JPS6312938B2 - - Google Patents

Info

Publication number
JPS6312938B2
JPS6312938B2 JP54068950A JP6895079A JPS6312938B2 JP S6312938 B2 JPS6312938 B2 JP S6312938B2 JP 54068950 A JP54068950 A JP 54068950A JP 6895079 A JP6895079 A JP 6895079A JP S6312938 B2 JPS6312938 B2 JP S6312938B2
Authority
JP
Japan
Prior art keywords
thin film
gas
flow rate
film forming
rate control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54068950A
Other languages
Japanese (ja)
Other versions
JPS55161067A (en
Inventor
Taiji Shimomoto
Susumu Myagawa
Shigetoshi Hiratsuka
Yasuo Tanaka
Akio Kumada
Eiichi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6895079A priority Critical patent/JPS55161067A/en
Publication of JPS55161067A publication Critical patent/JPS55161067A/en
Publication of JPS6312938B2 publication Critical patent/JPS6312938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、基板に被膜を形成する薄膜製造装置
に関し、さらに詳述すれば、リアクテイブ・スパ
ツタ装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film manufacturing apparatus for forming a film on a substrate, and more specifically, to an improvement of a reactive sputtering apparatus.

従来、基板上に金属薄膜を形成させる装置とし
て、スパツタリング装置が周知である。とくに、
活性ガス雰囲気中で、金属をスパツタし、これと
ガスとの反応生成物(水素化合物、酸化物、窒化
物など)を薄膜として得る方法はリアクテイブ・
スパツタリングといわれており、その装置の一例
を第1図に示す。この装置は一般に真空容器1
と、該容器内にスパツタされるべき材料からなる
ターゲツト7と、被着が行なわれる基板101が
図の様に配置され、上記容器1は所定の真空排気
装置(図示せず)により排気される。所定の真空
度が得られると、流量計19を通つた反応ガス
(N2)と、流量計20を通つた不活性ガス(Ar)
とが所定の割合で混合され、さらに流量計17で
全体の流量が調整されて上記容器1に流入され
る。なお、排出管21はその場合の余剰ガスを排
出するためのものである。ついで、電源8が動作
されスパツタリングが開始され、この反応ガス雰
囲気中で所望の反応生成膜が基板101上に形成
される。なお、量産向け連続スパツタ装置にあつ
ては、基板を移動させるため特定のレール2及び
その為の駆動装置(図示せず)が付加されてな
る。なお、図で2は基板カセツトレール、3は加
熱室、4は冷却室、5はメインバルブ、6はバイ
パス、7はターゲツト、10,11および18は
流量制御バルブである。
Conventionally, a sputtering apparatus is well known as an apparatus for forming a metal thin film on a substrate. especially,
Reactive method is a method of sputtering metal in an active gas atmosphere and producing a thin film of reaction products (hydrogen compounds, oxides, nitrides, etc.) with the gas.
This is called sputtering, and an example of the device is shown in FIG. This device generally consists of a vacuum vessel 1
A target 7 made of a material to be sputtered and a substrate 101 to be deposited are placed in the container as shown in the figure, and the container 1 is evacuated by a predetermined vacuum evacuation device (not shown). . When a predetermined degree of vacuum is obtained, the reaction gas (N 2 ) passing through the flow meter 19 and the inert gas (Ar) passing through the flow meter 20
are mixed at a predetermined ratio, and the total flow rate is adjusted by a flow meter 17 before flowing into the container 1. Note that the exhaust pipe 21 is for exhausting excess gas in that case. Next, the power supply 8 is activated to start sputtering, and a desired reaction product film is formed on the substrate 101 in this reaction gas atmosphere. In addition, in the case of a continuous sputtering apparatus for mass production, a specific rail 2 and a driving device (not shown) for the same are added in order to move the substrate. In the figure, 2 is a substrate cassette rail, 3 is a heating chamber, 4 is a cooling chamber, 5 is a main valve, 6 is a bypass, 7 is a target, and 10, 11 and 18 are flow rate control valves.

この従来装置における被膜形成において、被着
膜厚等の制御はターゲツト電圧を調整して行なわ
れる。ベルジヤーなど実験室的な装置で被着が形
成される場合はこれでも可能な場合がある。しか
し、スパツタリングをドライプロセス工程等、工
業ベースで連続して行なわしめる場合は、次のよ
うな欠点があつた。放電電圧を一定に保つため、
放電電圧値を目視し、手動で変化させるかないし
は、スパツタ室と排気系の拡散ポンプの間にある
コンダクタンスを変化させスパツタ室の真空度を
変える等の手段をとつていた。また、放電ガスの
制御については、予じめ不活性ガスとリアクチイ
ブ用反応ガスの所定の比率の混合ガスを用いるか
不活性ガスと反応ガスを単独に制御する必要があ
つた。しかしながらこの様な方法では、膜特性の
仕様値の厳しい膜を堆積するのは困難となる。特
に一つの装置で反応性の種々異つた膜を堆積しよ
うとする場合には、先の条件が、後の膜の特性に
著しく影響し、一定特性を持つた膜は生産不可能
であつた。
In film formation using this conventional apparatus, the thickness of the deposited film and the like are controlled by adjusting the target voltage. This may also be possible if the deposit is formed using a laboratory device such as a bell jar. However, when sputtering is carried out continuously on an industrial basis, such as in a dry process, there are the following drawbacks. To keep the discharge voltage constant,
Measures were taken such as visually observing the discharge voltage value and changing it manually, or changing the conductance between the sputtering chamber and the diffusion pump in the exhaust system to change the degree of vacuum in the sputtering chamber. Further, regarding the control of the discharge gas, it is necessary to use a mixed gas of an inert gas and a reactive gas at a predetermined ratio in advance, or to control the inert gas and the reactive gas independently. However, with such a method, it is difficult to deposit a film with strict specification values for film properties. Particularly when attempting to deposit films with various reactivities in one apparatus, the previous conditions significantly influence the properties of the subsequent films, making it impossible to produce films with uniform properties.

本発明の目的は、上記欠点を無くし、量産シス
テムに適合した膜特性の良好な薄膜製造装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a thin film manufacturing apparatus with good film properties that is suitable for mass production systems.

上記目的を達成するための本発明の薄膜製造装
置、例えばリアクテイブスパツタ装置は、反応中
のガスを分析する装置と、この分析結果に基づい
て反応容器内に流入するガス成分比を調整する第
1のガス流量制御装置と、上記反応容器のターゲ
ツト電圧を検出するスパツタ電源変動検出装置
と、この検出信号に基づいて上記反応容器内に流
入するガス流量を調節する第2のガス流量制御装
置と、からなることを特徴とする。
To achieve the above object, the thin film manufacturing apparatus of the present invention, such as a reactive sputtering apparatus, includes a device that analyzes gas during reaction, and adjusts the ratio of gas components flowing into the reaction vessel based on the analysis results. a first gas flow rate control device; a sputter power supply fluctuation detection device for detecting the target voltage of the reaction vessel; and a second gas flow rate control device for adjusting the flow rate of gas flowing into the reaction vessel based on this detection signal. It is characterized by consisting of.

本発明は上述の構成になるので、常に反応ガス
成分比が所定の値に安定して得られ、又、反応ガ
ス総量が所定の値に安定して得られるので、膜
質、膜の状態共に安定した良質の薄膜が得られ
る。以下図面を用いて詳述する。
Since the present invention has the above-mentioned configuration, the reaction gas component ratio can always be stably obtained at a predetermined value, and the total amount of reaction gas can be stably obtained at a predetermined value, so that both the film quality and the state of the film are stable. A high quality thin film can be obtained. The details will be explained below using the drawings.

第2図は本発明の具体例を表わした概略ブロツ
ク図である。
FIG. 2 is a schematic block diagram showing a specific example of the present invention.

リアクテイブ反応容器101内に、ガス流路1
12を通じて反応ガスが流入されている。反応
時、この反応ガスの一部を抽出してガス質量分析
器102で該ガス組成を分析検出する。この検出
された出力信号は予じめ設定されたガス成分比の
値と比較され第1の流量制御装置105に流量比
を調整する指令信号が送られる。この比較器12
0を次の様な構成とした。勿論他の構成も取り得
る。質量分析器102の出力信号はコンピユータ
処理が容易なようにコード変換器103でコード
化される。このコード化された信号はコンピユー
タ中で、予じめ設定されたガス成分比の値と比較
され第1の流量制御装置105に流量比を調整す
る旨の指令信号が送られる。上記流量制御装置で
は、反応に直接寄与する反応ガスと反応ガスを希
釈するための不活性ガスなど複数のガスの混合よ
りなる反応ガスそれぞれの流量を流量比が所定の
値によるよう調整が行なわれる。流量比なので普
通一方の反応性ガスの流量で調整される。このガ
ス流量の調整は、順次ガス流量を調整するアナロ
グ的なものであつてもよいし又、遮断−導通が所
定の時間間隔で順次行なわれるデイジタル的なも
のであつてもよい。
A gas flow path 1 is provided in the reactive reaction vessel 101.
Reaction gas is introduced through 12. During the reaction, a part of the reaction gas is extracted and the gas composition is analyzed and detected by the gas mass spectrometer 102. This detected output signal is compared with a preset gas component ratio value, and a command signal for adjusting the flow rate ratio is sent to the first flow rate control device 105. This comparator 12
0 was configured as follows. Of course, other configurations are also possible. The output signal of the mass spectrometer 102 is encoded by a code converter 103 for easy computer processing. This coded signal is compared with a preset gas component ratio value in the computer, and a command signal to adjust the flow rate ratio is sent to the first flow rate control device 105. In the above-mentioned flow rate control device, the flow rate of each of the reaction gases, which are a mixture of multiple gases such as a reaction gas that directly contributes to the reaction and an inert gas for diluting the reaction gas, is adjusted so that the flow rate ratio is a predetermined value. . Since it is a flow rate ratio, it is usually adjusted by the flow rate of one reactive gas. This adjustment of the gas flow rate may be an analog type in which the gas flow rate is adjusted sequentially, or a digital type in which shutoff and conduction are sequentially performed at predetermined time intervals.

一方、所期の比率の反応ガスが得られても、反
応容器101に流れ込む全体のガス流量が逐次変
動すると、形成された膜質に再び影響を与える。
そこで、リアクテイブ反応時、ターゲツト111
におけるターゲツト電圧の変動分をスパツタ電源
変動検出器106で検出を行なう。この検出され
た出力信号は予じめ設定された設定電圧と比較さ
れ第2の流量制御装置109に総流量を調節する
指令信号が送られる。この比較器130は次の様
な構成とした。勿論他の構成も取り得る。検出さ
れた出力信号はコンピユータ処理が容易なように
第2のコード変換器107でコード化される。こ
のコード化された信号は第2のコンピユータ10
8中で、予じめ設定された設定電圧と比較され第
2の流量制御装置109に総流量を調整する旨の
指令信号が送られる。一般に膜質の状態は反応ガ
ス総量によつても影響を受けこの反応ガス総量と
ターゲツト電圧は相関々係にあるので、上記第2
の流量制御装置では適正なガス流量が供給される
よう調整が行なわれる。
On the other hand, even if a desired ratio of reaction gas is obtained, if the overall gas flow rate flowing into the reaction vessel 101 fluctuates sequentially, the quality of the formed film will again be affected.
Therefore, during reactive reaction, target 111
The sputter power supply fluctuation detector 106 detects the variation in the target voltage at . This detected output signal is compared with a preset voltage, and a command signal is sent to the second flow rate control device 109 to adjust the total flow rate. This comparator 130 had the following configuration. Of course, other configurations are also possible. The detected output signal is encoded in a second code converter 107 for easy computer processing. This coded signal is sent to the second computer 10
8, the voltage is compared with a preset set voltage, and a command signal is sent to the second flow rate control device 109 to adjust the total flow rate. In general, the state of the film quality is also affected by the total amount of reactant gas, and the total amount of reactant gas and the target voltage are interrelated.
The flow rate control device makes adjustments so that an appropriate gas flow rate is supplied.

以上、コード変換装置およびコンピユータがそ
れぞれ全然別なものが2台必要な様に記載したが
これは説明を解り易くする為に行なつたものであ
り普通実効的に2台分の働きをするよりにプログ
ラム等が組み込まれているので、必ず2台必要と
なるという意味ではない。又、ガスの制御の順序
として、初めガス成分比を次いでガス総流量を制
御したが、この順序が逆であつても差しつかえな
いことは云うまでもない。さらに又、ガス流量制
御装置が、ガス流量比とガス総流量個々に入用の
様に記載したが、実効台に2つの機能を備えた流
量制御装置では1個の流量制御装置でよいことは
云うまでもない。
In the above, it has been described as if two completely different code converters and computers were required, but this was done to make the explanation easier to understand, and it would normally be better to effectively perform the functions of two computers. This does not necessarily mean that two devices are required, since programs and other information are built into the device. Furthermore, although the order of gas control is first the gas component ratio and then the total gas flow rate, it goes without saying that this order may be reversed. Furthermore, although the gas flow rate control device is described as requiring the gas flow rate ratio and the total gas flow rate separately, it is possible that only one flow rate control device is required in the case of a flow rate control device that has two functions on the effective stand. Needless to say.

以下本発明を具体的実施例によつて詳しく説明
する。
The present invention will be explained in detail below using specific examples.

実施例 1 第3図は、本リアクチイブスパツタ装置をTa
−N膜作成に適用した例である。図中1′はスパ
ツタ室であり、2′は基板ホールガイドレールで
ある。基板は3′の加熱、ボンバード室から一定
間隔で送り込まれて来て、冷却室4′へ出ていく。
5′のメインバルブより排気されスパツタ時には、
バイパス弁6′を通して排気する。7はTa金属板
のターゲツトであり、8の放電用電源である。9
は直流電圧計であり、ターゲツト7のスパツタ中
の電位を測定する。放電用の不活性ガスArと反
応ガスN2は10および11より導入される。ス
パツタ室内のガスの状態はコンダクタンス12を
通して13の4極子質量分析管で測定される。1
4は質量分析器の排気系で所定の分量の被分析ガ
スが抽出されるよう調節されるためのものである
13で測定された。スパツタガスの量は主にA/
D、変換器(インターフエイス)15を通してコ
ンピユータ16に信号として入力される。16内
ではこれらの入力信号の時間平均を求める。次に
先に16に記憶させている。Ar、N2の比と、前
述の信号の時間平均値を求めたものとを比較さ
せ、その差分を再び15を通してガス流量制御装
置19に返す。N2/Arが設定位値よりも大の場
合には、N2の流入量が、減少する方向に、N2
バルブ11を閉めるべく、流量制御器19を通し
て動作させる。一方、直流電圧計9で計測された
スパツタ電圧は、上述のAD変換器15でコード
化され、次いでコンピユータ16に信号として入
力される。16内ではこれらの入力信号の時間平
均を求める。次に先に16に記憶させているスパ
ツタ電圧と、前述の信号の時間平均値を求めたも
のとを比較させ、その差分を再び15を通してガ
ス流量変換装置17に返す。なお、この制御に使
用するスパツタ電圧とArガスの関係を第6図に
示す。実線61、62、63はそれぞれガス流量が、
150、100、50c.c./minである。すなわち、電圧変
動分はガス(Ar+N2)の流入量のバルブである
18へ、流量制御器17を通して入力させ差分が
正の場合に流入量が大の方向に働かせる。この方
法により、放電の電圧、N2/Arの比を一定に保
つことによつて再現性、均一性の優れたTa2N膜
の特性を向上させるものである。
Example 1 Figure 3 shows this reactive sputtering device
This is an example applied to -N film creation. In the figure, 1' is a sputtering chamber, and 2' is a substrate hole guide rail. The substrates are fed in at regular intervals from the heating and bombardment chamber 3' and exit to the cooling chamber 4'.
When the air is exhausted from the main valve 5' and sputters,
Exhaust through bypass valve 6'. 7 is the target of the Ta metal plate, and 8 is the discharge power source. 9
is a DC voltmeter, which measures the potential in the spatter of the target 7. Inert gas Ar and reactive gas N 2 for discharge are introduced from 10 and 11. The state of the gas in the sputtering chamber is measured through conductance 12 with 13 quadrupole mass spectrometer tubes. 1
Measurements were made at 13, which is 4 and is used to adjust the exhaust system of the mass spectrometer so that a predetermined amount of the gas to be analyzed is extracted. The amount of spatter gas is mainly A/
D. The signal is input as a signal to the computer 16 through the converter (interface) 15. 16, the time average of these input signals is determined. Next, 16 is stored first. The ratio of Ar and N 2 is compared with the time average value of the signal described above, and the difference is returned to the gas flow rate control device 19 through 15 again. When N 2 /Ar is larger than the set value, the flow rate controller 19 is operated to close the N 2 valve 11 so that the inflow of N 2 decreases. On the other hand, the spatter voltage measured by the DC voltmeter 9 is encoded by the above-mentioned AD converter 15, and then input to the computer 16 as a signal. 16, the time average of these input signals is determined. Next, the sputter voltage previously stored in 16 is compared with the time average value of the signal described above, and the difference is returned to gas flow rate converter 17 through 15 again. Incidentally, the relationship between the sputtering voltage and the Ar gas used for this control is shown in FIG. Solid lines 61, 62, and 63 indicate the gas flow rate, respectively.
150, 100, 50c.c./min. That is, the voltage fluctuation is inputted to the gas (Ar+N 2 ) inflow valve 18 through the flow rate controller 17, and when the difference is positive, the inflow amount is increased. This method improves the characteristics of the Ta 2 N film with excellent reproducibility and uniformity by keeping the discharge voltage and N 2 /Ar ratio constant.

第4図は本発明による放電電圧の効果を示した
説明図で、この系を用いる前後の放電々圧の時間
変動を示したものである。この系の使用前には実
線1に示す様に5.0KVの設定に対し数時間単位の
周期と、短周期的にも±200V程度の変動分が生
じていた本発明の系の導入後2には実線2に示す
様に変動分は±30V以下になり、±50Vの設定値
の差を再現できるようになつた。また、この系の
導入前後で堆積した膜のシース抵抗を測定する
と、本発明の導入前には、シート抵抗のばらつき
巾が広いと共に目標値内に納まる個数が〜40%し
かなかつたのに比べて、本発明の系を用いた場合
にはほぼ95%以上が目標仕様内に生産することが
できた。
FIG. 4 is an explanatory diagram showing the effect of the discharge voltage according to the present invention, and shows the temporal fluctuation of the discharge voltage before and after using this system. Before using this system, as shown by the solid line 1, there was a period of several hours and a fluctuation of about ±200V even in short periods with respect to the setting of 5.0KV. As shown by solid line 2, the fluctuation is less than ±30V, and it is now possible to reproduce the difference in set value of ±50V. Furthermore, when we measured the sheath resistance of the films deposited before and after introducing this system, we found that before the introduction of the present invention, there was a wide range of variation in sheet resistance and only ~40% of the sheets fell within the target value. Therefore, when using the system of the present invention, more than 95% of the products were able to be produced within the target specifications.

実施例 2 実施例1において述べた方法は、スパツタ装置
として連続堆積装置であつたが、本発明は、バツ
チ式で堆積する方法にも同様に適用することがで
きる。この実施例の概略構成図を第5図に示す。
概ね第3図と同じなので詳しい説明は省くが、反
応容器201は一般に実験室等で用いられている
ベルジヤーで、試料ホルダー202上に置かれた
試料203は所定のスパツタ被着が終了する毎取
り替えられる。又、制御系で、ガス分析を行なつ
た信号の伝達および制御を行なうのは、第1のコ
ード変換装置151、第1コンピユータ161、
そして上記変換された第1のコードを元のコード
に戻す第1の換元コード変換装置152とからな
る。又、スパツタ電圧による信号の伝達および制
御を行なうのは、第2のコード変換装置153、
第2のコンピユータ162、そして上記変換され
た第2のコードを元のコードに戻す第2の換元コ
ード変換装置154とからなる。動作等について
は第3図の場合と同じなので説明を省略する。
Example 2 Although the method described in Example 1 uses a continuous deposition apparatus as a sputtering apparatus, the present invention can be similarly applied to a batch-type deposition method. A schematic configuration diagram of this embodiment is shown in FIG.
The reaction vessel 201 is a bell jar commonly used in laboratories, etc., and the sample 203 placed on the sample holder 202 is replaced every time a predetermined sputter deposition is completed. It will be done. In addition, in the control system, the first code conversion device 151, the first computer 161,
and a first source code conversion device 152 that converts the converted first code into the original code. Further, the second code conversion device 153 transmits and controls the signal using the sputter voltage.
It consists of a second computer 162, and a second source code conversion device 154 that returns the converted second code to the original code. Since the operation and the like are the same as in the case of FIG. 3, the explanation will be omitted.

この実施例においては、前述の連続スパツタと
異なり、スパツタ工程中においては被着される試
料が移動することがないので、反応ガス雰囲気が
さらに安定したものが得られ、均質なスパツタ被
膜層が形成された。また、ガス分析とターゲツト
電圧の2段階制御方法でガス組成分を制御するの
で、一段と組成分の安定した被膜が得られた。さ
らにまた、この2段階制御方法により、従来単独
のベルジヤー内でスパツタを行なつた場合、被膜
の形成と共に反応ガスの濃度もしくはガス成分比
が変動してきたものが、全く見られなくなり良好
な被膜が得られるようになつた。
In this example, unlike the continuous sputtering described above, the sample to be deposited does not move during the sputtering process, so a more stable reaction gas atmosphere is obtained and a homogeneous sputtered coating layer is formed. It was done. Furthermore, since the gas composition was controlled by a two-step control method of gas analysis and target voltage, a film with a more stable composition was obtained. Furthermore, with this two-step control method, when sputtering was conventionally performed in a single bell gear, the concentration of the reaction gas or the gas component ratio fluctuated as the film was formed, but this can no longer be observed, resulting in a good film. Now I can get it.

実施例 3 実施例1、2においてはスパツタ法のちがいに
ついて述べたものであり、ターゲツトとしては
Ta金属板を用い、Ar+N2ガスでTa−N膜を得
る場合であつたが、本発明はTa−N膜に限らず
金属ターゲツトとしては、Ta以外にTa−Al、
Ta−Al−Si、Ta−Si、Ta−Al−TiTi、Si、
Cu、Zr、Zn、Al等、一元素系の金属ないし混合
多元素ないし合金で少なくてもターゲツトの抵抗
が、10kΩ以下のものであればすべて前述の実施
例1、2に用いた装置で形成された。又、反応ガ
スとしては、N2、O2、H2、等、常温で気体のガ
スについても同様に実現され、良好な被膜が形成
された。作用、効果等も全く同様なので詳細な説
明は省略する。同業者であれば容易に理解される
であろう。
Example 3 Examples 1 and 2 describe the difference between the sputtering methods, and the targets are
In this case, a Ta metal plate was used to obtain a Ta-N film using Ar+N 2 gas, but the present invention is not limited to a Ta-N film.
Ta−Al−Si, Ta−Si, Ta−Al−TiTi, Si,
All single-element metals, mixed multi-element metals, or alloys such as Cu, Zr, Zn, Al, etc., with a target resistance of at least 10 kΩ or less, are formed using the equipment used in Examples 1 and 2 above. It was done. Further, as the reaction gas, gases such as N 2 , O 2 , H 2 and the like, which are gases at room temperature, were similarly realized, and a good film was formed. Since the functions, effects, etc. are exactly the same, detailed explanation will be omitted. This will be easily understood by those in the same industry.

次に本発明の他の実施例を説明する。第7図は
化学的気相被膜装置(以下CVD装置と略称する)
に本発明を適用させたものである。CVD反応容
器301は量産向きに連続的に試料303が移動
されるよう該容器の一部が開放されている。この
CVDでは普通一般にパツシベーシヨン膜として
利用され酸化膜形成されるので反応ガスとしてシ
ラン(SiH4)と酸素(O2)ガス又は所定の酸素
含有のガスが用いられる。もし、パツシベーシヨ
ンとして窒化膜が必要であれば酸素の代りに窒素
ガスが供されることは云うまでもない。又、パツ
シベーシヨン効果を向上させる為しばしばリン
(P)などの不純物を添加させるためのガスを混
入されることもありうる。
Next, another embodiment of the present invention will be described. Figure 7 shows chemical vapor coating equipment (hereinafter abbreviated as CVD equipment)
The present invention is applied to. A part of the CVD reaction container 301 is opened so that a sample 303 can be continuously transferred for mass production. this
In CVD, silane (SiH 4 ) and oxygen (O 2 ) gas or a predetermined oxygen-containing gas is used as the reaction gas because it is generally used as a passivation film and an oxide film is formed. Needless to say, if a nitride film is required as passivation, nitrogen gas may be used instead of oxygen. Further, in order to improve the passivation effect, a gas to add impurities such as phosphorus (P) may often be mixed.

さて、このCVD装置では、上述の反応ガスが
充分混合されて被膜が基板303上に形成されれ
ばよく、スパツタ装置の場合のような高真空度に
装置内を保つ必要はない。しかし、膜質を均一に
形成させる為には上記基板303を加熱させるホ
ツトプーート302を所定の温度に保持しておく
ための温度制御が厳しくなる。スパツタ装置では
ターゲツトの電圧を制御したが、このCVD装置
の場合は上記ホツトプレートの電圧制御を行なう
ことを特徴とする。この様に本発明では、より厳
しい条件の制御が必要とされるものが制御対象に
なる。
Now, in this CVD apparatus, it is only necessary that the above-mentioned reaction gases are sufficiently mixed to form a film on the substrate 303, and there is no need to maintain the inside of the apparatus at a high degree of vacuum as in the case of a sputtering apparatus. However, in order to form a uniform film quality, temperature control is required to maintain the hotpot 302 that heats the substrate 303 at a predetermined temperature. In the sputtering device, the voltage of the target is controlled, but this CVD device is characterized in that the voltage of the hot plate is controlled. In this way, in the present invention, things that require control under stricter conditions are the objects to be controlled.

すなわち、反応ガス304のガス分析を質量分
析器313で行ない、所定の制御信号を第1の流
量制御装置319に伝達して上記シランガス流量
の調整を行なう。一方、上記ホツトプレート30
2の電圧変動分は電気信号検出器308で検出
し、コンピユータ362で所定の操作を行なつた
のち制御信号を第2の流量制御装置317に伝達
を行ない、反応ガス全体の流量の調整を行なう。
That is, gas analysis of the reaction gas 304 is performed by the mass spectrometer 313, and a predetermined control signal is transmitted to the first flow rate control device 319 to adjust the flow rate of the silane gas. On the other hand, the hot plate 30
The second voltage fluctuation is detected by the electric signal detector 308, and after a predetermined operation is performed by the computer 362, a control signal is transmitted to the second flow rate control device 317 to adjust the flow rate of the entire reaction gas. .

本装置では、従来ホツトプレートの温度制御系
が全く反応ガスと独立して行なわれていたのに対
し、反応ガスとホツトプレートの相互関係におい
て制御ができる様になり、従来より一層均質なパ
ツシベーシヨン膜が形成でき、かつ量産も行なえ
るようになつた利点がある。
In the past, the hot plate temperature control system was completely independent of the reaction gas, but with this device, it is now possible to control the mutual relationship between the reaction gas and the hot plate, resulting in a more homogeneous passivation film than before. It has the advantage of being able to be formed and mass-produced.

第8図は本発明のさらに他の実施例としてのエ
ピタキシヤル製造装置の概略構成図である。この
エピタキシヤル反応容器601も量産ができるよ
う容器の一部が開放されている。このエピタキシ
ヤル装置は、Si単結晶膜を形成するための反応ガ
スとして四塩化珪素(SiCl4)ガスと水素ガス
(H2)が使われる。この他に導電型不純物添加の
ためのガスが必要に応じ用いられることは云うま
でもない。
FIG. 8 is a schematic diagram of an epitaxial manufacturing apparatus as still another embodiment of the present invention. This epitaxial reaction vessel 601 is also partially opened to allow mass production. This epitaxial device uses silicon tetrachloride (SiCl 4 ) gas and hydrogen gas (H 2 ) as reaction gases to form a Si single crystal film. Needless to say, other gases for adding conductivity type impurities may be used as necessary.

このエピタキシヤル装置の場合も、反応ガスの
組成を質量分折器613で分折を行ない所定の制
御信号を第1のガス流量制御装置619に伝達し
て、反応ガス成分比の調整を行なう。次いで、エ
ピタキシヤル容器601のヒーター602の電圧
変動分を電気信号検出器608で検出し、所定の
制御信号を第2のガス流量制御装置617に伝達
して反応ガス全体の流量の調整を行なう。
In the case of this epitaxial device as well, the composition of the reaction gas is separated by the mass spectrometer 613 and a predetermined control signal is transmitted to the first gas flow rate control device 619 to adjust the reaction gas component ratio. Next, the electrical signal detector 608 detects voltage fluctuations in the heater 602 of the epitaxial container 601, and transmits a predetermined control signal to the second gas flow rate control device 617 to adjust the flow rate of the entire reaction gas.

本装置では、従来エピタキシヤル装置用の炉体
ヒーターの温度制御系が全く反応ガスと独立して
行なわれていたのに対し、反応ガスと炉体ヒータ
ーとの相互関係を調整した上で制御ができるよう
になり、従来より一層均質なエピタキシヤル膜が
でき、かつ量産も容易に行なえるようになつた利
点がある。
In this system, the temperature control system of the furnace heater for epitaxial equipment was performed completely independently of the reaction gas, but with this system, the temperature control system is controlled after adjusting the mutual relationship between the reaction gas and the furnace heater. This has the advantage that it is now possible to produce epitaxial films that are more homogeneous than before, and mass production is now easier.

以上説明したごとく本発明によれば、放電電圧
と同時に放電の反応ガスの分圧を常に均一に押え
ることによつて元来不可能であつた反応ガス分圧
に非常に敏感な領域においても、ロツト内、およ
びロツト間の膜の特性を再現性よく生産すること
ができる。
As explained above, according to the present invention, by always keeping the partial pressure of the reactive gas in the discharge uniform at the same time as the discharge voltage, even in areas that are extremely sensitive to the partial pressure of the reactive gas, which was originally impossible, It is possible to produce membranes with good reproducibility within and between lots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のリアクテイブスパツタ装置の概
略図である。第2図は本発明の概念を示したブロ
ツク図である。第3図および第6図は本発明の一
実施例としてのリアクテイビスパツタ装置の一例
概略構成図および特性図である。第4図は本発明
の有効性を示すための説明図である堆積時間とス
パツタ電圧の関係を示す。第5,7,8図は本発
明の他の実施例を示す概略構成図である。 1……スパツタ室、2……基板カセツトレー
ル、3……加熱室、4……冷却室、5……メイン
バルブ、6……バイパス、7……ターゲツト、8
……スパツタ電源、9……スパツタ電源変動検
出、10……Arガス導入口、11……反応ガス
導入口、12……コンダクタンス、13……4極
マス、14……差動排気、15……インターフエ
イス、16……コンピユータ、17……流量制御
器、18……流量制御バルブ、19,20……流
量制御器。
FIG. 1 is a schematic diagram of a conventional reactive sputtering device. FIG. 2 is a block diagram showing the concept of the present invention. FIG. 3 and FIG. 6 are a schematic configuration diagram and a characteristic diagram of an example of a reactivis sputtering device as an embodiment of the present invention. FIG. 4 shows the relationship between deposition time and sputtering voltage, which is an explanatory diagram for showing the effectiveness of the present invention. 5, 7, and 8 are schematic configuration diagrams showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Sputtering chamber, 2... Substrate cassette rail, 3... Heating chamber, 4... Cooling chamber, 5... Main valve, 6... Bypass, 7... Target, 8
... Sputter power supply, 9 ... Sputter power supply fluctuation detection, 10 ... Ar gas inlet, 11 ... Reaction gas inlet, 12 ... Conductance, 13 ... Quadrupolar mass, 14 ... Differential exhaust, 15 ... ...Interface, 16...Computer, 17...Flow rate controller, 18...Flow rate control valve, 19, 20...Flow rate controller.

Claims (1)

【特許請求の範囲】 1 少なくともガス流入手段と薄膜形成のために
用いる電気的入力手段を有する薄膜形成容器と、
該容器内の反応ガスを分析するガス分析手段と、
該分析手段の出力信号を所定の基準値と比較する
手段と、該分析手段の出力信号と所定の基準値と
の差に基づいてガス流量比の調整を行なう第1の
流量制御手段と、上記薄膜形成容器の所定の電圧
を検出する電気信号検出手段と、該検出手段の出
力信号を所定の基準値と比較する手段と該検出手
段の出力信号と所定の基準値との差に基づいてガ
ス総量の調整を行なう第2の流量制御手段とから
なる薄膜製造装置において、上記ガス流入手段
に、上記第1の流量制御手段および上記第2の流
量制御手段を結続せしめたことを特徴とする薄膜
製造装置。 2 特許請求の範囲第1項記載の薄膜製造装置に
おいて、上記薄膜形成容器にリアクテイブ反応容
器を用いることを特徴とする薄膜製造装置。 3 特許請求の範囲第1項記載の薄膜製造装置に
おいて、上記薄膜形成容器にCVD薄膜形成容器
を用いることを特徴とする薄膜製造装置。 4 特許請求の範囲第1項記載の薄膜製造装置に
おいて、上記薄膜形成容器にエピタキシヤル薄膜
形成容器を用いることを特徴とする薄膜製造装
置。 5 特許請求の範囲第1項記載の薄膜製造装置に
おいて、上記比較手段はコード変換装置とコンピ
ユータとからなることを特徴とする薄膜製造装
置。
[Scope of Claims] 1. A thin film forming container having at least a gas inflow means and an electrical input means used for forming a thin film;
a gas analysis means for analyzing the reaction gas in the container;
means for comparing the output signal of the analysis means with a predetermined reference value; first flow rate control means for adjusting the gas flow rate ratio based on the difference between the output signal of the analysis means and the predetermined reference value; electrical signal detection means for detecting a predetermined voltage of the thin film forming container; means for comparing the output signal of the detection means with a predetermined reference value; A thin film manufacturing apparatus comprising a second flow rate control means for adjusting the total amount, characterized in that the first flow rate control means and the second flow rate control means are connected to the gas inflow means. Thin film manufacturing equipment. 2. The thin film manufacturing apparatus according to claim 1, wherein a reactive reaction vessel is used as the thin film forming vessel. 3. The thin film manufacturing apparatus according to claim 1, wherein a CVD thin film forming container is used as the thin film forming container. 4. The thin film manufacturing apparatus according to claim 1, wherein an epitaxial thin film forming container is used as the thin film forming container. 5. The thin film manufacturing apparatus according to claim 1, wherein the comparison means comprises a code conversion device and a computer.
JP6895079A 1979-06-04 1979-06-04 Manufacturing apparatus of thin film Granted JPS55161067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6895079A JPS55161067A (en) 1979-06-04 1979-06-04 Manufacturing apparatus of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6895079A JPS55161067A (en) 1979-06-04 1979-06-04 Manufacturing apparatus of thin film

Publications (2)

Publication Number Publication Date
JPS55161067A JPS55161067A (en) 1980-12-15
JPS6312938B2 true JPS6312938B2 (en) 1988-03-23

Family

ID=13388446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6895079A Granted JPS55161067A (en) 1979-06-04 1979-06-04 Manufacturing apparatus of thin film

Country Status (1)

Country Link
JP (1) JPS55161067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045611A (en) * 2004-08-04 2006-02-16 Nippon Telegr & Teleph Corp <Ntt> Sputter film deposition apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967619A (en) * 1982-10-12 1984-04-17 Kokusai Electric Co Ltd Controller for pressure of semiconductor manufacturing device with decompression vessel
AU549376B2 (en) * 1983-02-25 1986-01-23 Toyota Jidosha Kabushiki Kaisha Plasma treatment
US4428811A (en) * 1983-04-04 1984-01-31 Borg-Warner Corporation Rapid rate reactive sputtering of a group IVb metal
US6106676A (en) * 1998-04-16 2000-08-22 The Boc Group, Inc. Method and apparatus for reactive sputtering employing two control loops
JP2002275628A (en) * 2001-03-21 2002-09-25 Sumitomo Bakelite Co Ltd Sputtering film-forming method
JP2002322561A (en) * 2001-04-25 2002-11-08 Sumitomo Bakelite Co Ltd Sputtering film deposition method
JP2010199305A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362788A (en) * 1976-11-15 1978-06-05 Commissariat Energie Atomique Method of controlling thin film deposit by active sputtering and active sputtering apparatus for carrying out said method
JPS54103790A (en) * 1978-02-01 1979-08-15 Nec Corp Sputtering apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362788A (en) * 1976-11-15 1978-06-05 Commissariat Energie Atomique Method of controlling thin film deposit by active sputtering and active sputtering apparatus for carrying out said method
JPS54103790A (en) * 1978-02-01 1979-08-15 Nec Corp Sputtering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045611A (en) * 2004-08-04 2006-02-16 Nippon Telegr & Teleph Corp <Ntt> Sputter film deposition apparatus

Also Published As

Publication number Publication date
JPS55161067A (en) 1980-12-15

Similar Documents

Publication Publication Date Title
US7195930B2 (en) Cleaning method for use in an apparatus for manufacturing a semiconductor device
EP0409603B1 (en) Process and apparatus for chemical vapour deposition
US5614247A (en) Apparatus for chemical vapor deposition of aluminum oxide
EP0506012B1 (en) Apparatus for producing superconducting oxide film by MOCVD process
EP1132504B1 (en) Thin film depositing process using an FTIR gas analyzer and a mixed gas supplying device
JPS6312938B2 (en)
Tedder et al. Real‐time process and product diagnostics in rapid thermal chemical vapor deposition using in situ mass spectrometric sampling
EP0430229A2 (en) Process and apparatus for forming stoichiometric layer of metal compound by closed loop voltage controlled reactive sputtering
JPS62139876A (en) Formation of deposited film
JPH0310082A (en) Method and device for forming deposited film
JPH03243770A (en) Composite member and its production
Chowdhury et al. Real-time process sensing and metrology in amorphous and selective area silicon plasma enhanced chemical vapor deposition using in situ mass spectrometry
JPS61229319A (en) Thin film forming method
Ahn et al. A critical comparison of silicide film deposition techniques
WO2003090271A1 (en) Film formation method
CN113862641B (en) Monitoring system for atomic layer deposition precursor dosage, method and application thereof
JPH04136165A (en) Reactive gas introducing type film forming device
JPS62142778A (en) Formation of deposited film
JPH06342761A (en) Vacuum device and thin film forming method using it
JPS6334931A (en) Apparatus for manufacturing semiconductor
Sreenivasan et al. A comparative study of reactor designs for the production of graded films with applications to combinatorial CVD
JPH0663095B2 (en) CVD equipment
JP2756126B2 (en) Sputtering equipment
JP2619351B2 (en) Gas flow control method
JPH0645891B2 (en) Deposited film formation method