

Also Published As

Publication number Publication date
IT1211514B (en) 1989-11-03
KR880006463A (en) 1988-07-23
FR2607196A1 (en) 1988-05-27
DE3738943A1 (en) 1988-06-23
GB8726171D0 (en) 1987-12-16
IT8767959A0 (en) 1987-11-12
GB2197688B (en) 1990-12-05
GB2197688A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
US5044910A (en) Vane pump with rotatable drive means for vanes
US4451215A (en) Rotary piston apparatus
US4917584A (en) Vane pump with annular aetainer limiting outward radial vane movement
JPS63131883A (en) Vane pump
JP2823650B2 (en) Rotary scroll supercharger for compressible media
JPH0244075Y2 (en)
US5540572A (en) Structure for preventing axial leakage in scroll compressor
US3711227A (en) Vane-type fluid pump
GB2193762A (en) Sliding vane pump
JPH02168016A (en) Bearing device and scroll compressor
US3762843A (en) Van type rotary hydraulic transducer
CN208918841U (en) Oil supply mechanism for rotary machine and rotary machine
US20230175504A1 (en) High pressure variable vane pump with vane pins
EP3828415A1 (en) Internal gear pump
GB2192939A (en) Sliding vane pump
JPS63131882A (en) Vane pump
JPS63124885A (en) Vane pump
JPH0768949B2 (en) Vane pump
GB2197389A (en) Rotary vane pumps
US4561835A (en) Floating rotary sleeve of a rotary compressor
JP2582863Y2 (en) Vane pump
US20170218759A1 (en) Oil pump
JPH0318716Y2 (en)
GB2197388A (en) Rotary vane pumps
EP0234134A1 (en) Rotary fluid switching device