JPS63129298A - Fin material for heat exchange - Google Patents

Fin material for heat exchange

Info

Publication number
JPS63129298A
JPS63129298A JP27488586A JP27488586A JPS63129298A JP S63129298 A JPS63129298 A JP S63129298A JP 27488586 A JP27488586 A JP 27488586A JP 27488586 A JP27488586 A JP 27488586A JP S63129298 A JPS63129298 A JP S63129298A
Authority
JP
Japan
Prior art keywords
fin material
heat exchange
base plate
heat
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27488586A
Other languages
Japanese (ja)
Inventor
Akira Ito
晃 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27488586A priority Critical patent/JPS63129298A/en
Publication of JPS63129298A publication Critical patent/JPS63129298A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase heat exchange efficiency by forming a base plate which has many small continuous spaces using polymeric fiber or glass fiber, and attaching metal material which has a good heat conductivity to the base plate. CONSTITUTION:A heat exchange fin material 1 in a sheet shape consists of a base plate 2 which is formed of, for example, glass fiber, and a metal member, for example copper 3, which is metallized on the base plate 2 and has good heat conductivity. The fin material 1 has many continuous small spaces in the direction of its thickness. When the fin material 1 is manufacture, the base plate 2 is formed of glass fiber as an unwoven cloth which has many continuous small spaces, and copper 3 is metallized by a vacuum metallizer 4. Furthermore, the base plate 2 on which copper is metallized is placed in a vessel 5 which stores water containing sodium carbonate, and the vessel 5 is heated to recrystallize the copper. With this constitution the heat exchange area is expanded and the radiation of the heat transferred to the metallic material and the heat absorption of the fin material for said heat exchange are carried out efficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱交換器の放熱フィン等に使用される熱交換用
フィン材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat exchange fin material used for radiation fins of a heat exchanger and the like.

(従来の技術) 従来、冷凍回路の熱交換器の放熱フィンとしてアルミニ
ューム製の熱交換用フィン材を使用したものが知られて
いる。
(Prior Art) Conventionally, heat exchange fins made of aluminum are used as heat radiation fins of heat exchangers in refrigeration circuits.

(発明が解決しようとする問題点) 前記従来の熱交換用フィン材では、前述の如く通気性を
有しないアルミニューム製のもので形成されているから
、前記熱交換用フィン材の熱交換面積はその外周面に限
定されるし、また、熱交換器用の送風機で放熱するとき
も、該送風空気が該熱交換用フィン材が壁となって滞留
し、充分な放熱を行うことができなかった。
(Problems to be Solved by the Invention) Since the conventional heat exchange fin material is made of aluminum which does not have air permeability as described above, the heat exchange area of the heat exchange fin material is limited. is limited to the outer circumferential surface of the heat exchanger, and when heat is radiated by a blower for a heat exchanger, the blown air becomes stagnant as the heat exchange fin material acts as a wall, making it impossible to radiate sufficient heat. Ta.

(発明の目的) 本発明は前記従来の問題点に鑑み、熱交換効率を向上さ
せた熱交換用フィン材を提供しようとするものである。
(Object of the Invention) In view of the above-mentioned conventional problems, it is an object of the present invention to provide a heat exchange fin material with improved heat exchange efficiency.

(問題点を解決するための手段) 本発明は前記目的を達成するため、高分子IAl維或5
はガラスm雑により連続的な徴小の空間を多数有する基
板を形成し、該基板に伝熱性を有する金属材料を付着し
たことを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention uses polymeric IAl fibers or 5
The method is characterized in that a substrate having a large number of continuous small spaces is formed by glass moulding, and a metal material having heat conductivity is adhered to the substrate.

(作用) 本発明によれば、高分子繊維或いはガラス繊維により連
続的な徴小の空間を有する基板を形成したから、空気が
流通するとともに、熱交換面積が拡大する。
(Function) According to the present invention, since the substrate having continuous small spaces is formed using polymer fibers or glass fibers, air can circulate and the heat exchange area can be expanded.

(実施例) 第1図乃至第5図は本発明の一実施例を示すもので、1
はシート状の熱交換用フィン材(以下単にフィン材とい
う)で、ガラスtafIiiにて形成された基板2と、
該基板2に蒸着した伝熱性良好な金属部材、例えば銅3
とからなり、該フィン材1の厚さ方向には連続的な徴小
の空間を多数有するものとなっている。
(Example) Figures 1 to 5 show an example of the present invention.
is a sheet-like heat exchange fin material (hereinafter simply referred to as fin material), which includes a substrate 2 made of glass TAFIII;
A metal member having good heat conductivity, such as copper 3, is deposited on the substrate 2.
The fin material 1 has a large number of continuous small spaces in the thickness direction.

また、前記フィン材1を製造するときは第2図に示すよ
うに、先ず、前記基板2を径が0.05M以下のガラス
繊維にて連続的な徴小の空間を多数有する不織布として
形成する。次に、該基板2を周知の真空蒸着器4にて前
記用3を蒸着する。
When manufacturing the fin material 1, as shown in FIG. 2, first, the substrate 2 is formed from glass fiber with a diameter of 0.05M or less as a nonwoven fabric having a large number of continuous small spaces. . Next, the substrate 2 is evaporated with the above-mentioned material 3 using a well-known vacuum evaporator 4.

このとき、該銅3は該基板2の表面は勿論のこと、前記
徴小の空間内にも付着する。更に、該蒸着した基板2を
炭酸ナトリウムを含む水を貯留した容器5内に入れ、該
容器5をバーナ6にて加熱し、該銅3を再結晶化する。
At this time, the copper 3 adheres not only to the surface of the substrate 2 but also to the inside of the small spaces. Further, the vapor-deposited substrate 2 is placed in a container 5 storing water containing sodium carbonate, and the container 5 is heated with a burner 6 to recrystallize the copper 3.

−そして、該基板2を該溶液から取出し、例えばシャワ
ー装置7にて水洗いを充分に行う。これにより、フィン
材1が形成される。
-Then, the substrate 2 is taken out from the solution and thoroughly washed with water, for example, using a shower device 7. Thereby, the fin material 1 is formed.

本実施例によれば、前記フィン材1は伝熱性良好な銅3
を有することから、熱伝導性を有ザるものとなる。また
、該フィン材1はガラス繊維にて連続的な徴小の空間を
多数有するものとなっているから、従来のフィン材とは
異なり、通気性を有し、熱交換面積が大きくなる。これ
により、該銅3に伝導した熱は効率良く放出されること
となる。
According to this embodiment, the fin material 1 is made of copper 3 having good heat conductivity.
Since it has , it has thermal conductivity. Further, since the fin material 1 is made of glass fiber and has a large number of continuous small spaces, it has air permeability and a large heat exchange area, unlike conventional fin materials. Thereby, the heat conducted to the copper 3 is efficiently released.

また、前述の如く、前記用3は再結晶されることから、
空気通過効率は更に向上する。
In addition, as mentioned above, since the above-mentioned 3 is recrystallized,
Air passage efficiency is further improved.

第3図及び第4図はフィン材を集熱器の凝縮部に取り付
け、集熱器内の水温(イ)、凝縮部の温度(ロ)及びフ
ィン材の温度(ハ)を測定したグラフで、第4図は従来
のフィン材、第5図は本発明に係るフィン材1を示すも
のである。係る各グラフから明らかのように、従来のフ
ィン材は多少放熱するがフィン材の温度は集熱器内の水
温及び凝縮部の温度に対応して変化するとともに、最高
70℃前後まで上昇し、熱の残留度が大きいことが理解
できる。これに対して、本発明に係るフィン材1は集熱
器内の水温及び凝縮部の温度が高いときでも30℃前後
で温度上昇がきわめて小さく、該フィン材1に伝導した
熱は残留することなく有効に放熱されていることが理解
出来る。
Figures 3 and 4 are graphs of the water temperature in the collector (a), the temperature of the condensing part (b), and the temperature of the fin material (c) when the fin material was attached to the condensing part of the heat collector. , FIG. 4 shows a conventional fin material, and FIG. 5 shows a fin material 1 according to the present invention. As is clear from these graphs, conventional fin materials radiate heat to some extent, but the temperature of the fin materials changes in response to the water temperature in the heat collector and the temperature of the condensing part, and increases to a maximum of around 70 ° C. It can be seen that the degree of residual heat is large. On the other hand, the fin material 1 according to the present invention has a very small temperature rise of around 30°C even when the water temperature in the heat collector and the temperature of the condensing part are high, and the heat conducted to the fin material 1 remains. It can be seen that heat is dissipated effectively without any problems.

次に、前記フィン材1を冷凍回路の熱交換器8の放熱フ
ィン9として使用する場合を説明する。
Next, a case will be described in which the fin material 1 is used as a radiation fin 9 of a heat exchanger 8 of a refrigeration circuit.

即ち、前記フィン材1を第1図に示すように、長方形状
に形成するとともに、該フィン材1の周端にアルミニュ
ーム製のフレーム710を取り付けて該放熱フィン9を
形成し、第5図に示すように、該熱交換器8に所定間隔
をおいて複数枚取付ける。
That is, as shown in FIG. 1, the fin material 1 is formed into a rectangular shape, and a frame 710 made of aluminum is attached to the peripheral end of the fin material 1 to form the radiation fins 9. As shown in the figure, a plurality of heat exchangers are attached to the heat exchanger 8 at predetermined intervals.

これにより、従来のものと比較し該熱交換器8の熱交換
効率は飛躍的に向上する。
Thereby, the heat exchange efficiency of the heat exchanger 8 is dramatically improved compared to the conventional one.

尚、前記実施例では前記フィン材1の基板2としてガラ
ス繊維を使用しているが、高分子繊維を使用しても良い
し、また、金属部材として銅3を使用しているが、これ
に限るものではなく、伝熱効率の良好なもの、例えばア
ルミニューム、銀、ステンレススチール等でも良いこと
は勿論である。
In the above embodiment, glass fiber is used as the substrate 2 of the fin material 1, but polymer fiber may also be used, and copper 3 is used as the metal member. Of course, the material is not limited to the material, and materials with good heat transfer efficiency, such as aluminum, silver, stainless steel, etc., may also be used.

更に、前記実施例では、前記フィン材1を冷凍回路の熱
交換器8に使用しているが、これに限るものではなく、
自動車のターボチャージせ−に設けられたインタークー
ラの放熱フィンとしても使用出来るものである。
Further, in the embodiment, the fin material 1 is used in the heat exchanger 8 of the refrigeration circuit, but the invention is not limited to this.
It can also be used as a radiation fin for an intercooler installed in an automobile turbocharger.

(発明の効果) 以上説明したように、本発明は高分子繊維或いはガラス
繊維により連続的な徴小の空間を多数有Jる基板を形成
し、該基板に伝熱性を有する金属材料を付着したので、
熱交換用フィン材内を空気が流通するとともに、熱交換
面積が拡大し、金属材料に伝導した熱の放熱及び該熱交
換用フィン材の吸熱が効率良く行なわれるという利点を
有する。
(Effects of the Invention) As explained above, the present invention forms a substrate having a large number of continuous small spaces using polymer fibers or glass fibers, and adheres a heat conductive metal material to the substrate. So,
This has the advantage that air flows through the heat exchange fin material, the heat exchange area is expanded, and the heat conducted to the metal material is efficiently radiated and the heat exchange fin material absorbs heat efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の一実施例を示すもので、第
1図はフィン材を示す組立て斜視図、第2図はフィン材
の製造工程を示す概略図、第3図は集熱器内の水温、凝
縮部の温度及び従来のフィン材の温度を測定したグラフ
、第4図は集熱器内の水温、凝縮部の温度及び本発明に
係るフィン材の温度を測定したグラフ、第5図はフィン
材を取付けた冷凍回路の熱交換器である。 図中、1・・・熱交換用フィン材、2・・・基板、3・
・・金属材料〈銅)。
1 to 5 show one embodiment of the present invention, in which FIG. 1 is an assembled perspective view showing the fin material, FIG. 2 is a schematic diagram showing the manufacturing process of the fin material, and FIG. 3 is an assembly. A graph showing the measurement of the water temperature in the heat collector, the temperature of the condensing part, and the temperature of the conventional fin material. Figure 4 is a graph showing the measurement of the water temperature in the heat collector, the temperature of the condensing part, and the temperature of the fin material according to the present invention. , FIG. 5 shows a heat exchanger for a refrigeration circuit equipped with fins. In the figure, 1... Fin material for heat exchange, 2... Board, 3...
...Metal material (copper).

Claims (1)

【特許請求の範囲】[Claims]  高分子繊維或いはガラス繊維により連続的な徴小の空
間を多数有する基板を形成し、該基板に伝熱性を有する
金属材料を付着したことを特徴とする熱交換用フイン材
A fin material for heat exchange, characterized in that a substrate having a large number of continuous small spaces is formed of polymer fibers or glass fibers, and a metal material having heat conductivity is attached to the substrate.
JP27488586A 1986-11-18 1986-11-18 Fin material for heat exchange Pending JPS63129298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27488586A JPS63129298A (en) 1986-11-18 1986-11-18 Fin material for heat exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27488586A JPS63129298A (en) 1986-11-18 1986-11-18 Fin material for heat exchange

Publications (1)

Publication Number Publication Date
JPS63129298A true JPS63129298A (en) 1988-06-01

Family

ID=17547892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27488586A Pending JPS63129298A (en) 1986-11-18 1986-11-18 Fin material for heat exchange

Country Status (1)

Country Link
JP (1) JPS63129298A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811397A (en) * 1981-07-10 1983-01-22 Sanyo Electric Co Ltd Total heat exchange element
JPS58198696A (en) * 1982-05-12 1983-11-18 Matsushita Electric Ind Co Ltd Heat exchange element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811397A (en) * 1981-07-10 1983-01-22 Sanyo Electric Co Ltd Total heat exchange element
JPS58198696A (en) * 1982-05-12 1983-11-18 Matsushita Electric Ind Co Ltd Heat exchange element

Similar Documents

Publication Publication Date Title
KR100353427B1 (en) Heat sink and cooling method using it
RU96107096A (en) HEAT-RADIATING PANEL AND METHOD OF COOLING WITH ITS APPLICATION
CN110365815B (en) Heat conduction assembly and terminal
BE764972A (en) PROCESS FOR MANUFACTURING HEAT EXCHANGERS OF THE KIND OF RADIATORS AND RESULTING RADIATOR
FI70786B (en) MATBEREDNINGSKAERL
JPS63129298A (en) Fin material for heat exchange
JPS63129299A (en) Heat exchanger
JP3819316B2 (en) Tower type heat sink
JP3108656B2 (en) Plate type heat pipe and cooling structure using it
JPS5561049A (en) Radiator for semiconductor
JPH07198279A (en) Heat pipe, heat pipe type radiator and manufacture of the same radiator
JPH06168899A (en) Heater unit for heating substrate
KR800000788Y1 (en) Radiating pipe
CN210741234U (en) Water-absorbing metal sheet and radiator
JP2742332B2 (en) Cooling method using heat sink
JPS55152388A (en) Gravity-type radiator
JPS5578441A (en) Magnetron
JPH01121690A (en) Structure of wick for heat pipe
JP3546473B2 (en) Boiling cooling device
JPS59134456A (en) Solar heat water heater
JPH04356000A (en) Heat releasing part cooling structure fitted to board
JPH08227955A (en) Heat pipe type cooling device
JPH10227588A (en) Heat pipe
JPS616576A (en) Evaporator
JPS61250426A (en) Wall-integrated cooler/heater