JPS63131562A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS63131562A
JPS63131562A JP61278191A JP27819186A JPS63131562A JP S63131562 A JPS63131562 A JP S63131562A JP 61278191 A JP61278191 A JP 61278191A JP 27819186 A JP27819186 A JP 27819186A JP S63131562 A JPS63131562 A JP S63131562A
Authority
JP
Japan
Prior art keywords
region
type
integrated circuit
circuit device
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61278191A
Other languages
Japanese (ja)
Other versions
JP2600151B2 (en
Inventor
Tomoyuki Furuhata
智之 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61278191A priority Critical patent/JP2600151B2/en
Publication of JPS63131562A publication Critical patent/JPS63131562A/en
Application granted granted Critical
Publication of JP2600151B2 publication Critical patent/JP2600151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Abstract

PURPOSE:To narrow an element isolation width, to reduce the occupying area of an element and to increase density by forming an element isolation region in structure in which the element isolation region consists of a buried layer, a channel-stopper region and a selective insulating film. CONSTITUTION:An isolation region Qbp between a bipolar transistor Qb and a p channel type MOS field-effect transistor Qp is organized of a p<+> type buried layer 12, a p<+> type channel stopper region 15 formed onto the p<+> type buried layer 12 and a field oxide film 16. The structure is also applied to an isolation region Qnp between an n channel type field-effect transistor Qn and the p channel type field-effect transistor Qp and an isolation region between bipolar transistors. Accordingly, an element isolation region can be shaped apart from a p well 14 forming process, and the lateral diffusion length of a well need not be considered, thus narrowing element isolation width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に係り、より詳しくはバイ
ポーラ素子と0MO8素子との複合素子(B1−0MO
8)からなる半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and more specifically to a composite device of a bipolar element and a 0MO8 element (B1-0MO8 element).
8) A semiconductor integrated circuit device comprising:

〔従来の技術〕[Conventional technology]

バイポーラ素子と0MO8素子とが単一基板上に混在し
て形成される、いわゆるBi−CMO8半導体集積回路
装置においては、素子間の分離、例えばバイポーラ素子
領域とPMO8素子領域、あるいはバイポーラ素子領域
とバイポーラ素子領域の素子分離が重要である。
In a so-called Bi-CMO8 semiconductor integrated circuit device in which bipolar elements and 0MO8 elements are mixedly formed on a single substrate, there is separation between the elements, for example, a bipolar element region and a PMO8 element region, or a bipolar element region and a bipolar element region. Element isolation in the element region is important.

以下、従来のB1−0MO8半導体集積回路装置の一実
施例につき、図面を参照して説明する。
Hereinafter, one embodiment of a conventional B1-0MO8 semiconductor integrated circuit device will be described with reference to the drawings.

第2図は、P型基板上に形成されたn型エピタキシャル
層Vこ、バイポーラ素子と0MO8素子とを具備する従
来のBi−CMOS半導体集積回路装置の断面図を示す
FIG. 2 shows a cross-sectional view of a conventional Bi-CMOS semiconductor integrated circuit device comprising an n-type epitaxial layer V formed on a P-type substrate, a bipolar element, and an OMO8 element.

バイポーラトランジスタ領域とPチャンネルMO8電界
効果トランジスタ領域、及びバイポーラトランジスタ領
域とバイポーラトランジスタ領域の分離は、P型基板1
0上に形成されたP 型埋め込み層12と、n型エピタ
キシャル層13内に形成され、底部が前記P 型埋め込
み層12に接触するP型ウェル14と、仙紀n型エピタ
キシマル層13表面に選択的に形成されたフィールド酸
化膜16とから構成されている。な訃、図中、11はN
 型埋め込み層、18はペース領域、17はコレクタ領
域、19はエミッタ領域、20はゲート電極、21はゲ
ート酸化膜、22及び23はnチャンネルMQS電界効
果トランジスタのソース領域及びドレイン領域、24及
び25はPチャンネルMO8iIZ界効果トランジスタ
のソース領域及びドレイン領域、26は酸化膜である。
The bipolar transistor region and the P-channel MO8 field effect transistor region and the separation between the bipolar transistor region and the bipolar transistor region are separated by a P-type substrate 1.
0, a P-type well 14 formed in the n-type epitaxial layer 13 and whose bottom is in contact with the P-type buried layer 12, and a P-type well 14 formed on the surface of the Senki n-type epitaxial layer 13. It is composed of a selectively formed field oxide film 16. In the diagram, 11 is N
Type buried layer, 18 is a space region, 17 is a collector region, 19 is an emitter region, 20 is a gate electrode, 21 is a gate oxide film, 22 and 23 are source and drain regions of an n-channel MQS field effect transistor, 24 and 25 are a source region and a drain region of a P-channel MO8iIZ field effect transistor, and 26 is an oxide film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述の従来のBi−CMO8半導体集積
回路装置の構成によれば、素子間分離領域にP型ウェル
14を用いる必要がある。
However, according to the configuration of the conventional Bi-CMO8 semiconductor integrated circuit device described above, it is necessary to use the P-type well 14 in the element isolation region.

ところが、前記p4タエル14を形成する際には、%温
長時間熱処理による引伸し拡散工程が必要であるために
、この工程におけるウェルの横方向拡散長を考慮すると
、素子分i@を狭くすることが困難であり、素子の高集
積化の障害となるという欠点がある。
However, when forming the p4 taper 14, an elongation diffusion process using a long-term heat treatment at % temperature is required, and therefore, considering the lateral diffusion length of the well in this process, it is necessary to narrow the element portion i@. This has the drawback that it is difficult to implement and becomes an obstacle to high integration of devices.

そこで、本発明はこのような問題点を解決するもので、
その目的とするところは、Bi−CMO8半導体集積回
路装置の機能を妨げることなく、素子分離特性に優れ、
かつ素子の占有面積を減少して素子の集積波を著しく向
上させた半導体集積回路装置を提供するところにある。
Therefore, the present invention aims to solve these problems.
The purpose is to achieve excellent element isolation characteristics without interfering with the functionality of the Bi-CMO8 semiconductor integrated circuit device.
Another object of the present invention is to provide a semiconductor integrated circuit device in which the area occupied by the elements is reduced and the integrated wave of the elements is significantly improved.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の半導体集積回路装置は、単一基板上にバイポー
ラ素子と0MO8素子とを具備する半導体乗積回路装置
において、素子間分離領域が、第14電型の基板内に形
成された第14を型の第1半導体領域と、前記基板表面
に形成された第2導電型の半導体層内に形成され底部が
前記第1半導体領域に接触する第1導電型の第2半導体
領域と、前記手導体層衆面の前記第2半導体領域上に選
択的に形成された絶縁襖とからなることを特徴とする。
The semiconductor integrated circuit device of the present invention is a semiconductor multiplication circuit device comprising a bipolar element and an 0MO8 element on a single substrate, in which the inter-element isolation region has a fourteenth electrode formed in a substrate of a fourteenth electric type. a first semiconductor region of the mold, a second semiconductor region of the first conductivity type formed in a semiconductor layer of the second conductivity type formed on the surface of the substrate and whose bottom portion contacts the first semiconductor region, and the hand conductor. and an insulating sliding door selectively formed on the second semiconductor region in the general plane.

この場合、前記第2半導体領域が、0MO8素子が形成
される第1導電型のウェルの周囲に形成されるl1ii
t型のチャンネル・ストッパ領域と同一の工程により形
成された半導体領域であることが好ましい。
In this case, the second semiconductor region is formed around the first conductivity type well in which the 0MO8 element is formed.
Preferably, the semiconductor region is formed by the same process as the T-type channel stopper region.

〔実施例〕〔Example〕

以下、本発明の代表的な実施例を図thiを参照して説
明する。
Hereinafter, a typical embodiment of the present invention will be described with reference to FIG.

なお、1面において同一あるいは相当する部分は同一符
号で示す。
Note that the same or corresponding parts on one side are indicated by the same reference numerals.

第1図は本発明による半導体集積回路装置の−実適例の
断面図をボす。
FIG. 1 shows a sectional view of a practical example of a semiconductor integrated circuit device according to the present invention.

第1図に示す半導体集積回路装置は、バイポーラトラン
ジスタQbとnチャネル型MQ811L界効果トランジ
スタQnとPチャネル型MO811界効果トランジスタ
Qpとが同一のP型基板10上に混在して形成されてい
る。
The semiconductor integrated circuit device shown in FIG. 1 has a bipolar transistor Qb, an n-channel type MQ811L field effect transistor Qn, and a P-channel type MO811 field effect transistor Qp mixedly formed on the same P-type substrate 10.

第1図において、バイポーラトランジスタQbはnun
型であってn型エピタキシャル層13に形成されている
。n型エピタキシャル層13はコレクタ領域をなし、そ
の下にはn 型埋め込み層11が形成されている。この
n型エピタキシャル層13にP型ベース領域18が形成
され、さらにこのベース領域18にn 型エミッタ領域
19が形成されている。また、このn型エピタキシャル
層13の別の部分には、n 埋め込み7−に達するn 
型コレクタ拡散層17が拡散されている。
In FIG. 1, bipolar transistor Qb is nun
type, and is formed in the n-type epitaxial layer 13. The n-type epitaxial layer 13 forms a collector region, and the n-type buried layer 11 is formed below it. A P type base region 18 is formed in this n type epitaxial layer 13, and an n type emitter region 19 is further formed in this base region 18. Further, in another part of this n-type epitaxial layer 13, there is an n layer that reaches the n buried layer 7-.
The type collector diffusion layer 17 is diffused.

他方、nチャネルuMost界効果トランジスタQnは
P型ウェル14に形成されている。P型ウェル14の下
にはP 型埋め込み1d12が形成され、さらにこのP
型ウェル14の周囲にriP+型チャネル・ストッパ領
域15が形成されている。
On the other hand, an n-channel uMost field effect transistor Qn is formed in the P-type well 14. A P type buried 1d12 is formed under the P type well 14, and this P type well 1d12 is formed under the P type well 14.
An riP+ type channel stopper region 15 is formed around the type well 14.

また、このP型ウェル14には、ゲート電極20、ダー
ト酸化膜21、n+型ソース領域22、n+型ドレイン
領域23が形成されている。
Further, in this P-type well 14, a gate electrode 20, a dirt oxide film 21, an n+ type source region 22, and an n+ type drain region 23 are formed.

さらに、Pチャネル型M Q S 電界効果トランジス
タQpはn型エピタキシャル層13に形成されている。
Further, a P-channel type MQS field effect transistor Qp is formed in the n-type epitaxial layer 13.

n5工ピタキシヤル層13の下にはn+型埋め込み層1
1が形成されている。このn型エピタキシャル層13に
は、ゲート電極20、ゲート酸化@21、P 型ンース
領域24、P 型ドレイン領域25が形成されている。
An n+ type buried layer 1 is under the n5 pitaxial layer 13.
1 is formed. In this n-type epitaxial layer 13, a gate electrode 20, a gate oxide @21, a P-type source region 24, and a P-type drain region 25 are formed.

ところで、バイポーラトランジスタQbとPチャネル型
M OS ’1i界効果トランジスタ(LPの分離磯城
Qbpは、P 型埋め込み層12と、このP+型埋め込
み層12上に形成されたP 型チャネルストッパ領域1
5と、フィールド酸化膜16とから構成されている。こ
の構造は、nチャネル型電界効果トランジスタQnとp
f−fネル型電界効果トランジスタQ、pの分離領域Q
、np  及びバイポーラトランジスタ同志の分離領域
(娼1図に図示せず。)にも適用されている。
By the way, the bipolar transistor Qb and the P channel type MOS '1i field effect transistor (LP isolation Isoshiro Qbp) are separated by a P type buried layer 12 and a P type channel stopper region 1 formed on this P+ type buried layer 12.
5 and a field oxide film 16. This structure consists of n-channel field effect transistors Qn and p
Separation region Q of f-f channel field effect transistor Q, p
, np and bipolar transistors (not shown in FIG. 1).

ここで注目すべ@事項は、上記のように、素子分離領域
がP 型埋め込み層12と、この上に形成されたP+型
チャネル・ストッパ領域15と、フィールド酸化膜16
とからなる構造によれば、Pウェル14形成工程とは独
立に素子分離領域を形成することができ、ウェルの横方
向拡散長を考慮する必要がなくなるため、素子分離幅を
狭くすることができる◎ ところで、本構造の半導体集積回路においては、素子分
離領域の不純物プロファイルは、P 型埋め込みl1i
i12形成工程及びP 型チャネル・ストッパ領域15
形成工程において適当に詞整することが可能でめり、こ
れらを最適化することにより素子分離幅を通常のアイン
プレーナ構造のバイポーラ集積回路装置の素子分離幅に
近い値にすることができ、素子の占有面積を大幅に減少
して集積度の高い半導体集積回路を実現ならしめること
ができる。
The important points to note here are that, as mentioned above, the element isolation region consists of the P type buried layer 12, the P+ type channel stopper region 15 formed thereon, and the field oxide film 16.
According to this structure, the element isolation region can be formed independently of the P-well 14 formation process, and there is no need to consider the lateral diffusion length of the well, so the element isolation width can be narrowed. ◎ By the way, in the semiconductor integrated circuit of this structure, the impurity profile of the element isolation region is P-type buried l1i
i12 formation step and P type channel stopper region 15
It is possible to arrange the elements appropriately in the formation process, and by optimizing these, the element isolation width can be made close to the element isolation width of a bipolar integrated circuit device with a normal in-planar structure. It is possible to significantly reduce the area occupied by the semiconductor integrated circuit and realize a highly integrated semiconductor integrated circuit.

次に、上記半導体集積回路装置の製造方法を第3図につ
いて1幀次説明する。
Next, a method for manufacturing the semiconductor integrated circuit device will be briefly explained with reference to FIG.

(1]  まず、第5図(a)は本発明による半導体果
槓回路装mt−n造するために予備加工された半導体基
板の一部を示す。同図において、P型半導体基板10に
はn型エピタキシャル層13が形成され、また基板10
とエピタキシャル層13との+ 間にはP′ 型埋め込み層11及びP 型埋め込み層1
2が形成されている。なお、P 型埋め込み7*11r
iバイポーラ素子及びPMO8素子に形成される。
(1) First, FIG. 5(a) shows a part of a semiconductor substrate that has been preprocessed for manufacturing a semiconductor circuit device mt-n according to the present invention. An n-type epitaxial layer 13 is formed, and a substrate 10
A P'-type buried layer 11 and a P-type buried layer 1 are provided between + and epitaxial layer 13.
2 is formed. In addition, P type embedding 7*11r
It is formed into an i bipolar element and a PMO8 element.

(2)次に、第3図(1))は前記半導体基板にP型ウ
ェル14を形成した状帽を示す。PWウェル14はNM
O8素子領域のP 型埋め込み1jlZ上に形成される
(2) Next, FIG. 3 (1)) shows a cap in which a P-type well 14 is formed in the semiconductor substrate. PW well 14 is NM
It is formed on the P type buried 1jlZ in the O8 element region.

(3)  さらに、第3図(C)は前記半導体基板にP
 型チャネル・ストッパ領域15を形成した状叩を示す
。このP 型チャネルeストッパ領域15は、イオン打
込みとその後の引伸し拡散とにより、P型ウェル14の
周囲及び素子分離領域に形成される。なお、図中26は
酸化膜、27は窒化膜である。この窒化膜27は素子形
成領域に選択的に形成される。
(3) Furthermore, FIG. 3(C) shows that P is applied to the semiconductor substrate.
Figure 3 shows the punch forming the mold channel stopper region 15; This P type channel e-stopper region 15 is formed around the P type well 14 and in the element isolation region by ion implantation and subsequent stretching diffusion. In the figure, 26 is an oxide film, and 27 is a nitride film. This nitride film 27 is selectively formed in the element formation region.

(4)13図(d)は、前記半導体基板にT、0−aO
Sによる厚いフィールド酸化膜16を形成した状態を示
す。このフィールド酸化膜16は素子形成領域以外の部
分に形成される。
(4) Figure 13(d) shows that the semiconductor substrate has T, 0-aO
A state in which a thick field oxide film 16 made of S is formed is shown. This field oxide film 16 is formed in a portion other than the element formation region.

以下、従来の半導体集積回路装置の製造方法シて従うこ
とにより、前述した如き効果を奏する半導体集積回路が
比較的少ない工程で形成される。
Hereinafter, by following the conventional manufacturing method of a semiconductor integrated circuit device, a semiconductor integrated circuit having the above-mentioned effects can be formed in a relatively small number of steps.

以上本発明を実施例にもとでいて具体的に説明してきた
が、本発明は本実施例に限定されず、その要旨を逸脱し
ない範囲で徨々変更可能であること11言うまでもない
Although the present invention has been specifically explained above based on examples, it goes without saying that the present invention is not limited to these examples and can be modified at will without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の半導体集積回路装置によれ
ば、素子分離領域を埋め込み層とチャネル・ストッパ領
域と選択絶縁膜からなる構造とすることにより、素子分
離@を大幅に狭くすることかで′@る。その結果、素子
の占有面積を低減できるため、著しい高密度化が達成で
きる。
As described above, according to the semiconductor integrated circuit device of the present invention, by forming the element isolation region into a structure consisting of a buried layer, a channel stopper region, and a selective insulating film, the element isolation @ can be significantly narrowed. Out. As a result, it is possible to reduce the area occupied by the elements, thereby achieving a significant increase in density.

また、分離領域の不純物プロファイルは埋め込み層形成
工程及びチャネル・ストッパ領域形成工程において調整
して最適化することができ、素子間リークのない素子分
離特性に優れる等の効果を有する。
Further, the impurity profile of the isolation region can be adjusted and optimized in the buried layer forming process and the channel/stopper region forming process, and has effects such as excellent element isolation characteristics without inter-element leakage.

以上の説明では主として本発明をその背景となった利用
分野であるBi−CMO8半導体集積回路装置に適用し
た場合について述べたが、それに限定されるものではな
く、例えばC!MOE+半導体集積回路装置もしくはバ
イポーラ半導体集積回路等にも適用可能である。
In the above description, the present invention was mainly applied to a Bi-CMO8 semiconductor integrated circuit device, which is the background field of application, but the present invention is not limited thereto. It is also applicable to MOE+ semiconductor integrated circuit devices, bipolar semiconductor integrated circuits, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体集積回路装置の一実施例を示す
断面図、 第2図は従来の半導体集積回路装置を示す断面図、 第3図(a)〜(d)は本発明の実施例を示す半導体集
積回路装置の製造工程断面図である。 10・・・・・・P型半導体基板 12・・・・・・P 型埋め込み層 15・・・・・・P 型チャネル・ストッパ領域16・
・・・・・フィールド酸化膜 板   上 出願人 セイコーエプソン株式会社 第 l 図 1と 儲 2 図 (a) CI)) (C) 箋3図
FIG. 1 is a sectional view showing an embodiment of a semiconductor integrated circuit device of the present invention, FIG. 2 is a sectional view showing a conventional semiconductor integrated circuit device, and FIGS. 3(a) to (d) are embodiments of the present invention. FIG. 3 is a cross-sectional view of a manufacturing process of a semiconductor integrated circuit device showing an example. 10... P-type semiconductor substrate 12... P-type buried layer 15... P-type channel stopper region 16...
...Field oxide film plate Applicant: Seiko Epson Corporation No. 1 Figure 1 and Figure 2 (a) CI)) (C) Notebook Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)単一基板上にバイポーラ素子とCMOS素子とを
具備する半導体集積回路装置において、素子間分離領域
が、第1導電型の基板内に形成された第1導電型の第1
半導体領域と、前記基板表面に形成された第2導電型の
半導体層内に形成され底部が前記第1半導体領域に接触
する第1導電型の第2半導体領域と、前記半導体層表面
の前記第2半導体領域上に選択的に形成された絶縁膜と
からなることを特徴とする半導体集積回路装置。
(1) In a semiconductor integrated circuit device including a bipolar element and a CMOS element on a single substrate, an inter-element isolation region is formed in a first conductivity type substrate.
a semiconductor region, a second semiconductor region of a first conductivity type formed in a semiconductor layer of a second conductivity type formed on the surface of the substrate and whose bottom portion contacts the first semiconductor region; 1. A semiconductor integrated circuit device comprising: 2 an insulating film selectively formed on a semiconductor region.
(2)前記第2半導体領域が、CMOS素子が形成され
る第1導電型のウェルの周囲に形成される第1導電型の
チャンネル・ストッパ領域と同一の工程により形成され
た半導体領域であることを特徴とする特許請求の範囲第
1項記載の半導体集積回路装置。
(2) The second semiconductor region is a semiconductor region formed by the same process as a first conductivity type channel stopper region formed around a first conductivity type well in which a CMOS element is formed. A semiconductor integrated circuit device according to claim 1, characterized in that:
JP61278191A 1986-11-21 1986-11-21 Method for manufacturing semiconductor device Expired - Lifetime JP2600151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61278191A JP2600151B2 (en) 1986-11-21 1986-11-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61278191A JP2600151B2 (en) 1986-11-21 1986-11-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63131562A true JPS63131562A (en) 1988-06-03
JP2600151B2 JP2600151B2 (en) 1997-04-16

Family

ID=17593859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61278191A Expired - Lifetime JP2600151B2 (en) 1986-11-21 1986-11-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2600151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081515A (en) * 1989-03-20 1992-01-14 Hitachi, Ltd. Semiconductor integrated circuit device
US5920107A (en) * 1996-04-25 1999-07-06 Nec Corporation Semiconductor integrated circuit device with high integration density

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109262A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Manufacture of semiconductor device
JPS61212054A (en) * 1985-03-18 1986-09-20 Hitachi Ltd Semiconductor integrated circuit device
JPS61214557A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Manufacture of semiconductor integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109262A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Manufacture of semiconductor device
JPS61212054A (en) * 1985-03-18 1986-09-20 Hitachi Ltd Semiconductor integrated circuit device
JPS61214557A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Manufacture of semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081515A (en) * 1989-03-20 1992-01-14 Hitachi, Ltd. Semiconductor integrated circuit device
US5920107A (en) * 1996-04-25 1999-07-06 Nec Corporation Semiconductor integrated circuit device with high integration density

Also Published As

Publication number Publication date
JP2600151B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US6713794B2 (en) Lateral semiconductor device
US6307223B1 (en) Complementary junction field effect transistors
JPH04226066A (en) Bi-cmos device and its manufacture
EP0196757A2 (en) Semiconductor device comprising a bipolar transistor and a MOS transistor and method of manufacturing the same
US5191401A (en) MOS transistor with high breakdown voltage
EP0158292B1 (en) Semiconductor device having a drive circuit element and an output transistor
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH04226064A (en) Interconnection body for semiconductor device use its manufacture
EP0239216A2 (en) CMOS compatible bipolar transistor
JPS6119164A (en) Supplementary integrated circuit and method of producing same
JPS63131562A (en) Semiconductor integrated circuit device
JPH0351309B2 (en)
US6479338B2 (en) CMOS device and method of manufacturing the same
JPH11186284A (en) Semiconductor device and manufacture thereof
JPS638623B2 (en)
US5008724A (en) Semiconductor device
JPS6153762A (en) Semiconductor integrated circuit device
JPH05129425A (en) Semiconductor device and manufacture thereof
JPS60120552A (en) Bipolar cmis device and manufacture thereof
JPH118381A (en) Semiconductor device
JP3191285B2 (en) Semiconductor device and manufacturing method thereof
JP2678081B2 (en) Semiconductor integrated circuit device
JP2968640B2 (en) Semiconductor device
JPH03145163A (en) Thyristor
JPH0243347B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term