JPS6313092Y2 - - Google Patents
Info
- Publication number
- JPS6313092Y2 JPS6313092Y2 JP1984098570U JP9857084U JPS6313092Y2 JP S6313092 Y2 JPS6313092 Y2 JP S6313092Y2 JP 1984098570 U JP1984098570 U JP 1984098570U JP 9857084 U JP9857084 U JP 9857084U JP S6313092 Y2 JPS6313092 Y2 JP S6313092Y2
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- current
- wheel speed
- current source
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000007423 decrease Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/56—Devices characterised by the use of electric or magnetic means for comparing two speeds
- G01P3/58—Devices characterised by the use of electric or magnetic means for comparing two speeds by measuring or comparing amplitudes of generated currents or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/176—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
- B60T8/1761—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
- B60T8/17613—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure based on analogue circuits or digital circuits comprised of discrete electronic elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/16—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by evaluating the time-derivative of a measured speed signal
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
Description
【考案の詳細な説明】
本考案は、車輪減速度を表わす電流と仮定の車
輪速度形状を形成するように変化する基準電流と
を比較する積分比較回路によつてブレーキを制御
するようにしたスキツド制御装置に関する。特
に、基準電流ははじめ初期スキツド状態中に生ず
る車輪減速度を表わす値を有する。積分比較回路
は基準電流と車輪減速度を表わす電流とを受け入
れかつ、車輪減速度を表わす電流が車輪速度の予
め定められた程度だけ基準電流をこえたときに出
力信号を送る。基準電流発生回路は比較回路の出
力信号に応答して基準電流をかなり高いレベルま
で増大させる。車輪減速度を表わす電流が予め定
められた時間内に上記のかなり高いレベルをこえ
れば、比較回路からの出力信号が維持されること
によりブレーキが解放されることになる。車輪減
速度を表わす電流が予め定められた時間内に上記
のかなり高いレベルをこえなければ、積分比較回
路の出力信号が終わるのでブレーキは解放されな
い。ブレーキが解放されていると仮定すれば、基
準電流発生回路は予め定められた時間がたつと基
準電流をきわめて低いレベルまで減少させる。積
分比較回路の出力信号が停止して、車輪減速度を
表わす電流が積分比較回路によつて設定された基
準電流をこえなくなつた予め定められた時間後に
ブレーキの再作用が始まるようになつている。こ
の期間は、車輪をスピンアツプして仮定の車輪速
度形状に近づけるように設定されてる。高ミユー
μ面では、車輪減速度を表わす電流は普通、すぐ
に基準電流よりもかなり小さくなり積分比較回路
の出力を停止させ、高レベルの基準電流の発生中
にブレーキを再作用させる。低ミユー面の場合、
車輪減速度を表わす電流は普通、時間を置いた後
に基準電流よりもかな小さくなり積分比較回路の
出力を停止させ、低レベルの基準電流の発生中に
ブレーキを再作用させる。[Detailed description of the invention] The present invention is a skid brake system that controls the brakes by an integral comparison circuit that compares a current representing wheel deceleration with a reference current that changes to form an assumed wheel speed shape. Regarding a control device. In particular, the reference current initially has a value representative of the wheel deceleration occurring during the initial skid condition. The integral comparison circuit receives a reference current and a current representative of wheel deceleration and provides an output signal when the current representative of wheel deceleration exceeds the reference current by a predetermined amount of wheel speed. The reference current generation circuit increases the reference current to a significantly higher level in response to the output signal of the comparator circuit. If the current representing wheel deceleration exceeds the above-mentioned significantly high level within a predetermined period of time, the output signal from the comparator circuit will be maintained and the brakes will be released. If the current representing wheel deceleration does not exceed the above-mentioned significantly high level within a predetermined period of time, the output signal of the integral comparison circuit will terminate and the brake will not be released. Assuming the brake is released, the reference current generating circuit reduces the reference current to a very low level after a predetermined period of time. The output signal of the integral comparator circuit stops and the brake re-applying starts after a predetermined time when the current representing the wheel deceleration no longer exceeds the reference current set by the integral comparator circuit. There is. This period is set to allow the wheels to spin up and approximate the assumed wheel speed profile. At high mu surfaces, the current representing wheel deceleration typically quickly becomes much smaller than the reference current, causing the output of the integral comparator circuit to stop and reapplying the brakes while the high level reference current is occurring. For low-view surfaces,
The current representing wheel deceleration typically becomes much less than the reference current after a period of time, causing the output of the integral and comparison circuit to stop and reapplying the brakes during the low level reference current.
本考案のスキツド制御装置は構成部分を少なく
した簡潔な回路を利用して、かなり複雑な従来の
スキツド制御装置の性能を満たしまたはそれ以上
のスキツド制御性能をそなえている。本装置は従
来の演算増幅器を用いて容易に構成することがで
きる。これら演算増幅器は種々の用途に多量生産
され従つて安価に得られるので、本考案のスキツ
ド制御装置はきわめて安価に生産することができ
る。 The skid controller of the present invention utilizes a simple circuit with fewer components to provide skid control performance that meets or exceeds the performance of the more complex conventional skid controllers. The device can be easily constructed using conventional operational amplifiers. Since these operational amplifiers are produced in large quantities for various applications and are therefore inexpensive, the skid control system of the present invention can be produced very inexpensively.
以上述べた様に本考案のスキツド制御装置は危
急スキツドないし考えられる緊急のスキツド状態
を表わす条件を検知してスキツド状態を事前処理
する能力を有する。さらに回路内のノイズの影響
を受けにくい構成で、安価で信頼性の高いスキツ
ド制御装置である。 As described above, the skid control system of the present invention has the ability to detect conditions representing an emergency or possible emergency skid condition and pre-treat the skid condition. Furthermore, it is an inexpensive and highly reliable skid control device with a configuration that is less susceptible to the effects of noise within the circuit.
第1図に本考案によるスキツド制御装置10が
示されている。スキツド制御装置10は、ライン
12の車の(前または後の)左側車輪の速度を表
わす周波数をもつ信号と、ライン14の車の(前
または後の)右側車輪の速度を表わす周波数をも
つ信号とを受ける。ライン12と14の信号は、
アナログ変換機16と18の周波数により、夫々
車輪の速度を表わす大きさをもつ直流信号に変換
される。アナログ変換機16と18からの信号は
低車輪・高車輪選択回路20へ送られてライン2
2の低車輪速度とライン24の高車輪速度とを表
わす信号を発生する。低車輪速度を表わすライン
22の信号は、第2図に詳細に示されている車輪
速度微分・積分比較回路26に送られる。車輪速
度微分・積分比較回路26は基準電流発生回路3
0からライン28の基準電流を受入れる。 FIG. 1 shows a skid control system 10 according to the present invention. The skid controller 10 receives a signal having a frequency representing the speed of the left wheel (front or rear) of the car in line 12 and a signal having a frequency representing the speed of the right wheel (front or rear) of the car in line 14. and received. The signals on lines 12 and 14 are
The frequency of the analog converters 16 and 18 converts the signal into a DC signal with a magnitude representing the wheel speed, respectively. Signals from analog converters 16 and 18 are sent to low wheel/high wheel selection circuit 20 on line 2.
A signal representing the low wheel speed of line 2 and the high wheel speed of line 24 is generated. The signal on line 22, representing low wheel speed, is sent to a wheel speed differential/integral comparison circuit 26, which is shown in detail in FIG. The wheel speed differential/integral comparison circuit 26 is the reference current generation circuit 3
0 to accept the reference current on line 28.
基準電流発生回路30には第1電流源32を有
し、これは、たとえば、30.5〜182.9cm/sec2(1
〜6ft/sec2)、なるべくは152.4cm/sec2(5ft/
sec2)のきわめて低い車輪減速度を表わす電流を
発生する。基準電流発生回路30にはまた、第2
電流源34を有し、これは、第1電流源と共に、
初期スキツド状態中またはその直前に生ずる、た
とえば518.2〜670.6cm/sec2(17〜22ft/sec2)、な
るべくは518.2cm/sec2(17ft/sec2)の車輪減速
度を表わす電流を発生する。基準電流発生回路3
0はさらに、第3電流源36を有し、これは、た
とえば、3352.8〜4114.8cm/sec2(110〜135ft/
sec2)、なるべくは3657.6cm/sec2(120ft/sec2)
で最大非スキツド車輪減速度よりもかなり大きい
きわめて高い車輪減速度を表わす電流を発生す
る。車輪速度微分・積分比較回路のライン40の
出力信号を受信するためインバータ38が接続さ
れ、このインバータ38からの信号によつて第2
電流源34が出力される。また車輪速度微分・積
分比較回路のライン40の出力信号を受信するた
め単発(one shot)マルチバイブレータ42が
接続され、このマルチバイブレータからの信号に
よつて第3電流源36は出力し次に出力を停止す
るように制御される。この単発マルチバイブレー
タ42の出力パルスの周期は60〜90ミリ秒、なる
べく60ミリ秒である。以下述べる理由で、単発マ
ルチバイブレータ42と第3電流源36の間に
ORゲート44が介在している。 The reference current generation circuit 30 has a first current source 32, which has a current rate of, for example, 30.5 to 182.9 cm/sec 2 (1
~6ft/sec 2 ), preferably 152.4cm/sec 2 (5ft/
It generates a current representing a very low wheel deceleration of sec 2 ). The reference current generation circuit 30 also includes a second
a current source 34, which together with a first current source;
Generate a current representative of the wheel deceleration occurring during or just before the initial skid condition , e.g. . Reference current generation circuit 3
0 further includes a third current source 36, which is e.g.
sec 2 ), preferably 3657.6cm/sec 2 (120ft/sec 2 )
produces a current representing a very high wheel deceleration, which is significantly greater than the maximum non-skidded wheel deceleration. An inverter 38 is connected to receive the output signal on line 40 of the wheel speed differential/integral comparison circuit, and the signal from this inverter 38 causes the second
A current source 34 is output. A one shot multivibrator 42 is also connected to receive the output signal of the line 40 of the wheel speed differential/integral comparison circuit, and the signal from this multivibrator causes the third current source 36 to output and then output controlled to stop. The period of the output pulse of this single-shot multivibrator 42 is 60 to 90 milliseconds, preferably 60 milliseconds. For the reasons described below, between the single-shot multivibrator 42 and the third current source 36,
An OR gate 44 is interposed.
ソレノイド駆動装置46は出力ORゲート48
を介してライン40の車輪速度微分・積分比較回
路からの出力信号を受信する。ソレノイド駆動装
置46は変調弁に接続されて車のブレーキにたい
する圧力を制御する。好ましい変調弁にはブレー
キ圧上昇カーブの「肘」(knee)を有する。たと
えば、このような変調弁の一例は1971年2月2日
に発行されたステルザ所有の米国特許第3560056
号に開示されている。ブレーキ圧上昇カーブの
「肘」を有する変調弁の代わりに、車輪加速度検
出器を加速度制御パルス・モジユレータと組合せ
て使用し、車輪スピンアツプ速度を検出しかつ車
輪のスピンアツプ中変調弁にパルスを送り、それ
でより高い車輪のスピンアツプ速度に対してブレ
ーキを早くかけてもよい。 The solenoid drive device 46 is an output OR gate 48
receives the output signal from the wheel speed differential/integral comparison circuit in line 40 via the circuit. A solenoid drive 46 is connected to the modulating valve to control the pressure to the vehicle's brakes. Preferred modulating valves have a "knee" of the brake pressure rise curve. For example, one example of such a modulating valve is U.S. Pat. No. 3,560,056 owned by Stelza, issued February 2, 1971.
Disclosed in the issue. Instead of a modulating valve having an "elbow" in the brake pressure rise curve, a wheel acceleration detector is used in conjunction with an acceleration control pulse modulator to detect the wheel spin-up rate and pulse the modulating valve during wheel spin-up; Braking may then be applied earlier for higher wheel spin-up speeds.
スキツド制御装置10には車輪速度差オーバド
ライブ回路50が組入れてあり、この回路は出力
ORゲート48と協同して、もつとも早い回転車
輪と、もつともおそい回転車輪との速度差が毎秒
457.2cm(15フイート)をこえるときブレーキを
解放する。この車輪速度差オーバドライブ回路5
0は、毎秒457.2cm(15フイート)の基準車輪速
度信号を表わす電流源52と、基準車輪速度信号
および高車輪速度信号を受信して高車輪速度より
も毎秒457.2cm(15フイート)少ない速度を表わ
す出力信号を発生する微分演算増幅器54とを有
する。比較回路56は微分演算増幅器54の出力
信号と、ライン22からの低車輪速度信号とを受
信しかつ、低車輪速度が高車輪速度よりも毎秒
457.2cm(15フイート)以上小さくなるといつも
出力ORゲート48に出力信号を送り、それで出
力ORゲート48はソレノイド駆動装置46に信
号を送りブレーキを解放させる。 The skid control device 10 incorporates a wheel speed differential overdrive circuit 50, which outputs
In cooperation with the OR gate 48, the speed difference between the fastest rotating wheel and the slowest rotating wheel is reduced per second.
Release the brake when exceeding 457.2 cm (15 feet). This wheel speed difference overdrive circuit 5
0 receives a current source 52 representing a reference wheel speed signal of 15 feet per second and a reference wheel speed signal and a high wheel speed signal to determine a speed 15 feet per second less than the high wheel speed. and a differential operational amplifier 54 that generates an output signal representing the output signal. Comparator circuit 56 receives the output signal of differential operational amplifier 54 and the low wheel speed signal from line 22 and determines that the low wheel speed is greater than the high wheel speed per second.
Whenever it falls below 15 feet, it sends an output signal to output OR gate 48 which in turn sends a signal to solenoid drive 46 to release the brake.
リセツト・タイミング回路58はソレノイド駆
動装置46の出力を受け入れ、ソレノイド駆動装
置46からの出力信号の継続期間が1.5秒をこえ
るといつもORゲート44に信号を送る。その結
果、以下述べる理由で、変調弁への出力信号が
1.5秒をこえるといつも第3電流源は車輪高減速
度を表わす電流を発生する。 Reset timing circuit 58 accepts the output of solenoid drive 46 and sends a signal to OR gate 44 whenever the duration of the output signal from solenoid drive 46 exceeds 1.5 seconds. As a result, the output signal to the modulating valve is
Whenever 1.5 seconds are exceeded, the third current source generates a current representing high wheel deceleration.
第2図に、本考案の装置に用いられる車輪速度
微分・積分比較回路26の典型的回路線図が示さ
れている。この車輪速度微分・積分比較回路26
は微分コンデンサ60を有し、このコンデンサは
ライン22の車輪の速度を表わす電流を受け入れ
接続点62に車輪の減速度を表わす電流を送る。
ライン28の基準電流もまた接続点62に送られ
るので、この接続点62は電流合算接続点の役目
をする。抵抗64は接続点62の正味電流をトラ
ンジスタ66のベースに接続する。トランジスタ
66のコレクタは出力ライン40と、抵抗68を
介して電源B+に接続され、一方、トランジスタ
66のエミツタは接地されている。その結果、ト
ランジスタ66は通常、ライン28の基準電流に
より導通状態に保持されているので、ライン40
の出力信号は通常低い。 FIG. 2 shows a typical circuit diagram of a wheel speed differential/integral comparison circuit 26 used in the apparatus of the present invention. This wheel speed differential/integral comparison circuit 26
has a differential capacitor 60 which receives a current in line 22 representing the speed of the wheel and sends to node 62 a current representing the deceleration of the wheel.
Since the reference current in line 28 is also routed to node 62, this node 62 serves as a current summing node. A resistor 64 connects the net current at node 62 to the base of transistor 66. The collector of transistor 66 is connected to output line 40 and to power supply B+ via resistor 68, while the emitter of transistor 66 is grounded. As a result, transistor 66 is normally held conductive by the reference current in line 28, so that line 40
The output signal of is usually low.
トランジスタ66は通常、抵抗64を介してト
ランジスタ66のベースに流れる基準電流によつ
て導通状態に保持されているから、抵抗64に電
圧降下が現われて接続点62を大地電位以上に保
持する。トランジスタ66が開路されて出力ライ
ン40に出力信号が生ずる前に、接続点62の電
位は実質的に大地電位に降下させねばならない。
従つてトランジスタ66が開路されてライン40
に出力信号が生ずる前に、車輪速度信号は充分な
速度でその後充分な程度に減少し、接続点62に
受け入れた車輪減速度を表わす電流はライン28
の基準電流に釣り合うだけでなく、抵抗64の電
圧降下に打ち勝つ必要がある。この作動は、1973
年9月に出願され本出願と同じ譲受人に譲渡され
た、ラー・アトキンスの米国特許第3966266号に
さらに詳細に記載されかつグラフにより図示され
ており、その開示はここに参考として組入れる。 Since transistor 66 is normally held conductive by a reference current flowing through resistor 64 to the base of transistor 66, a voltage drop appears across resistor 64 to maintain node 62 above ground potential. Before transistor 66 is opened to produce an output signal on output line 40, the potential at node 62 must be reduced to substantially ground potential.
Transistor 66 is therefore opened and line 40
The wheel speed signal then decreases at a sufficient speed and to a sufficient extent before an output signal is produced at connection point 62, and the current representing the wheel deceleration received at connection point 62 flows through line 28.
It is necessary not only to balance the reference current of , but also to overcome the voltage drop across resistor 64 . This operation was started in 1973.
It is further described in detail and graphically illustrated in U.S. Pat. No. 3,966,266 to Rah Atkins, filed September 2007 and assigned to the same assignee as the present application, the disclosure of which is incorporated herein by reference.
作動の観点からみると、抵抗64にかかる電圧
降下には、車輪減速度が、基準電流で表わしてい
る車輪減速度と釣り合うレベルに達した後、車輪
速度信号は所定量だけ降下する必要がある。この
要件は、減速度の増大と対照的な所定量の車輪速
度減少によつて満たされるので、この要件は、短
時間の大きな車輪減速度の過剰によつて、または
長時間にわたる僅か宛の車輪減速度の過剰によつ
て満たされる。言い換えれば、時間にたいする減
速度の積分値が、一定車輪速度減少を表わす値に
達し抵抗64にかかる電圧降下に打ち勝たねばな
らない。この要件を本明細書中では「比較回路構
成により予め定められている関係」と称する。こ
の理由で、ここで回路26を積分比較回路と呼
ぶ。 From an operational standpoint, the voltage drop across resistor 64 requires that the wheel speed signal drop by a predetermined amount after the wheel deceleration reaches a level that is commensurate with the wheel deceleration represented by the reference current. . This requirement is met by a predetermined amount of wheel speed reduction as opposed to an increase in deceleration, so this requirement can be met by a large excess of wheel deceleration for a short period of time, or by a slight excess of wheel deceleration over a long period of time. Satisfied by excess deceleration. In other words, the integral of deceleration over time must reach a value representing a constant wheel speed reduction to overcome the voltage drop across resistor 64. This requirement is referred to herein as a "relationship predetermined by the comparison circuit configuration." For this reason, circuit 26 is referred to herein as an integral comparator circuit.
第3図において、考えられる車輪速度作用状態
が車輪速度図形によつて示されている。また第3
図には、基準電流と、ライン40に現われる微
分・積分比較回路26の出力信号との積分図形が
示されている。基準電流の積分は実際に回路には
存在しないが、第3図に、この発明の原理を例示
するものとして示されている。これについて、基
準電流の積分は、基準電流の大きさと、これが変
化するシーケンスとに相当する仮定の速度形状を
表わす。この仮定の速度形状は、車輪減速度を表
わす電流と基準電流とを比較する装置によつて車
輪速度と間接的に比較される。 In FIG. 3, possible wheel speed operating conditions are illustrated by wheel speed diagrams. Also the third
The diagram shows an integral diagram of the reference current and the output signal of the differential-integral comparison circuit 26 appearing on line 40. Although reference current integration does not actually exist in the circuit, it is shown in FIG. 3 to illustrate the principles of the invention. In this regard, the integral of the reference current represents a hypothetical velocity shape that corresponds to the magnitude of the reference current and the sequence in which it changes. This hypothetical speed profile is indirectly compared to the wheel speed by means of a device that compares a reference current with a current representative of wheel deceleration.
第3図において、車輪が減速しはじめると、時
間t1において、車輪は(第1電流源32と第2電
流源34からの電流和)670.6cm/sec2(22ft/
sec2)を表わす当初基準電流をこえるだけでな
く、抵抗64にかかる電圧降下により設定された
所定の量だけ速度が減少し、車輪速度微分・積分
比較回路26からライン40に出力信号を生ず
る。ライン40の信号は単発マルチバイブレータ
42とインバータ38とに送られ、第2電流源3
4を開路し、第3電流源36を閉路して(第1電
流源32と第3電流源36からの電流和)3810
cm/sec2(125ft/sec2)の車輪減速度を表わす新
たな基準電流を生ずる。第3図の例において車輪
は基準電流により設定された減速度3810cm/sec2
(125ft/sec2)以上は減速しないので、車輪速度
微分・積分比較回路からのライン40の出力信号
の終端は時間t2である。ライン40の出力信号が
送られるきわめて短時間内には、変調弁は作用せ
ずブレーキはその固有慣性により解放されなかつ
た。車輪は、単発マルチバイブレータ42の作動
期間、すなわち時t1とt3との間、670.6cm/sec2
(22ft/sec2)の当初率以上減速し、第3電流源
36がその高レベルの電流を送り続けるので車輪
速度微分・積分比較回路26は再び閉路しない。
上記から、考えられる緊急のスキツド状態を表わ
す状態は存在するが、スキツド状態は実際には生
じない。それでもなお、スキツド制御装置10は
考えられる緊急のスキツド状態に反応するので、
実際のスキツド状態の場合その反応時間は少なく
なる。 In FIG. 3, when the wheel starts to decelerate, at time t1, the wheel is moving at (sum of current from the first current source 32 and second current source 34) 670.6 cm/sec 2 (22 ft/
sec 2 ), the voltage drop across resistor 64 causes the speed to decrease by a predetermined amount, producing an output signal on line 40 from wheel speed differential/integral comparison circuit 26. The signal on line 40 is sent to a single-shot multivibrator 42 and an inverter 38, and a second current source 3
4 is opened and the third current source 36 is closed (sum of currents from the first current source 32 and third current source 36) 3810
Create a new reference current representing a wheel deceleration of cm/sec 2 (125 ft/sec 2 ). In the example shown in Figure 3, the wheels have a deceleration of 3810 cm/sec 2 set by the reference current.
(125ft/ sec2 ) or more, the output signal on line 40 from the wheel speed differential/integral comparison circuit terminates at time t2. Within the very short time that the output signal on line 40 was sent, the modulating valve was not activated and the brake was not released due to its inherent inertia. The wheel speed is 670.6 cm/sec 2 during the operating period of the single multivibrator 42, that is, between times t1 and t3.
The wheel speed differential/integral comparator circuit 26 does not close again because the third current source 36 continues to send its high level current.
From the above, it can be seen that although there are conditions that represent possible emergency skid conditions, skid conditions do not actually occur. Nevertheless, the skid controller 10 is responsive to possible emergency skid conditions so that
The reaction time will be shorter in the case of actual squid conditions.
第4図に、低ミユー面における考えうる車輪作
用図形が示されている。時間t4において車輪は基
準電流に相当する減速度670.6cm/sec2(22ft/
sec2)をこえる減速度で減速し、車輪速度はその
後必要なだけ減少してライン40に出力信号を発
する。車輪は低ミユー面にあるので、車輪減速度
は高い率で続き、それによつて図示のように車両
速度の車輪速度の差が大きくなる。第3電流源3
6は単発マルチバイブレータ42の作動期間、た
とえば60ミリ秒間出力され、一方第2電流源34
は前述のように開路される。単発マルチバイブレ
ータ42の作動期間後、時間t5において、第3電
流源36はしや断され、時間t5において、第1電
流源32によつてのみ得られる低レベルの基準電
流となる。車両速度からの車輪速度の離れが大き
いので接続点62の電位は大地電位よりもはるか
に低く降下されている。その結果、トランジスタ
66は車輪が相当時間加速されるまで閉路されず
接続点62の電位は大地電位をこえるレベル以上
に引き上げられ、時間t6においてトランジスタ6
6を閉路する。従つて、車輪速度を、各電流源に
より表わされる仮定ランプに復帰させる第4図に
示す状態に近づく。その結果、ライン40の出力
信号が再び低くなりブレーキが再びかけられない
うちに、車輪はスキツド状態から回復させられ
る。 In FIG. 4, a possible wheel action pattern in the low-view plane is shown. At time t4, the wheel decelerates 670.6 cm/sec 2 (22 ft/
sec 2 ) and the wheel speed is then reduced as necessary to provide an output signal on line 40. Since the wheels are in the low-view plane, wheel deceleration continues at a high rate, thereby increasing the wheel speed difference in vehicle speed as shown. Third current source 3
6 is output for the operating period of the single-shot multivibrator 42, for example 60 milliseconds, while the second current source 34
is opened as described above. After a period of activation of the single-shot multivibrator 42, at time t5, the third current source 36 is turned off, resulting in a low level reference current available only from the first current source 32 at time t5. Because of the large deviation of the wheel speed from the vehicle speed, the potential at node 62 has been dropped far below ground potential. As a result, the transistor 66 is not closed until the wheel has been accelerated for a considerable time, and the potential at the connection point 62 is raised to a level exceeding ground potential, and at time t6, the transistor 66 is closed.
6 is closed. Accordingly, the condition shown in FIG. 4 is approached which causes the wheel speed to return to the hypothetical ramp represented by each current source. As a result, the wheels are allowed to recover from the skid condition before the output signal on line 40 goes low again and the brakes are not reapplied.
第5図に、高ミユー面における考えうる車輪速
度作用図形が示されている。時間t7において、車
輪は、第1および第2電流源32,34によつて
設定された比率670.6cm/sec2(22ft/sec2)をこ
える率で減速し、所定量速度が減少して時間t7に
おいてライン40に出力信号が生じた。その結
果、時間t7において、単発マルチバイブレータ4
2により第3電流源36を作動し、ライン40の
出力信号により第2電流源34を開路して、図示
のように仮定の高速ランプを表わす基準電流を発
生する。車輪は高ミユー面にあるので、車輪速度
は早急に回復するため、時間t8において仮定ラン
プに達し、ライン40の車輪速度微分・積分比較
回路26からの出力信号はなくなる。実際には、
車輪の減速により接続点62における電位を大地
電位以下に降下させた。車輪が加速しはじめた
後、接続点62の電位は車輪速度を増加させるこ
とによつて充分に高められて接続点62の電位を
再び大地電位以上に引き上げて時間t8において
トランジスタ66を閉路する。第5図の車輪速度
図形において上記工程が時間t9とt10間および時
間t11とt12間で繰り返すことが分かる。 In FIG. 5, a possible wheel speed effect diagram for a high-view surface is shown. At time t7, the wheel decelerates at a rate exceeding 670.6 cm/sec 2 (22 ft/sec 2 ) set by the first and second current sources 32, 34, and the speed decreases by a predetermined amount over time. An output signal appeared on line 40 at t7. As a result, at time t7, single-shot multivibrator 4
2 activates the third current source 36 and the output signal on line 40 opens the second current source 34 to generate a reference current representing a hypothetical fast ramp as shown. Since the wheels are in the high-view plane, the wheel speed recovers quickly so that at time t8 the hypothetical ramp is reached and there is no output signal from the wheel speed differential/integral comparison circuit 26 on line 40. in fact,
The deceleration of the wheels caused the potential at connection point 62 to fall below ground potential. After the wheel begins to accelerate, the potential at node 62 is increased sufficiently by increasing the wheel speed to raise the potential at node 62 above ground potential again to close transistor 66 at time t8. It can be seen in the wheel speed diagram of FIG. 5 that the above process repeats between times t9 and t10 and between times t11 and t12.
第6図に、制動状態中車輪に加わるきわめて小
さい垂直力を有する車の高ミユー面における考え
られる車輪速度作用図形が示されている。これに
ついて、或る高ミユー制動条件では、貨物室が空
の短車輪ベースのトラツクの両後輪にはきわめて
小さい荷重ないし垂直力が加わるので、後輪は第
6図に示すように、時間t13で減速しはじめ時間
t14で急なロツクアツプ状態となる。車輪速度は
時間t15ではじまりきわめてゆつくり車両速度に
回復してゆくことが分かる。車両は高ミユー面に
あるので、車両が充分に減速し、車両速度は仮定
ランプ以下に実際に落ち、それでゆつくりとスピ
ンアツプしている車輪は仮定ランプに達すること
はない。従つて、ブレーキは解放されたままであ
る。車輪が、実際の車両速度に達した後でもこの
ような連続ブレーキ解放状態が起こるのを避ける
ため、リセツト・タイマ58を設けてソレノイド
駆動装置46からの出力信号の継続期間を測定す
る。ソレノイド駆動装置の出力信号の継続期間が
時間t16において1.5秒に達すると、リセツト・タ
イマはORゲート44にパルスを送り、ORゲー
トは出力信号を発して第3電流源36を出力させ
る。第3電流源36は車輪速度微分・積分比較回
路26に比較的高レベルの電流を送り、それで接
続点62の電位を引き上げ時間t17においてトラ
ンジスタ66を閉路することにより出力信号が変
調弁に伝わりブレーキを再作用させる。実際に
は、この第3電流源36の出力により仮定ランプ
を急速に下向きに動かし時間t17において車両速
度に達せしめてブレーキを再作用させる。ブレー
キ再作用後、第5図で説明されかつ第6図におけ
る車輪速度図形の右側部分にも示すように、ブレ
ーキは高ミユー面の車輪速度作用に従つて工程を
繰り返す。 In FIG. 6, a possible wheel speed profile is shown in a high vehicle plane with very little normal force on the wheels during braking conditions. In this regard, under certain high torque braking conditions, a very small load or vertical force is applied to both rear wheels of a short wheel-based truck with an empty cargo hold, so that the rear wheels are The time starts to slow down at
At t14, a sudden lock-up state occurs. It can be seen that the wheel speed begins at time t15 and slowly recovers to the vehicle speed. Since the vehicle is on a high-level plane, the vehicle slows down enough that the vehicle speed actually drops below the assumed ramp so that the wheels that are slowly spinning up never reach the assumed ramp. Therefore, the brake remains released. To avoid such continuous brake release conditions occurring even after the wheels have reached actual vehicle speed, a reset timer 58 is provided to measure the duration of the output signal from the solenoid drive 46. When the duration of the solenoid drive output signal reaches 1.5 seconds at time t16, the reset timer pulses OR gate 44 which issues an output signal causing third current source 36 to output. The third current source 36 sends a relatively high level current to the wheel speed differential/integral comparison circuit 26, thereby raising the potential at the connection point 62 and closing the transistor 66 at time t17, thereby transmitting an output signal to the modulation valve and braking. React. In reality, the output of this third current source 36 causes the hypothetical ramp to move rapidly downward to reach vehicle speed at time t17 and reapply the brakes. After reapplying the brakes, the brakes repeat the process in accordance with the wheel speed effects of the high-view surface, as illustrated in FIG. 5 and also shown in the right-hand portion of the wheel speed diagram in FIG.
ここに開示された実施例では、車輪速度微分・
積分比較回路26は1対の車輪の最低車輪速度を
受け入れるように図示されているが、本装置はま
た、1対の車輪の平均車輪速度または1対の車輪
の最大車輪速度を用いて使用することもできる。
平均車輪速度を用いる場合、ブレーキは、「平均
化した」車輪がスキツドするときに解放される。
このことは、両輪がスキツド状態に入りまたは、
両輪の一方がきびしいスキツド状態に入り他方は
スキツド状態しはじめないことを意味する。高車
輪速度を利用する場合は、2つの車輪がスキツド
状態に入るまでブレーキは解放されない。 In the embodiment disclosed herein, the wheel speed differential
Although the integral comparison circuit 26 is illustrated as accepting the lowest wheel speed of a pair of wheels, the device may also be used with the average wheel speed of a pair of wheels or the maximum wheel speed of a pair of wheels. You can also do that.
When using average wheel speed, the brakes are released when the "averaged" wheels skid.
This means that both wheels become skidded or
This means that one of the wheels will enter a severe skid state and the other will not start to skid. If high wheel speeds are utilized, the brakes will not be released until both wheels are skidded.
スキツド制御装置10の作動を説明すると、こ
のスキツド制御装置の重要な特長は、危急のスキ
ツドないし考えられる緊急のスキツド状態を表わ
す条件を検出してスキツド状態を事前処理する能
力である。この能力を達成するには、車輪がスキ
ツドしていることを表わすがただ車輪がスキツド
状態に接近してブレーキ解放状態の発生を表わす
ような比較的小さい車輪の減速度に応答して信号
をブレーキ変調弁に送ればよい。本考案の装置で
は、ブレーキ変調弁がブレーキ解放命令を実際に
行う前に信号を排除する抑止装置を設けて、この
装置により、ブレーキ変調弁に送られる信号が実
際に有効に作用してブレーキを解放しないように
してある。従つて、実際のスキツド状態にたいす
る本装置の応答時間は少なくなる。 In explaining the operation of the skid controller 10, an important feature of the skid controller is the ability to detect conditions indicative of an emergency or possible emergency skid condition and to pre-handle a skid condition. To achieve this capability, the brake signal must be activated in response to relatively small wheel decelerations that indicate that the wheels are skidded, but only as the wheels approach the skidded condition and indicate the occurrence of a brake release condition. Just send it to the modulating valve. In the device of the present invention, an inhibiting device is provided to eliminate the signal before the brake modulation valve actually issues a brake release command, and this device allows the signal sent to the brake modulation valve to actually act effectively to release the brake. It is set not to be released. Therefore, the response time of the system to actual skid conditions is reduced.
本考案によるスキツド制御装置10の上記説明
から、特に現在使用されているスキツド制御装置
の複雑性に照らしてみた場合、きわめて簡潔な制
御論理を利用していることが分かる。 From the above description of the skid controller 10 of the present invention, it can be seen that it utilizes a very simple control logic, especially in light of the complexity of skid controllers currently in use.
以上述べた様に本考案のスキツド制御装置は危
急のスキツドないし考えられる緊急のスキツド状
態を表わす条件を検知してスキツド状態を事前処
理する能力を有する。さらに回路内のノイズの影
響を受けにくい構成で、安価で信頼性の高いスキ
ツド制御装置である。なお、この発明のスキツド
制御装置はは典型例について述べた。本スキツド
制御装置の特筆すべき特長は、種々用途に多量に
生産され従つて安価に得られる従来の演算増幅器
を用いて構成しうる点にある。従つて本考案のス
キツド制御装置はきわめて安価に生産できる。 As described above, the skid control system of the present invention has the ability to detect conditions representing an emergency or possible emergency skid condition and pre-treat the skid condition. Furthermore, it is an inexpensive and highly reliable skid control device with a configuration that is less susceptible to the effects of noise within the circuit. The skid control device of the present invention has been described as a typical example. A notable feature of the skid control system is that it can be constructed using conventional operational amplifiers that are produced in large quantities for a variety of applications and are therefore inexpensive. Therefore, the skid control device of the present invention can be produced at a very low cost.
第1図は本考案によるスキツド制御装置のブロ
ツク線図、第2図は本考案のスキツド制御装置に
用いられる積分比較回路の典型例を示すブロツク
線図、第3図は第1図に示すスキツド制御装置の
作動を表わす第1例、第4図は第1図に示すスキ
ツド制御装置の作動を表わす第2例、第5図は第
1図に示すスキツド制御装置の作動を表わす第3
例、第6図は第1図に示すスキツド制御装置の作
動を表わす第4例である。
10はスキツド制御装置、16,18はアナロ
グ変換機、20は低車輪・高車輪選択回路、26
は車輪速度微分・積分比較回路、30は基準電流
発生回路、32は第1電流源、34は第2電流
源、36は第3電流源、38はインバータ、42
は単発マルチ・バイブレータ、46はソレノイド
駆動装置、54は微分演算増幅器、58はリセツ
トタイミング回路、66はトランジスタ。
FIG. 1 is a block diagram of the skid control device according to the present invention, FIG. 2 is a block diagram showing a typical example of an integral comparison circuit used in the skid control device of the present invention, and FIG. 3 is a block diagram of the skid control device shown in FIG. 1. A first example showing the operation of the control device, FIG. 4 a second example showing the operation of the skid control device shown in FIG. 1, and FIG. 5 a third example showing the operation of the skid control device shown in FIG.
EXAMPLE FIG. 6 is a fourth example illustrating the operation of the skid control device shown in FIG. 10 is a skid control device, 16 and 18 are analog converters, 20 is a low wheel/high wheel selection circuit, 26
30 is a reference current generation circuit; 32 is a first current source; 34 is a second current source; 36 is a third current source; 38 is an inverter;
46 is a single-shot multi-vibrator, 46 is a solenoid drive device, 54 is a differential operational amplifier, 58 is a reset timing circuit, and 66 is a transistor.
Claims (1)
のスキツド制御装置であつて、 車輪速度検出装置、該装置の出力の高車輪・低
車輪選択回路20と、低車輪と高車輪の所定値以
上の速度差を検出する車輪速度差オーバドライブ
回路50と、基準電流を発生する基準電流発生回
路30と、前記低車輪・高車輪選択回路20から
の低車輪速度信号と前記基準電流発生回路30か
らの基準電流とを受けてこれを比較し、低車輪速
度の減速度が基準電流にもとづく基準値を下廻る
ときに信号を発生する車輪速度微分・積分比較回
路26と、該信号にもとづいてブレーキを変調す
るブレーキ変調装置と、ブレーキ変調装置のソレ
ノイド駆動装置46からの出力信号の継続時間が
1.5秒をこえると前記基準電流発生回路30のOR
ゲート44に信号を送るリセツトタイミング回路
58とを有しており、 前記基準電流発生回路30が、きわめて低い車
輪減速度をあらわす電流を発生する第1電流源3
2と、初期スキツド状態中又はその直前の車輪減
速度をあらわす電流を発生する第2電流源34
と、非スキツド状態よりもきわめて高い車輪減速
度をあらわす電流を発生する第3電流源36と、
前記車輪速度微分・積分比較回路26の出力信号
を受信して第3電流源36を出力させる単発マル
チバイブレータ42と、前記車輪速度微分・積分
比較回路26の出力信号を受信して第2電流源3
4の出力を停止させるインバータ38とを有し、 車輪速度微分・積分比較回路26の初期出力信
号に応答して基準電流発生回路30が第1電流源
32と第2電流源34の和電流から第1電流源3
2と第3電流源36の和電流に基準電流を増大
し、且つ単発マルチバイブレータ42で定められ
ている時間遅れで第1電流源32の電流のみに基
準電流を減少させると共に、リセツトタイミング
回路58からの信号により第3電流源36を出力
させることを特徴とするスキツド制御装置。[Claim for Utility Model Registration] A skid control device for a vehicle having multiple wheels and brakes for the wheels, comprising a wheel speed detection device, a high wheel/low wheel selection circuit 20 for the output of the device, and a brake for the low wheel. a wheel speed difference overdrive circuit 50 that detects a speed difference of more than a predetermined value between the high wheel and the high wheel; a reference current generation circuit 30 that generates a reference current; and a low wheel speed signal from the low wheel/high wheel selection circuit 20. a wheel speed differential/integral comparison circuit 26 which receives and compares the reference current from the reference current generation circuit 30 and generates a signal when the deceleration of the low wheel speed falls below a reference value based on the reference current; , a brake modulator that modulates the brake based on the signal, and a duration of the output signal from the solenoid drive device 46 of the brake modulator.
If it exceeds 1.5 seconds, the reference current generating circuit 30's OR
a reset timing circuit 58 that sends a signal to the gate 44;
2, and a second current source 34 for generating a current representative of the wheel deceleration during or just before the initial skid condition.
and a third current source 36 that generates a current representing a significantly higher wheel deceleration than in the non-squeezed condition.
a single-shot multivibrator 42 that receives the output signal of the wheel speed differential/integral comparison circuit 26 and outputs a third current source 36; and a second current source that receives the output signal of the wheel speed differential/integral comparison circuit 26. 3
In response to the initial output signal of the wheel speed differential/integral comparison circuit 26, the reference current generation circuit 30 generates a current from the sum of the first current source 32 and the second current source 34. First current source 3
2 and the third current source 36, and decrease the reference current to only the current of the first current source 32 with a time delay determined by the single-shot multivibrator 42, and the reset timing circuit 58 A skid control device characterized in that the third current source 36 is output by a signal from the skid control device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48244974A | 1974-06-24 | 1974-06-24 | |
US482449 | 1974-06-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6034060U JPS6034060U (en) | 1985-03-08 |
JPS6313092Y2 true JPS6313092Y2 (en) | 1988-04-14 |
Family
ID=23916129
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7384375A Pending JPS5114592A (en) | 1974-06-24 | 1975-06-19 | SUKITSUDOSEIGYO SOCHI |
JP9857084U Granted JPS6034060U (en) | 1974-06-24 | 1984-07-02 | skid control device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7384375A Pending JPS5114592A (en) | 1974-06-24 | 1975-06-19 | SUKITSUDOSEIGYO SOCHI |
Country Status (8)
Country | Link |
---|---|
JP (2) | JPS5114592A (en) |
AU (1) | AU8109475A (en) |
DE (1) | DE2525123C2 (en) |
FR (1) | FR2276593A1 (en) |
GB (2) | GB1490278A (en) |
HU (1) | HU176985B (en) |
SE (1) | SE400938B (en) |
SU (1) | SU786870A3 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578724Y2 (en) * | 1976-11-30 | 1982-02-19 | ||
US4530059A (en) * | 1982-04-30 | 1985-07-16 | Lucas Industries Public Limited Company | Vehicle anti-lock breaking control |
DE102017113161B4 (en) | 2016-06-16 | 2023-12-07 | GM Global Technology Operations LLC | Vehicle brake control system and vehicle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841173A (en) * | 1971-09-29 | 1973-06-16 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1264487B (en) * | 1959-04-07 | 1968-03-28 | Goodyear Tire & Rubber | Arrangement for preventing braked vehicle wheels from sliding |
US3578819A (en) * | 1968-09-23 | 1971-05-18 | Kelsey Hayes Co | Skid control system |
DE2063944C3 (en) * | 1970-12-28 | 1982-03-11 | Teldix Gmbh, 6900 Heidelberg | Circuit arrangement of an anti-lock vehicle brake system |
DE2205175A1 (en) * | 1972-02-04 | 1973-08-16 | Bosch Gmbh Robert | ANTI-LOCK CONTROL SYSTEM |
DE2243833A1 (en) * | 1972-09-07 | 1974-03-14 | Bosch Gmbh Robert | ANTI-LOCK CONTROL SYSTEM FOR PRESSURE-CONTROLLED VEHICLE BRAKES |
-
1975
- 1975-05-13 AU AU81094/75A patent/AU8109475A/en not_active Expired
- 1975-05-14 FR FR7515068A patent/FR2276593A1/en active Granted
- 1975-05-19 GB GB2122775A patent/GB1490278A/en not_active Expired
- 1975-05-19 GB GB1941276A patent/GB1490279A/en not_active Expired
- 1975-06-05 DE DE19752525123 patent/DE2525123C2/en not_active Expired
- 1975-06-17 SE SE7506934A patent/SE400938B/en not_active IP Right Cessation
- 1975-06-19 JP JP7384375A patent/JPS5114592A/en active Pending
- 1975-06-23 HU HU75KE967A patent/HU176985B/en not_active IP Right Cessation
- 1975-06-24 SU SU752148453A patent/SU786870A3/en active
-
1984
- 1984-07-02 JP JP9857084U patent/JPS6034060U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841173A (en) * | 1971-09-29 | 1973-06-16 |
Also Published As
Publication number | Publication date |
---|---|
AU8109475A (en) | 1976-11-18 |
DE2525123A1 (en) | 1976-01-15 |
JPS5114592A (en) | 1976-02-05 |
DE2525123C2 (en) | 1982-09-23 |
HU176985B (en) | 1981-06-28 |
GB1490279A (en) | 1977-10-26 |
GB1490278A (en) | 1977-10-26 |
FR2276593A1 (en) | 1976-01-23 |
SU786870A3 (en) | 1980-12-07 |
SE400938B (en) | 1978-04-17 |
SE7506934L (en) | 1975-12-29 |
FR2276593B1 (en) | 1980-04-25 |
JPS6034060U (en) | 1985-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3556610A (en) | Brake control system for preventing wheel locking | |
US3953080A (en) | Adaptive anti-lock brake control system | |
JPS5930587B2 (en) | Wheel slip control device adapted for use on low friction surfaces | |
US4193642A (en) | Skid control system | |
US3482887A (en) | Combined anti-slip and anti-spin control for vehicle wheels | |
US3918766A (en) | Individual wheel anti-skid brake control system having means to prevent excessive brake pressure differences | |
JPS61222850A (en) | Skid controller for car | |
JPH0356222B2 (en) | ||
US3674320A (en) | Adaptive braking control system | |
US3804470A (en) | Speed logic for an adaptive braking system | |
US3625572A (en) | Antiskid device for a vehicle-braking system | |
JPS5844497B2 (en) | Wheel speed discrimination device | |
JPS6313092Y2 (en) | ||
US3606491A (en) | Anti-wheel lock brake control for automotive vehicle | |
US3834770A (en) | Safety arrangement for protecting against the locking of wheels in motor vehicles | |
GB1417673A (en) | Anti-lock brake system controls | |
US4135769A (en) | Anti-skid system incorporating means for controlling the rate of re-application of brake pressure | |
US4209203A (en) | Anti-skid brake control system | |
US3944291A (en) | Antiskid brake control system affording acceleration control of a skidding wheel running on a low adhesion roadway | |
US4143926A (en) | Skid control system | |
US3822921A (en) | Slip and ramp signal generator and comparator for a vehicle skid control braking system | |
US4239295A (en) | Circuit for preventing the wheel velocity from exceeding the vehicle velocity in vehicles with antilocking brake systems | |
US3832013A (en) | Anti-skid control system for fluid pressure brakes | |
JP2503245B2 (en) | Anti-skid controller | |
JPS5945536B2 (en) | Anti-sticking device |