JPS63131058A - Surface wave probe - Google Patents
Surface wave probeInfo
- Publication number
- JPS63131058A JPS63131058A JP61275413A JP27541386A JPS63131058A JP S63131058 A JPS63131058 A JP S63131058A JP 61275413 A JP61275413 A JP 61275413A JP 27541386 A JP27541386 A JP 27541386A JP S63131058 A JPS63131058 A JP S63131058A
- Authority
- JP
- Japan
- Prior art keywords
- surface wave
- probe
- wave
- ultrasonic
- test object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 70
- 239000000463 material Substances 0.000 claims abstract description 21
- 230000001902 propagating effect Effects 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000005452 bending Methods 0.000 abstract 1
- 230000001066 destructive effect Effects 0.000 abstract 1
- 239000000428 dust Substances 0.000 description 11
- 239000002184 metal Substances 0.000 description 8
- 230000000644 propagated effect Effects 0.000 description 5
- 238000007656 fracture toughness test Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- OQJGZGAYSCWFCK-UHFFFAOYSA-N 2-[4-(furan-2-ylmethyl)-5-[[4-methyl-3-(trifluoromethyl)phenyl]methylsulfanyl]-1,2,4-triazol-3-yl]pyridine Chemical compound C1=C(C(F)(F)F)C(C)=CC=C1CSC(N1CC=2OC=CC=2)=NN=C1C1=CC=CC=N1 OQJGZGAYSCWFCK-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、弾性部材の表面に超音波の表面波を伝播させ
たときの伝播速度、伝播時間などを測定するための表面
波探触子に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a surface wave probe for measuring the propagation velocity, propagation time, etc. when an ultrasonic surface wave is propagated on the surface of an elastic member. It is related to.
[従来の技術]
第10図は従来の表面波探触子の上記利用分野における
使用状態例を説明する断面図である。同図の中で示され
るように、従来の表面波探触子1゜1′は振動子1a、
1’ aと遅延材(一般にアクリル樹脂)1b、1’
bを有し、遅延材1b、1b′を伝播する超音波の速
度と試験体3を伝播する超音波の速度との相違によって
モード変換を生じさせ、超音波の表面波を発信したり、
受(ffi したりするものである。[Prior Art] FIG. 10 is a sectional view illustrating an example of how a conventional surface wave probe is used in the above field of application. As shown in the figure, the conventional surface wave probe 1°1' has a vibrator 1a,
1'a and delay material (generally acrylic resin) 1b, 1'
b, causing mode conversion due to the difference in the speed of the ultrasonic waves propagating through the delay materials 1b and 1b' and the speed of the ultrasonic waves propagating through the test specimen 3, and transmitting an ultrasonic surface wave,
It is something to receive (ffi).
第10図の例で述べると、発信側の表面波探触子1の振
動子1aから超音波を発信し、遅延材1bを伝播させて
試験体3に表面波を伝播させる。Using the example shown in FIG. 10, an ultrasonic wave is transmitted from the transducer 1a of the surface wave probe 1 on the transmitting side, and the surface wave is propagated through the delay material 1b to the test specimen 3.
試験体3には、接触媒質4を介して音波をある角度以上
で入射させると、音波のモード変換によって表面波が試
験体3の表面部を矢印Aの方向に伝播する。そして、受
信側の表面波探触子1′において、接触!I!質4′と
遅延材1’ bを伝播して振動子1′aに音波が受信さ
れる。When a sound wave is incident on the test body 3 at a certain angle or more through the couplant 4, a surface wave propagates on the surface of the test body 3 in the direction of arrow A due to mode conversion of the sound wave. Then, at the surface wave probe 1' on the receiving side, contact is made! I! The sound wave propagates through the waveguide 4' and the delay material 1'b and is received by the vibrator 1'a.
上記従来の表面波探触子1.1′は一般に広く使用され
ているものであるが、8波の伝播速度。The above-mentioned conventional surface wave probe 1.1', which is generally widely used, has a propagation velocity of 8 waves.
伝播時間などを正確に測定しようとする場合には不十分
であった。This was insufficient when trying to accurately measure propagation time, etc.
すなわち、第10図の例で述べると、まず、探触子1及
び1′の接触面1C及び1′Cは音波の進行方向Aに対
して幅があるので、距離りを設定しようとする場合に正
確な基準点が得られない。That is, using the example shown in Fig. 10, first, since the contact surfaces 1C and 1'C of the probes 1 and 1' have a width in the direction A of the sound wave, when trying to set the distance, An accurate reference point cannot be obtained.
また、1C及び1’cは平面であるので、例えば、試験
体3表面の凹凸状況、試験体表面との平行関係などにも
とづく試験体3への接触状態のわずかな相違によっても
、試験体3への音波の入射位置及び試験体3からの受信
位置に変動を生じる。In addition, since 1C and 1'c are flat surfaces, even slight differences in the state of contact with the test piece 3 based on, for example, unevenness on the surface of the test piece 3, parallel relationship with the surface of the test piece, etc. This causes fluctuations in the incident position of the sound wave and the reception position from the test object 3.
さらに、接触媒質4.4′の材質、特性、厚みなどによ
って表面波の発信量と受信量に変動を生じる。これらに
より、音波の伝播時間及び伝播距!!ILに変動を生じ
て正確な測定が不可能となる。Further, the amount of surface waves transmitted and received varies depending on the material, characteristics, thickness, etc. of the couplant material 4.4'. With these, the propagation time and propagation distance of sound waves! ! Fluctuations occur in IL, making accurate measurement impossible.
上記問題点を解決するために、先に、われわれは特願昭
61−15402号において、音波の伝播速度、伝播時
間などの正確な測定を可能とする表面波探触子を発明し
た。そして、該探触子を利用して、物体の表面に作用し
ている応力値、物体の表面に発生している亀裂の深さな
どを非破壊的に測定することを可能にした。In order to solve the above-mentioned problems, we previously invented a surface wave probe in Japanese Patent Application No. 15402/1983 that enables accurate measurement of the propagation velocity, propagation time, etc. of sound waves. Using this probe, it has become possible to non-destructively measure the value of stress acting on the surface of an object, the depth of cracks occurring on the surface of the object, etc.
上記出願は、第8図及び第9図にて示すように、従来の
表面波探触子1と試験体3との間に表面波伝達体2を介
在させることにより得られたものである。そして、第1
0図にて示した従来の表面探触子1を直接試験体3に当
接した場合の問題点を解消するため、第8図及び第9図
にて示すように表面波伝達体2の先端部2aを線状に当
接するようにした。図面は断面図にて描かれているため
点状のようにも見えるが、実際は紙面の直角方向に厚み
があるため線状の接触をしている。試験体3との接触は
、点状の接触を理想とするが、超音波の減衰が著しくな
って、十分に伝達されなくなる。The above-mentioned application was obtained by interposing a surface wave transmitting body 2 between a conventional surface wave probe 1 and a test specimen 3, as shown in FIGS. 8 and 9. And the first
In order to solve the problem when the conventional surface probe 1 shown in FIG. The portion 2a is arranged to abut linearly. Since the drawing is a cross-sectional view, it looks like a point, but in reality, there is a thickness in the direction perpendicular to the plane of the paper, so there is a linear contact. Ideally, the contact with the test object 3 is point-like contact, but the attenuation of the ultrasonic waves becomes significant and the ultrasonic waves are not transmitted sufficiently.
したがって、実用性を考慮すれば、超音波の出力が許容
する範囲で点に近づいて線状の接触にするのが好ましい
。Therefore, considering practicality, it is preferable to make linear contact as close to the point as the ultrasonic output allows.
こうすることによって、表面波探触子1より発信された
超音波は伝達体2の表面2bを伝播し、先端部2aにて
試験体3の表面に伝達され、矢印Bの方向に伝播される
。そして、先端部は上述の用に線状の接触をしているの
で、安定した接触状態及び接触位置が得られるのである
。By doing this, the ultrasonic waves emitted from the surface wave probe 1 propagate on the surface 2b of the transmitting body 2, are transmitted to the surface of the test specimen 3 at the tip 2a, and are propagated in the direction of arrow B. . Since the tip makes linear contact as described above, a stable contact state and contact position can be obtained.
以上は発信用探触子の場合について説明したが、受信用
探触子の場合は発信用の場合の矢印の逆方向に伝播され
てきた音波が受信され、同様の効果が得られる。Although the case of the transmitting probe has been described above, in the case of the receiving probe, the sound waves propagated in the opposite direction of the arrow in the case of transmitting are received, and the same effect can be obtained.
なお、第9図にて示すように、くさび形の伝達体2の2
b面に探触子1の接触面1Cを当接した場合、表面波の
進行方向(矢印D)に鋭い角部があると表面波の減衰が
大きいので、丸み2dを設けることにより解決した。こ
の場合、丸みの曲率半径は用いられる表面波の波長より
も大きければ良いのであるが、なるべく大きくするほう
が好ましい。In addition, as shown in FIG. 9, 2 of the wedge-shaped transmitting body 2
When the contact surface 1C of the probe 1 is brought into contact with the b-plane, if there is a sharp corner in the traveling direction of the surface wave (arrow D), the attenuation of the surface wave will be large, so this problem was solved by providing a roundness 2d. In this case, the radius of curvature of the roundness only needs to be larger than the wavelength of the surface wave used, but it is preferable to make it as large as possible.
なお、受信用探触子の場合も同様に丸みを設けることに
よって表面波の減衰が防止される。Incidentally, in the case of the reception probe, attenuation of surface waves is also prevented by providing a roundness.
第11図及び第12図は上記探触子を用いて表面波が伝
播するときの速度すなわち音速度を測定する応用例を説
明するための図である。FIGS. 11 and 12 are diagrams for explaining an application example of measuring the velocity when a surface wave propagates, that is, the speed of sound, using the above-mentioned probe.
第11図にて示すように、試験体3の表面に送信用探触
子1及び2と受信用探触子1′及び2′を任意間隔Mを
あけてあてる。超音波送受信器(図示せず)からパルス
電流を送信用探触子1に供給すると超音波の表面波は試
験体3の表面を矢印Jの方向に伝播し、受信用探触子1
′で電気信号に変えられ、超音波送受信器で増幅される
。そして、音速測定器(図示せず)により、送信用探触
子の接触位1t2aと受信用探触子の接触位置2′ a
との距離Mを伝播した超音波の伝播時間から演算して音
速度が得られる。As shown in FIG. 11, the transmitting probes 1 and 2 and the receiving probes 1' and 2' are placed on the surface of the test specimen 3 at an arbitrary interval M. When a pulse current is supplied from an ultrasonic transceiver (not shown) to the transmitting probe 1, the surface waves of the ultrasonic waves propagate on the surface of the test specimen 3 in the direction of arrow J, and
' is converted into an electrical signal and amplified by an ultrasonic transceiver. Then, using a sound velocity measuring device (not shown), the contact position 1t2a of the transmitting probe and the contact position 2'a of the receiving probe are determined.
The speed of sound can be calculated from the propagation time of the ultrasonic wave that has propagated the distance M from the point.
第12図は、他の応用例として、試験体3の表面に送信
用と受信用を兼備した送受信探触子5及び2をあてて接
触位置2aから任意の間隔Nをあけて反射用の金属体6
を貼付して測定する例である。超音波送受信器(図示せ
ず)からパルス電流を送受信探触子5に供給すると、超
音波の表面波は試験体3の表面を伝播して反射用の金属
体6に到着する。反射用の金属体6のところで表面波の
一部は反射されて送受信用探触子2及び5に戻ってくる
。同図において、矢印には表面波の伝播方向を示す。戻
ってきた表面波は送受信探触子5により電気信号に変え
られ、超音波送受信器により増幅される。探触子の接触
位置2aと反射用の金属体6との間の1往復距111N
X2と超音波が1往復した時間から音速測定器(図示せ
ず)により音速型が演算して得られる。FIG. 12 shows another application example in which transmitting/receiving probes 5 and 2, which have both transmitting and receiving functions, are placed on the surface of a test object 3, and a reflective metal is placed at an arbitrary distance N from the contact position 2a. body 6
This is an example of attaching and measuring. When a pulsed current is supplied from an ultrasonic transceiver (not shown) to the transceiver probe 5, the surface waves of the ultrasonic waves propagate on the surface of the test specimen 3 and reach the reflective metal body 6. A part of the surface wave is reflected by the reflective metal body 6 and returns to the transmitting/receiving probes 2 and 5. In the figure, arrows indicate the propagation direction of surface waves. The returned surface waves are converted into electrical signals by the transmitting/receiving probe 5 and amplified by the ultrasonic transmitting/receiving device. One round trip distance between the contact position 2a of the probe and the reflective metal body 6: 111N
The sonic velocity type is obtained by calculating the sonic velocity type using a sonic velocity measuring device (not shown) from the time that X2 and the ultrasonic wave make one round trip.
これらのようにして精度良く表面波の音速型を測定する
ことにより、試験体表面部の材質判定。By measuring the sonic velocity of surface waves with high accuracy in this way, the material quality of the surface of the test piece can be determined.
試験体表面に作用している応力値の判定などが可能とな
る。すなわち、試験体はその材質特有の音速変位を有し
ている。そして、圧縮応力の増加とともに音速型は直線
的に増加し、引張応力の増加とともに音速型は直線的に
減少する。したがって、試験体と同一材質または類似材
質の音速型と応力の関係をあらかじめ求めておけば、試
験体の音速型を測定することによって材質や発生してい
る応力値が非破壊的に判明するのである。なお、音速型
と応力の関係は試験体と同一または類似材質の試験片に
圧縮荷重または引張荷重を加えながら試験片の音速型を
測定することによって得られる。This makes it possible to determine the stress value acting on the surface of the specimen. In other words, the test specimen has a sonic velocity displacement unique to its material. The sonic type increases linearly as the compressive stress increases, and the sonic type decreases linearly as the tensile stress increases. Therefore, if the relationship between the sonic profile and stress of the same or similar material as the test piece is determined in advance, the material and the stress value generated can be determined non-destructively by measuring the sonic profile of the test piece. be. The relationship between the sonic type and stress can be obtained by measuring the sonic type of a test piece while applying a compressive load or tensile load to a test piece made of the same or similar material as the test piece.
第13図は前記出願の他の応用例として破壊靭性試験片
の疲労予亀裂の深さを用いた例を説明づる正面図である
。FIG. 13 is a front view illustrating an example in which the depth of fatigue pre-crack in a fracture toughness test piece is used as another application example of the above application.
試験片7は支点R及びSで支持して荷重Tを加える3点
曲げ試験用のものである。発信用探触子1及び伝達体2
の線状接触位置2aから発信された表面波は矢印Uのよ
うにして試験片の表面7aを伝播し、線状接触位置21
aにて探触子1′及び伝達体2′にて受信される。最
初、溝底7bに亀裂が発生していない状態で表面波が伝
播づる速度すなわち音速度、伝播距離(判明している)
。Test piece 7 is for a three-point bending test in which a load T is applied while being supported at fulcrums R and S. Transmission probe 1 and transmitter 2
The surface wave emitted from the linear contact position 2a propagates on the surface 7a of the test piece as shown by arrow U, and reaches the linear contact position 21.
The signal is received by the probe 1' and the transmitter 2' at point a. Initially, the speed at which the surface wave propagates when no cracks occur in the groove bottom 7b, that is, the sound speed, and the propagation distance (known)
.
伝播時間を求めておく。次に、疲労予亀裂7Cが発生し
た後に、同様にして測定すると、表面波は亀裂7Cの先
端を迂回するのでそれだけ伝播時間が長くなってくる。Find the propagation time. Next, when similarly measured after the fatigue pre-crack 7C has occurred, the propagation time becomes longer as the surface waves detour around the tip of the crack 7C.
このとき音速型がすでに判明しており、伝播時間が測定
されるので、亀裂7cの深さを知ることができる。At this time, since the sonic type is already known and the propagation time is measured, the depth of the crack 7c can be known.
[発明が解決しようとする問題点]
上述した特願昭61−15402号にて示した表面波探
触子を、例えば第11図に示すように、試験体3の表面
にあてて音速を測定する場合、超音波送受信器(図示せ
ず)からパルス電流を送信用探触子1に供給すると、追
音波の表面波は伝達体2の表面をり、E、Fの方向に伝
播し、さらに、試験体30表面をJの方向に伝播し、伝
達体2′の表面をG、H,Qの方向に伝播して受信用探
触子1′で電気信号に変えられ、超音波送受信器で増幅
される。超音波の表面波の伝播経路が上記のように接触
位ff2a及び2’ aにおいて大きく屈曲しているた
め、受信強度が弱くなるという問題点があった。[Problems to be Solved by the Invention] The surface wave probe shown in the above-mentioned Japanese Patent Application No. 15402/1982 is applied to the surface of the test specimen 3, as shown in FIG. 11, for example, to measure the sound velocity. In this case, when a pulse current is supplied from an ultrasonic transceiver (not shown) to the transmitting probe 1, the surface wave of the follow-up sound propagates along the surface of the transmitting body 2 in the directions E and F, and further , propagates in the J direction on the surface of the test object 30, propagates in the G, H, and Q directions on the surface of the transmitting body 2', and is converted into an electrical signal by the receiving probe 1', and is converted into an electric signal by the ultrasonic transceiver. amplified. Since the propagation path of the ultrasonic surface wave is largely bent at the contact positions ff2a and 2'a as described above, there is a problem in that the reception intensity becomes weak.
本発明の目的は、受信強度が大きく、物体の表面に作用
している応力値、物体の表面に発生している亀裂の深さ
などを精度よく非破壊的に測定可能な表面波探触子を提
供することにある。An object of the present invention is to provide a surface wave probe that has high reception strength and is capable of accurately and non-destructively measuring the stress value acting on the surface of an object, the depth of cracks occurring on the surface of the object, etc. Our goal is to provide the following.
[問題点を解決するための手段]
上記問題点を解決するために本発明は、振動子と遅延材
とを有する超音波の表面波探触子に表面波伝達体を当接
して設け、前記表面波伝達体の試験体と接触する先端は
線状もしくは幅の狭い帯状にし、かつ、表面波の進行方
向または受信方向の反対方向にある前記表面波伝達体の
後端部には丸みが設けられており、前記後端部と先端と
を結ぶ試験体表面と対向する面は試験体表面となづ角度
が0.2”〜1.2°になるようにしたことを特徴とす
る表面波探触子である。[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a surface wave transmitting body that is provided in contact with an ultrasonic surface wave probe having a vibrator and a delay material. The tip of the surface wave transmitter that comes into contact with the test specimen is shaped like a line or a narrow band, and the rear end of the surface wave transmitter, which is in the opposite direction to the traveling direction or receiving direction of the surface wave, is rounded. A surface wave characterized in that the surface facing the surface of the specimen connecting the rear end portion and the tip is formed at an angle of 0.2” to 1.2° with the surface of the specimen. It is a probe.
そして、表面波伝達体の後端部の丸みの曲率半径は、用
いられる表面波の波長よりも大きいことが望ましい。The radius of curvature of the rear end of the surface wave transmitter is preferably larger than the wavelength of the surface wave used.
[作 用]
表面波探触子の表面波伝達体の形状を上述のようにし、
試験体表面との接触位置において表面波の大きな屈曲が
ないので、超音波の減衰が防止され、その結果受信強度
を大きくすることができる。[Function] The shape of the surface wave transmitter of the surface wave probe is as described above,
Since there is no large bend in the surface waves at the point of contact with the surface of the test object, attenuation of the ultrasonic waves is prevented, and as a result, the reception intensity can be increased.
[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.
第1図〜第5図は本発明の詳細な説明する断面図、第7
図は他の実施例を説明する正面図である。各図とも前述
の第8図〜第13図と同一箇所は同一の参照符号が付し
である。1 to 5 are cross-sectional views explaining the present invention in detail;
The figure is a front view for explaining another embodiment. In each figure, the same parts as in the above-mentioned FIGS. 8 to 13 are given the same reference numerals.
第1図に示すように、探触子1の接触面1Cと伝達体2
の2b面とは接着剤(図示せず)によって固定しである
。これらの場合、接着剤が媒体の役目を果している。こ
うすることによって、振動子1aから発信され遅延材1
bを伝播した音波の表面波へのモード変換を安定化させ
た。As shown in FIG. 1, the contact surface 1C of the probe 1 and the transmitting body 2
It is fixed to the 2b side with an adhesive (not shown). In these cases, the adhesive serves as the medium. By doing this, the signal transmitted from the vibrator 1a and the delay material 1
This stabilized the mode conversion of the sound waves propagating through b into surface waves.
伝達体2の表面の音波伝播方向(矢印D)に鋭い角部が
あると音波が減衰するので、本発明の探触子は角部2d
に丸みを設けたものである。この角部2dの曲率半径は
伝播する音波の波長よりも大きければよい。If there is a sharp corner in the sound wave propagation direction (arrow D) on the surface of the transmitter 2, the sound wave will be attenuated.
It is rounded. The radius of curvature of this corner 2d only needs to be larger than the wavelength of the propagating sound wave.
探触子1の伝達体2の先端部2aを試験体3の表面に線
状もしくは幅の狭い帯状に当接すると、表面波は2b面
から矢印り、E、Fの方向に伝播して試験体3の表面に
伝達される。When the tip 2a of the transmitting body 2 of the probe 1 is brought into contact with the surface of the test specimen 3 in a linear or narrow band shape, the surface waves propagate from the surface 2b in the directions of arrows E and F to perform the test. transmitted to the surface of the body 3.
第2図は伝達体2の下部の幅を小さくした接触子の実施
例を示すもので、伝達体2の角部2c。FIG. 2 shows an embodiment of a contactor in which the width of the lower part of the transmitting body 2 is reduced, and the corner portion 2c of the transmitting body 2.
2dにそれぞれ丸みを設けて音波の減衰を防いでおり、
試験体3の狭い部分、凹状になった部分も測定すること
ができる。Each 2d is rounded to prevent sound waves from attenuating.
Narrow portions and concave portions of the test specimen 3 can also be measured.
第3図及び第4図は、本発明の探触子を用いて表面波が
伝播するときの速度すなわち音速塵を測定する応用例を
説明するための図である。FIGS. 3 and 4 are diagrams for explaining an application example of measuring the velocity of surface waves propagating, that is, sonic dust, using the probe of the present invention.
第3図にて示すように、試験体3の表面に送信用探触子
1及び2と受信用探触子1′及び2′を任意間隔Mをあ
けてあてる。超音波送受信器(図示せず)からパルス電
流を送信用探触子1に供給すると超音波の表面波はり、
Eを経て試験体3の表面を矢印F、J、Gの方向に伝播
し、H,Qを経て受信用探触子1′で電気信号に変えら
れ、超音波送受信器で増幅される。そして、音速測定器
(図示せず)により、送信用探触子の接触位置2aと受
信用探触子の接触位置2’ aとの距離Mを伝播した
超音波の伝播時間から演算して音速塵が得られる。As shown in FIG. 3, the transmitting probes 1 and 2 and the receiving probes 1' and 2' are applied to the surface of the test specimen 3 at an arbitrary interval M. When a pulse current is supplied from an ultrasonic transceiver (not shown) to the transmitting probe 1, the surface wave of the ultrasonic wave is generated.
It propagates on the surface of the test object 3 in the directions of arrows F, J, and G via E, and is converted into an electrical signal by the receiving probe 1' via H and Q, and is amplified by the ultrasonic transceiver. Then, using a sound velocity measuring device (not shown), the distance M between the contact position 2a of the transmitting probe and the contact position 2'a of the receiving probe is calculated from the propagation time of the ultrasonic wave, and the sound velocity is determined. You get dust.
第4図は、他の応用例として、試験体3の表面に送信用
と受信用を兼備した送受信探触子5及び2をあてて接触
位置2aから任意の間隔Nをあけて反射用の金属体6を
貼付して測定する例である。FIG. 4 shows another application example in which transmitting/receiving probes 5 and 2, which have both transmitting and receiving functions, are placed on the surface of a test object 3, and a reflective metal is placed at an arbitrary distance N from the contact position 2a. This is an example in which a body 6 is attached and measured.
超音波送受信器(図示せず)からパルス電流を送受信探
触子5に供給すると、超音波の表面波はり。When a pulse current is supplied from an ultrasonic transceiver (not shown) to the transceiver probe 5, an ultrasonic surface wave is generated.
Eを経て試験体3の表面Fを伝播して反射用の金属体6
に到着する。反射用の金属体6のところで表面波の一部
は反射されてF、E、Dを経て送受信用探触子2及び5
に戻ってくる。同図において、矢印には表面波の伝播方
向を示す。戻ってきた表面波は送受信探触子5により電
気信号に変えられ、超音波送受信器により増幅される。E, the metal body 6 for reflection propagates through the surface F of the test specimen 3.
arrive at. A part of the surface wave is reflected at the reflective metal body 6 and passes through F, E, and D to the transmitting/receiving probes 2 and 5.
come back to. In the figure, arrows indicate the propagation direction of surface waves. The returned surface waves are converted into electrical signals by the transmitting/receiving probe 5 and amplified by the ultrasonic transmitting/receiving device.
探触子の接触位置2aと反射用の金3休6との間の1往
復距離NX2と超音波が1往復した時間から音速測定器
(図示せず)により音速塵が演算して得られる。The sonic velocity dust is obtained by calculating the sonic velocity dust using a sonic velocity measuring device (not shown) from the one-round reciprocating distance NX2 between the contact position 2a of the probe and the reflective metal 3-hook 6 and the time for one reciprocating of the ultrasonic wave.
これらのようにして精度良く表面波の音速塵を測定する
ことにより、試験体表面部の材質判定。By measuring the sonic dust of surface waves with high precision in this way, the material quality of the surface of the test piece can be determined.
試験体表面に作用している応力値の判定などが可能とな
る。すなわち、試験体はその材質特有の音速変位を有し
ている。そして、圧縮応力の増加とともに音速塵は直線
的に増加し、引張応力の増加とともに音速塵は直線的に
減少する。したがって、試験体と同一材質または類似材
質の音速塵と応力の関係をあらかじめ求めておけば、試
験体の音速塵を測定することによって材質や発生してい
る応力値が非破壊的に判明するのである。なお、音速塵
と応力の関係は試験体と同一または類似材質の試片に圧
縮荷重または引張荷重を加えながら試片の音速塵を測定
することによって得られる。This makes it possible to determine the stress value acting on the surface of the specimen. In other words, the test specimen has a sonic velocity displacement unique to its material. Then, as the compressive stress increases, the sonic dust increases linearly, and as the tensile stress increases, the sonic dust decreases linearly. Therefore, if the relationship between sonic dust and stress of the same or similar material as the test piece is determined in advance, the material and the stress value generated can be determined non-destructively by measuring the sonic dust of the test piece. be. The relationship between sonic dust and stress can be obtained by measuring the sonic dust of a specimen made of the same or similar material as the test specimen while applying a compressive load or tensile load.
第5図に示すように、探触子1に固定され丸みを設けた
角部2dを有する伝達体2の試験体表面と対向する面が
試験体3の表面となす角部αを変化させて、探触子1の
振動子1aから超音波を発信して探触子1′の振動子1
’ aで受信した場合の受信波形高さく%)(O印)
と、探触子1′の振動子1’ aから超音波を発信して
探触子1の振動子1aで受信した場合の受信波形高さく
%)(・印)のそれぞれをプロットしたものが第6図で
ある。As shown in FIG. 5, the surface of the transmitter 2 fixed to the probe 1 and having a rounded corner 2d facing the surface of the specimen 3 forms a corner α with the surface of the specimen 3. , the ultrasonic wave is emitted from the transducer 1a of the probe 1, and the transducer 1 of the probe 1'
' Received waveform height when received at a (%) (O mark)
and the received waveform height (%) (marked with *) when an ultrasonic wave is emitted from transducer 1'a of probe 1' and received by transducer 1a of probe 1. FIG.
第6図より、受信波形高さく%)が高いのは、角度αが
0.2′以上1.2°以下の範囲で、この範囲を外れて
当接すると受信波形高さく%)が低くなることがわかる
。From Figure 6, the received waveform height (%) is high when the angle α is between 0.2' and 1.2°, and when contact is outside this range, the received waveform height (%) becomes low. I understand that.
第7図は本発明の他の応用例として破壊靭性試験片の疲
労予亀裂の深さ測定に用いた例を説明する正面図である
。FIG. 7 is a front view illustrating another application example of the present invention in which the present invention is used to measure the depth of fatigue pre-crack in a fracture toughness test piece.
試験片7は支点R及びSで支持して荷ff1Tを加える
3点曲げ試験用のものである。発信用探触子1及び伝達
体2の線状接触位置2aから発信された表面波は矢印U
のようにして試験片の表面7aを伝播し、線状接触位置
2′ aにて探触子1′及び伝達体2′にて受信される
。最初、tM底7bに亀裂が発生していない状態で表面
波が伝播する速度すなわち音速度、伝播距離(判明して
いる)。Test piece 7 is for a three-point bending test in which a load ff1T is applied while supporting at support points R and S. The surface waves transmitted from the linear contact position 2a of the transmitting probe 1 and the transmitting body 2 are indicated by arrow U.
It propagates on the surface 7a of the test piece as follows, and is received by the probe 1' and the transmitter 2' at the linear contact position 2'a. Initially, the speed at which the surface wave propagates when no cracks occur in the tM bottom 7b, that is, the sound speed, and the propagation distance (known).
伝播時間を求めておく。次に、疲労予亀裂7Cが発生し
た後に、同様にして測定すると、表面波は亀裂7Cの先
端を迂回するのでそれだけ伝播時間が長くなってくる。Find the propagation time. Next, when similarly measured after the fatigue pre-crack 7C has occurred, the propagation time becomes longer as the surface waves detour around the tip of the crack 7C.
このとき音速度が既に判明しおり、伝播時間が測定され
るので、亀裂7Cの深さを知ることができる。At this time, the sound speed is already known and the propagation time is measured, so the depth of the crack 7C can be known.
[発明の効果]
本発明よれば、超音波の伝播効率が向上するので受信強
度が大ぎくなり、信号がより明確にとらえられて測定精
度が向上する。[Effects of the Invention] According to the present invention, since the propagation efficiency of ultrasonic waves is improved, the reception strength is increased, the signal is captured more clearly, and the measurement accuracy is improved.
そして、超音波の表面波を用いて残留応力の測定、亀裂
深さなどの高精度測定を可能にしたものであるが、単に
これらの実施例のみに利用が限られるものではない。組
み立てられた状態にある機械や構造物の部材のように試
験体がどのような状態にあっても、超音波の表面波が伝
播する速度(音速度)を測定することにより、表面に発
生している応力値や亀裂深さなどを非破壊的に測定り゛
ることを可能にし、表面波が伝播する弾性体であればす
べての物体に適用できるものである。Although this embodiment makes it possible to measure residual stress, crack depth, etc. with high precision using ultrasonic surface waves, the present invention is not limited to just these embodiments. No matter what condition the test object is in, such as the parts of an assembled machine or structure, we can measure the propagation speed (sound velocity) of ultrasonic surface waves to determine the speed at which ultrasonic surface waves are generated on the surface. It makes it possible to non-destructively measure stress values and crack depths, etc., and can be applied to any elastic object in which surface waves propagate.
このように、本発明の探触子は簡便であるとともに広く
工業製品の管理に効果を発揮するものである。As described above, the probe of the present invention is simple and effective in controlling a wide range of industrial products.
第1図及び第2図はそれぞれ本発明の詳細な説明するた
めの断面図、第3図、第4図、第5図は本発明の探触子
を用いて表面波の伝播速度を測定する方法を説明するた
めの断面図、第6図は伝達体が試験体と当接したときの
角度αと超音波の受信波形高さく%)の関係を示す図、
第7図は破壊靭性試験片の亀裂深さを本発明の探触子を
用いて測定する方法を説明するための正面図、第8図及
び第9図はそれぞれ従来の探触子を説明するための断面
図、第10図、第11図、第12図は従来の探触子を用
いて表面波の伝播速度を測定する方法を説明するための
断面図、第13図は破壊靭性試験片の亀裂深さを従来の
探触子を用いて測定する方法を説明するだめの正面図で
ある。
1.1′・・・探触子、1a、 1’ a・・・撮動子
、lb、1’ b・・・遅延材、2.2′・・・伝達
体、3・・・試験体、5・・・送受信探触子。
第3図
第4図
第5図
1a
1g6図
角度菖(つ
第7図
第8図
119図
第10図
第11図
第13図Figures 1 and 2 are cross-sectional views for explaining the present invention in detail, and Figures 3, 4, and 5 are for measuring the propagation velocity of surface waves using the probe of the present invention. A cross-sectional view for explaining the method, FIG. 6 is a diagram showing the relationship between the angle α when the transmitting body comes into contact with the test object and the received waveform height (%) of the ultrasonic wave,
Figure 7 is a front view for explaining the method of measuring the crack depth of a fracture toughness test piece using the probe of the present invention, and Figures 8 and 9 are for explaining conventional probes, respectively. Figures 10, 11, and 12 are cross-sectional views for explaining the method of measuring the propagation velocity of surface waves using conventional probes. Figure 13 is a fracture toughness test piece. FIG. 2 is a front view illustrating a method for measuring a crack depth using a conventional probe. 1.1'... Probe, 1a, 1' a... Camera element, lb, 1' b... Delay material, 2.2'... Transmitter, 3... Test object , 5... Transmitting/receiving probe. Fig. 3 Fig. 4 Fig. 5 1a 1g 6 Fig. Angle irises Fig. 7 Fig. 8 Fig. 119 Fig. 10 Fig. 11 Fig. 13
Claims (2)
に表面波伝達体を当接して設け、前記表面波伝達体の試
験体と接触する先端は線状もしくは幅の狭い帯状にし、
かつ、表面波の進行方向または受信方向の反対方向にあ
る前記表面波伝達体の後端部には丸みが設けられており
、前記後端部と先端とを結ぶ試験体表面と対向する面は
試験体表面となす角度が0.2°〜1.2°になるよう
にしたことを特徴とする表面波探触子。(1) A surface wave transmitter is provided in contact with an ultrasonic surface wave probe having a transducer and a delay material, and the tip of the surface wave transmitter that contacts the test specimen is linear or narrow strip-shaped. west,
Further, the rear end of the surface wave transmitting body in the direction opposite to the traveling direction or receiving direction of the surface wave is rounded, and the surface facing the test specimen surface connecting the rear end and the tip is rounded. A surface wave probe characterized in that the angle formed with the surface of a test specimen is 0.2° to 1.2°.
用いられる表面波の波長よりも大きいことを特徴とする
特許請求の範囲第1項記載の表面波探触子。(2) The surface wave probe according to claim 1, wherein the radius of curvature of the roundness of the rear end of the surface wave transmitter is larger than the wavelength of the surface wave used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61275413A JPH0833375B2 (en) | 1986-11-20 | 1986-11-20 | Surface wave probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61275413A JPH0833375B2 (en) | 1986-11-20 | 1986-11-20 | Surface wave probe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63131058A true JPS63131058A (en) | 1988-06-03 |
JPH0833375B2 JPH0833375B2 (en) | 1996-03-29 |
Family
ID=17555154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61275413A Expired - Lifetime JPH0833375B2 (en) | 1986-11-20 | 1986-11-20 | Surface wave probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0833375B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007232634A (en) * | 2006-03-02 | 2007-09-13 | Toshiba Corp | Stress measurement apparatus and its measurement method |
-
1986
- 1986-11-20 JP JP61275413A patent/JPH0833375B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007232634A (en) * | 2006-03-02 | 2007-09-13 | Toshiba Corp | Stress measurement apparatus and its measurement method |
Also Published As
Publication number | Publication date |
---|---|
JPH0833375B2 (en) | 1996-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5979241A (en) | Delay line for an ultrasonic probe and method of using same | |
US3512400A (en) | Ultrasonic testing method | |
US9599593B2 (en) | Ultrasonic non-destructive testing | |
KR101858861B1 (en) | Measuring apparatus for grain size of steel sheet | |
JP2002062281A (en) | Flaw depth measuring method and its device | |
JP5672725B2 (en) | SH wave generation method and ultrasonic measurement method | |
JPS63131058A (en) | Surface wave probe | |
JPH0740020B2 (en) | Ceramic Judgment Strength Evaluation Method | |
JPS62172260A (en) | Surface wave probe | |
JPS61254849A (en) | Stress measuring method | |
JPH04157360A (en) | Supersonic probe | |
JPS60257333A (en) | Stress measuring method | |
JP2605352B2 (en) | Ultrasonic flaw detector | |
JP2002071332A (en) | Probe for measurement thickness of clad steel ply material | |
JPH08313496A (en) | Ultrasonic probe | |
JPS6145964A (en) | Method and device for inspecting optical fiber with ultrasonic wave | |
JPH1151909A (en) | Ultrasonic wave flaw detecting method | |
Costley et al. | Viscosity measurement with laser ultrasonics | |
SU1698750A1 (en) | Method of measuring the entry angle of the sloped ultrasonic oscillation transducers | |
JPH0385443A (en) | Method and device for measuring ultrasonic sound velocity | |
JPH01244308A (en) | Ultrasonic probe and thickness measuring device of clad material | |
Daniel Costley et al. | Viscosity Measurement with Laser Ultrasonics | |
Wang et al. | Ultrasonic wave detection using a simple design of optical fibre interferometer | |
JPH07174741A (en) | Measuring equipment of acoustic velocity of ultrasonic wave | |
JPH0460454A (en) | Method and apparatus for measuring surface wave velocity distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |