JPS63129146A - Air-fuel ratio control device for engine - Google Patents

Air-fuel ratio control device for engine

Info

Publication number
JPS63129146A
JPS63129146A JP27428386A JP27428386A JPS63129146A JP S63129146 A JPS63129146 A JP S63129146A JP 27428386 A JP27428386 A JP 27428386A JP 27428386 A JP27428386 A JP 27428386A JP S63129146 A JPS63129146 A JP S63129146A
Authority
JP
Japan
Prior art keywords
air
heater
fuel ratio
engine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27428386A
Other languages
Japanese (ja)
Inventor
Kazuaki Hyodo
兵頭 和明
Koichi Takahashi
高橋 侯一
Yutaka Oizumi
豊 大泉
Yoshikazu Iwashita
岩下 義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP27428386A priority Critical patent/JPS63129146A/en
Publication of JPS63129146A publication Critical patent/JPS63129146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To continually improve control accuracy of air-fuel ratio, by equipping a control device with a heater ability detecting means, which detects heater ability of an exhaust sensor with heater, and a correcting means which receives an output from the heater ability detecting means correcting a feedback control signal in a control means. CONSTITUTION:If ability of a heater decreases due to its break or the like, the output characteristic of an exhaust sensor 18 changes in accordance with an exhaust temperature, but a feedback control signal of a control means 25 is corrected by a correcting means 26 so that the change of said output characteristic is compensated. Consequently, air-fuel ratio of a mixture is controlled in good accuracy to the target air-fuel ratio in accordance with an operative condition even when the heater causes its break or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの空燃比制御v4置に関し、待にヒー
タ付排気センサを使って混合気の空燃比を所定1直にフ
ィードバック1lill )Eするようにしたものの改
良に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to the air-fuel ratio control system of an engine, and uses an exhaust sensor with a heater to directly feedback the air-fuel ratio of the air-fuel mixture to a predetermined value. Concerning improvements made to the above.

(従来の技術) 従来、この種の空燃比制!II¥r装置として、例えば
特開昭60−79133号公報に開示されるように、エ
ンジンの排気通路に、排気ガス中の酸素濃度成分により
混合気の空燃比を検出するヒータ付排気センサを配置し
、この排気センサの出力に基づいて混合気の空燃比が目
標値になるようにインジェクタをフィードバック制御す
るとともに、排気センサの出力特性が排気温喰に拘らず
一定になるように上記ヒータで排気センサを加熱するよ
うにしたものが知られている。
(Conventional technology) Conventionally, this type of air-fuel ratio control! As an II\r device, for example, as disclosed in Japanese Patent Application Laid-Open No. 60-79133, an exhaust sensor with a heater is placed in the exhaust passage of the engine to detect the air-fuel ratio of the air-fuel mixture based on the oxygen concentration component in the exhaust gas. Based on the output of this exhaust sensor, the injector is feedback-controlled so that the air-fuel ratio of the mixture reaches the target value, and the heater is used to control the exhaust so that the output characteristics of the exhaust sensor remain constant regardless of the exhaust gas temperature. Sensors that heat the sensor are known.

ところで、このようにヒータ付排気センサを(軸えた空
燃比制御装置において、ヒータが断線した場合、排気ガ
スの畠麿が低いときには、排気センサ出力のリッチ側か
らリーン側への反転が遅れる0!1係上、空燃比がリッ
チ傾向に検出されるので、混合気の空燃比が目標とする
空燃比よりもリーン傾向にずれてしまう。
By the way, in an air-fuel ratio control device that uses an exhaust sensor with a heater as described above, if the heater is disconnected and the exhaust gas level is low, the reversal of the exhaust sensor output from the rich side to the lean side will be delayed. First, since the air-fuel ratio is detected to have a rich tendency, the air-fuel ratio of the air-fuel mixture deviates from the target air-fuel ratio to a lean tendency.

そこで、このような問題を解消すべく上記引例のもので
は、ヒータの断線時にはその時点の排気センサ出力位を
記憶し、以後この出力値に基づいて混合気の空燃比をフ
ィードバック制御し、排気センサ出力特性の変動による
制卯精喫の低下を少なくするようにしている。
Therefore, in order to solve this problem, in the above cited example, when the heater is disconnected, the exhaust sensor output level at that time is memorized, and from then on, the air-fuel ratio of the mixture is feedback-controlled based on this output value, and the exhaust sensor This is intended to reduce the reduction in control efficiency due to fluctuations in output characteristics.

(発明か解決しようとする問題点) ところが、上記従来のものでは、ヒータの断線後は、フ
ィードバック制ull信号が断線時の排気センサ出力値
に応じた一定((口に固定されるので、運転状態の変化
に対応した空燃比シリ御ができない。
(Problem to be solved by the invention) However, in the above-mentioned conventional device, after the heater is disconnected, the feedback control ull signal remains constant ((fixed to the mouth, so the feedback control The air-fuel ratio cannot be controlled in response to changes in conditions.

本発明はかかる点に鑑みでなされたものであり、その目
的とするところは、ヒータの能力が断!!i1等により
低下したときにおいても、排気センサの出力を生かしつ
つフィードバック制御信号を適切に設定することにより
、空燃比の制御精度を向上させることにある。
The present invention has been made in view of this point, and its purpose is to reduce the heater's ability to cut off. ! The purpose is to improve the control accuracy of the air-fuel ratio by appropriately setting the feedback control signal while making use of the output of the exhaust sensor even when the air-fuel ratio decreases due to i1 or the like.

(問題点を解決するための手段) 上記目的を達成するため、本発明では、排気センサの出
力に帛ついてフィードバック制御13号を設定し且つこ
のフィードバック制御信号をヒータ能力に応じて補正づ
ることである。
(Means for solving the problem) In order to achieve the above object, the present invention sets feedback control No. 13 based on the output of the exhaust sensor and corrects this feedback control signal according to the heater capacity. be.

具体的に、本発明の講じた解決手段は、第1図に示すよ
うに、エンジンに供給する混合気の空燃比をFJ4整す
る空燃比調整手段8と、エンジンの排気通路に配設さ机
、エンジンに供給された混合気の空燃比を検出するヒー
タ付排気センサ18と、該ヒータ付排気センサ18の出
力を受け、エンジンの空燃比が目標直になるように上記
空燃比調整手段8をフィードバック制御する1−制御手
段25とを備えることを前1rlとづる。そして、」二
記ヒータ付排気センサ18のヒータ能力を検出するヒー
タ能力検出手段20と、該ヒータ能力検出手段20の出
力を受け、上記制御手段25にJ3けるフィードバック
iil制御信号を補正する補正手段26どを備える構成
としたものである。
Specifically, the solution taken by the present invention, as shown in FIG. , a heater-equipped exhaust sensor 18 for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine; and receiving the output of the heater-equipped exhaust sensor 18, the air-fuel ratio adjusting means 8 is adjusted so that the air-fuel ratio of the engine is at the target level. The provision of 1-control means 25 for feedback control is referred to as 1rl. and a heater capacity detection means 20 for detecting the heater capacity of the heater-equipped exhaust sensor 18, and a correction means for receiving the output of the heater capacity detection means 20 and correcting the feedback ii control signal to the control means 25 J3. 26 etc.

(作用) 上記の偶成により、本発明では、ヒータ21の能力がl
1vi線等により低下すると、排気センサ18の出力特
性が排気湿度に応じて変動するが、上記補正手段2Gに
よってこの出力特性の変動を補償づ′るよう制御手段2
5のフィードバック制御信号が補正されるので、ヒータ
断線時等でも混合気の空燃比が運転状態に応じて目標空
燃比に精度良く制■される。
(Function) Due to the above combination, in the present invention, the ability of the heater 21 is
1vi line etc., the output characteristics of the exhaust sensor 18 fluctuate depending on the exhaust humidity.
Since the feedback control signal No. 5 is corrected, the air-fuel ratio of the air-fuel mixture is accurately controlled to the target air-fuel ratio in accordance with the operating state even when the heater is disconnected.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図は本発明に係る空燃比制御装置を備えたエンジン
を示し、1はエンジン、2はエンジン1のシリンダ3に
階動自在にbX挿したピストン4により容積可変に形成
される燃焼室、5は一端が人気に連通し、他端が上記燃
焼室2に開口して吸気をエンジン1に供給するための吸
気通路、6は一端が上記燃焼室2に開口し、If!!端
が大気に開放されて排気を排出するための排気通路であ
って、上記吸気通路5の途中には、吸入空気量を制御す
るスロットル弁7と、該スロットル弁7下流側でエンジ
ン1に燃料を噴射供給する空燃比調整手段としての燃料
噴(ト)弁8とが各々配設されているとともに、吸気通
路5の燃焼室2への間口部には吸気弁9が、また排気通
路5の燃焼室2への間口部には排気弁10が各々配設さ
れている。さらに、燃焼室2の頂部には、該燃焼室2内
の混合気に点火する点火プラグ11が配設されている。
FIG. 2 shows an engine equipped with an air-fuel ratio control device according to the present invention, in which 1 is an engine, 2 is a combustion chamber whose volume is variable by a piston 4 inserted into a cylinder 3 of the engine 1 so as to be movable; 5 is an intake passage with one end communicating with the combustion chamber 2 and the other end opening into the combustion chamber 2 for supplying intake air to the engine 1; 6 with one end opening into the combustion chamber 2; If! ! It is an exhaust passage whose end is open to the atmosphere to discharge exhaust gas, and in the middle of the intake passage 5 there is a throttle valve 7 that controls the amount of intake air, and a throttle valve 7 that controls the amount of intake air, and on the downstream side of the throttle valve 7 that supplies fuel to the engine 1. A fuel injection valve 8 is provided as an air-fuel ratio adjusting means for injecting and supplying fuel, and an intake valve 9 is provided at the frontage of the intake passage 5 to the combustion chamber 2, and an intake valve 9 is provided at the frontage of the intake passage 5 to the combustion chamber 2. Exhaust valves 10 are disposed at the frontage to the combustion chamber 2, respectively. Furthermore, an ignition plug 11 is disposed at the top of the combustion chamber 2 to ignite the air-fuel mixture within the combustion chamber 2.

また、15は吸気通路5のスロットルブT7上流側で吸
入空気量を検出するエア70−センサ、16はスロット
ル弁7の開度を検出する間改センサ、17はエンジン冷
却水温度によりエンジン1の温室を検出するエンジン混
成センサ、18は排気通路7に設けられ排気ガス中の酸
素部面成分により混合気の空燃比を検出するヒータ付排
気センサ、19はエンジン回転数を検出する回転数セン
サを内蔵するディストリビュータであって、上記エア7
0−センサ15及びディストリビュータ19により、エ
ンジン1の運転状態を検出するようにしている。上記ヒ
ータ付排気センサ18は、第3図に示すように、排気ガ
ス濡洩が低い運転状態にあるときに通電されセンサ素子
を加熱してその出力特性を排気1mに拘らず一定に補償
するヒータ21を内蔵するものである。該ヒータ21は
、ヒータ印加電圧を検出するヒータ能力検出手段として
のヒータセンサ20およびリレー22を介してバッテリ
23に接続されている。そして、上記センサ15〜20
の各検出信号はコントローラ24に入力されていて、該
コントローラ24により上記燃料噴射弁8および点火プ
ラグ11並びにリレー22が各々aIlIIllサレル
Further, 15 is an air 70-sensor that detects the amount of intake air on the upstream side of the throttle valve T7 of the intake passage 5, 16 is an air gap sensor that detects the opening degree of the throttle valve 7, and 17 is an air sensor that detects the amount of intake air on the upstream side of the throttle valve T7 of the intake passage 5. An engine hybrid sensor that detects a greenhouse; 18 is an exhaust sensor with a heater that is installed in the exhaust passage 7 and detects the air-fuel ratio of the air-fuel mixture based on the oxygen component in the exhaust gas; 19 is a rotational speed sensor that detects the engine rotational speed; It is a built-in distributor, and the above air 7
The operating state of the engine 1 is detected by the 0-sensor 15 and the distributor 19. As shown in FIG. 3, the heater-equipped exhaust sensor 18 has a heater that is energized when the exhaust gas leakage is low, heats the sensor element, and compensates its output characteristics at a constant level regardless of the exhaust gas length of 1 m. 21 is built-in. The heater 21 is connected to a battery 23 via a heater sensor 20 and a relay 22, which serve as heater capability detection means for detecting voltage applied to the heater. And the above-mentioned sensors 15 to 20
Each detection signal is input to a controller 24, and the controller 24 controls the fuel injection valve 8, spark plug 11, and relay 22, respectively.

次に、上記コントローラ24の作動を第4図のフローチ
ャートに基づいて説明するに、先ずステップS1で初期
化を行った後、ステップ$2で各種センサ15〜20の
信号を入力し、ステップS3でエンジン1の運転状態に
応じた基本燃料噴射パルス幅Tpを演算し、ステップS
4で空燃比をフィードバック制御すべきゾーンにあるか
否かを判定する。そして、このフィードバックゾーンに
ないNoのときにはステップ$5において林木燃料噴射
パルス幅Tpと一定の補正係数Ck’とにより燃料噴射
パルス幅TをT−Tp xCkにより演京する。
Next, the operation of the controller 24 will be explained based on the flowchart of FIG. 4. First, after initialization is performed in step S1, signals from various sensors 15 to 20 are inputted in step S3, and in step S3, signals from various sensors 15 to 20 are inputted. A basic fuel injection pulse width Tp corresponding to the operating state of the engine 1 is calculated, and step S
In step 4, it is determined whether the air-fuel ratio is in a zone where feedback control is required. If the answer is No, which is not in the feedback zone, then in step $5, the fuel injection pulse width T is calculated by T-Tp x Ck using the forest fuel injection pulse width Tp and a constant correction coefficient Ck'.

一方、フィードバックゾーンにあるYESのときには、
ステップ36において、第5図に示すようにエンジン1
が排気ガス温度の低いヒータコントロールゾーンにある
か否かを判定し、このヒータコントロールゾーンにない
NOのときにはステップS7でフィードバック制御にお
ける比例it、+11&0定数をCとし且つ積分制御定
数をC′とし、ステップSI2で排気センサ18出力が
目標空燃比に相当する設定値よりも大きいか否かを判別
し、設定値よりも大きいリッチ判定のときには、空燃比
をリーンに移行させるべく、ステップS 13で上記ス
テップS7の比VA制御定数Cおよび積分制御定数C′
に基づいてフィードバック補正係fiCr Bを演算し
、また排気センサ18出力が上記設定値よりも小さいリ
ーン判定のときには、空燃比をリッチに移行させるべく
ステップS j4で同じく上記ステップSアの比例制御
定数Cおよび積分制御定数C′に基づいてフィードバッ
ク補正係a C’F Bを演算し、ステップS +sで
燃料噴射パルス幅下を式%式% 一方、上記ステップSIiでエンジン1がヒータコント
ロールゾーンにあるYESのときには、ヒータ21の断
線の有無を判断すべくステップs8でヒータ印加電圧が
Oか否かを判定する。そして、ヒータ印加電圧がOであ
るYESのときにはヒータ21が断線していると判断し
て、ステップS9において第6図に示すように、混合気
の空燃比をリッチにすべくフィードバック#IIIIl
lする場合の比例制一定数および積分制御定数をそれぞ
れ上記C1C′よりも大きいA、A’ に設定する。そ
して、ステップS 12での排気センサ18の出力に応
じて、リッチ判定のときにはステップS 13で上記比
例制御定数Cおよび積分制御窓ac’ に基づいてフィ
ードバック補正係数CFe4rv4算する一方、り一ン
判定のときはステップS 14で上記c、c’ よりも
大きいA、A’ に基づいてフィードバック補正係数C
FBを演忰し、ステップS +sで燃料噴射パルス幅T
を演算する。すなわち、ヒータ21の不作動により排気
センサ18め出力特性が変動し、空燃比をリッチ傾向に
検出した状態でフィードバック制御されるために2燃比
がリーン傾向になろうとするが、これに対応して空燃比
をリッチにすべくフィードバック制t211する場合の
比例ili制御定数および積分1111IOII定故の
傾きを大きくしたので、混合気の空燃比が目標空燃比に
v1喰良く制御される。
On the other hand, when YES is in the feedback zone,
In step 36, as shown in FIG.
is in the heater control zone where the exhaust gas temperature is low, and if NO is not in the heater control zone, in step S7, the proportional it, +11 & 0 constant in the feedback control is set to C, and the integral control constant is set to C', In step SI2, it is determined whether or not the output of the exhaust sensor 18 is larger than a set value corresponding to the target air-fuel ratio, and when the rich judgment is larger than the set value, the above-described process is performed in step S13 in order to shift the air-fuel ratio to lean. Ratio VA control constant C and integral control constant C' in step S7
When the exhaust sensor 18 output is smaller than the above-mentioned setting value and is determined to be lean, the proportional control constant of the above-mentioned step SA is calculated in step Sj4 in order to shift the air-fuel ratio to rich. The feedback correction coefficient a C'F B is calculated based on C and the integral control constant C', and in step S If YES, it is determined in step s8 whether or not the voltage applied to the heater is O in order to determine whether or not the heater 21 is disconnected. When the voltage applied to the heater is O (YES), it is determined that the heater 21 is disconnected, and in step S9, as shown in FIG.
The proportional control constant and the integral control constant in the case of 1 are set to A and A', respectively, which are larger than the above C1C'. Then, in accordance with the output of the exhaust sensor 18 in step S12, when a rich judgment is made, a feedback correction coefficient CFe4rv4 is calculated based on the proportional control constant C and the integral control window ac' in step S13, while a rich judgment is made. In this case, in step S14, the feedback correction coefficient C is calculated based on A and A' which are larger than the above c and c'.
Determine FB and set fuel injection pulse width T in step S+s.
Calculate. In other words, the output characteristic of the exhaust sensor 18 fluctuates due to the inoperation of the heater 21, and feedback control is performed in a state where the air-fuel ratio is detected as having a rich tendency, so that the second fuel ratio tends to become lean. Since the proportional ili control constant and the slope of the integral 1111IOII constant are increased when performing feedback control t211 to make the air-fuel ratio rich, the air-fuel ratio of the air-fuel mixture is controlled to the target air-fuel ratio v1 more effectively.

また、上記ステップSsでヒータ印加電圧がOでないN
oのときにはじ一夕21が断線していないと判断してス
テップS I++に進み、このステップS IQでヒー
タ能力の変化を判断すべくヒータ印加′R王が設定値よ
りも低いか否かを判定する。そして、ヒータ印加電圧が
設定値よりも高いNOのときにはヒータ能力が変ってい
ないと判断してステップ87に進みエンジン1がヒータ
コントロールゾーンにない場合と同様の制御を行う一方
、ヒータ印加電圧が8Q″7k laよりb低いYES
のときには、バッテリ電圧の低下等によりヒータ能力が
低下したと判断して、ステップS11において、第7図
に示すように、混合気の空燃比をリッチにすべくフィー
ドバック制御する場合の比例制御定数および積分制御定
数をそれぞれヒータ印加電圧に応じて上記A、A’ よ
りも小さく旦つc、c’ よりも大きいB、B’ に設
定し、ステップS 14でフィードバック補正係数CF
l11を+*Uし、ステップS +sで燃料噴射パルス
幅Tをr悼する。すなわち、ヒータ21の能力低下によ
り排気センサ18の出力特性が変動し、空燃比をリッチ
傾向に検出した状態でフィードバック制御されるために
空燃比がり一ン傾向になろうとするが、これに対応して
空燃比をリッヂにすべくフィードバック制御する場合の
比例制御定1j133よび積分制御定数の傾きを適宜大
きくしたので、混合気の空燃比が目憂票空燃比に精唯良
く制御される。
Also, in step Ss above, the voltage applied to the heater is not O.
When o, it is determined that the wire 21 is not disconnected, and the process proceeds to step S I++. At this step S IQ, in order to determine a change in heater capacity, it is determined whether or not the heater application 'R' is lower than the set value. judge. When the heater applied voltage is NO higher than the set value, it is determined that the heater capacity has not changed, and the process proceeds to step 87, where the same control as when the engine 1 is not in the heater control zone is performed, while the heater applied voltage is 8Q. ``b lower than 7k la YES
In this case, it is determined that the heater capacity has decreased due to a decrease in battery voltage, etc., and in step S11, as shown in FIG. 7, the proportional control constant and The integral control constants are set to B and B', which are smaller than A and A' and larger than c and c', respectively, according to the heater applied voltage, and the feedback correction coefficient CF is set in step S14.
l11 is +*U, and the fuel injection pulse width T is determined in step S+s. In other words, the output characteristics of the exhaust sensor 18 fluctuate due to a decrease in the performance of the heater 21, and feedback control is performed in a state where the air-fuel ratio is detected to have a rich tendency, so the air-fuel ratio tends to increase. Since the slopes of the proportional control constant 1j133 and the integral control constant when performing feedback control to bring the air-fuel ratio to a ridge are appropriately increased, the air-fuel ratio of the air-fuel mixture is precisely controlled to the target air-fuel ratio.

以上のフローにおいて、ステップS7.S13゜SL4
およびS +sにより、上記ヒータ付排気センサ18の
出力を受け、エンジン1の空燃比が「1欅ムαになるよ
うに上記燃料噴射弁8(空燃比調整手段)をフィードバ
ックあり罪する1III御手段25を構成するとともに
、ステップS3およびS oにより上記ヒータセンサ2
0〈ヒータ能力検出手段)の出力を受け、上記制御手段
25におけるフィードバック制御信号を補正する補正手
段26を構成している。
In the above flow, step S7. S13゜SL4
and S+s, 1III control means receives the output of the heater-equipped exhaust sensor 18 and controls the fuel injection valve 8 (air-fuel ratio adjustment means) with feedback so that the air-fuel ratio of the engine 1 becomes 1Keyum α. 25, and the heater sensor 2 is configured in steps S3 and S o.
The correction means 26 receives the output of the heater capacity detection means 0 and corrects the feedback control signal in the control means 25.

尚、上記大権例では、ヒータ21の断線や能力低下に雄
づく排気センサ18の出力特性の変動に対応して制ti
lt″数を補正づるようにしたが、ヒータ21の断線時
においては第8図、その能力低下時においては第9図に
それぞれ示すように、すl気センリ゛18のスライスレ
ベルつまり排気センサ18の出力によjける空燃比のリ
ッチ側とリーン側とを仕切る設定11nを大きくづるよ
うにしてしよい。
In the above example of authority, the control is applied in response to fluctuations in the output characteristics of the exhaust sensor 18 caused by disconnection of the heater 21 or reduction in performance.
The slice level of the exhaust sensor 18, that is, the exhaust sensor 18, is corrected as shown in FIG. 8 when the heater 21 is disconnected, and as shown in FIG. 9 when its performance is reduced. The setting 11n that separates the rich side and the lean side of the air-fuel ratio depending on the output of the engine may be set to a large value.

また、ヒータ21の(17i楡時においては第10図、
その能力低下時にJ5いては第11図にそれぞれ示すよ
うに、ディレィタイムつまりIJI気センサ18の出力
がリッヂ側からリーン側に反転してからフィードバック
補正係数を反転させるまでに設ける時間を大きくするよ
うにしてもよい。
In addition, the heater 21 (Fig. 10 at the time of 17i,
When the performance of J5 decreases, as shown in Fig. 11, the delay time, that is, the time provided from when the output of the IJI sensor 18 is reversed from the ridge side to the lean side until the feedback correction coefficient is reversed, is increased. You can also do this.

(発明の効!!り 以上説明したように、本発明のエンジンの空燃比制御装
置によれば、排気センサ゛を加熱づ−るヒータの1指力
(こ応じてフィードバックff+’l lンII(i号
を?重工するようにしたので、ヒータ能力に左右される
ことなく混合気の空燃比を精度良く目標空燃比に制御す
ることができる。
(Effects of the Invention!!) As explained above, according to the engine air-fuel ratio control device of the present invention, one finger force of the heater that heats the exhaust sensor (responsively, the feedback ff+'l ln II ( Since No. i is made to be heavy-duty, the air-fuel ratio of the air-fuel mixture can be accurately controlled to the target air-fuel ratio without being affected by the heater capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す図である。第2図〜第11
図は本発明の実MA例を示し、第2図は全体戦略構成図
、第3図はす1気センサおよびヒータを示す図、第4図
はコントロールユニットの作動を示寸フローチャート図
、第5図はヒータコントロールゾーンを示す説明図、第
6図はヒータ断線時における制御定数を示す説明図、第
7図はヒータ能力低下時におけるシ制御定数を示す説明
図、第8図および第9図はそれぞれヒータ断線時および
ヒータ能力低下時におけるスライスレベル特性を示す説
明図、第10図および第11図はそれぞれヒータ断線時
およびヒータ能力低下時におけるディレーターイム特性
を示す説明図である。 1・・・エンジン、8・・・燃料噴射弁、18・・・ヒ
ータ付排気センサ、20・・・ヒータセンサ、21・・
・ヒータ、24・・・コントローラ、25・・・制御手
段、26・・・補正手段。 特許出願人     マツダ株式会社 2−i−’j−
”−゛ 代  理  人     弁理士  前  1)   
弘C′−−・− 第3図 第1図 第7図     第6図 ヒータ6p加電圧 第9図     第8図 第11図     第10図 亡−タEロカof圧
FIG. 1 is a diagram showing the configuration of the present invention. Figures 2 to 11
The figures show an actual MA example of the present invention, Fig. 2 is an overall strategic configuration diagram, Fig. 3 is a diagram showing the 1st air sensor and heater, Fig. 4 is a sized flowchart showing the operation of the control unit, and Fig. 5 is a diagram showing the operation of the control unit. Figure 6 is an explanatory diagram showing the heater control zone, Figure 6 is an explanatory diagram showing the control constant when the heater is disconnected, Figure 7 is an explanatory diagram showing the control constant when the heater capacity is reduced, and Figures 8 and 9 are FIGS. 10 and 11 are explanatory diagrams showing the slice level characteristics when the heater is disconnected and when the heater capacity is decreased, respectively. FIGS. 10 and 11 are explanatory diagrams showing the dilator time characteristics when the heater is disconnected and the heater capacity is decreased, respectively. DESCRIPTION OF SYMBOLS 1... Engine, 8... Fuel injection valve, 18... Exhaust sensor with heater, 20... Heater sensor, 21...
- Heater, 24... Controller, 25... Control means, 26... Correction means. Patent applicant Mazda Motor Corporation 2-i-'j-
”-゛ Representative Patent Attorney 1)
Hiro C' - - - Fig. 3 Fig. 1 Fig. 7 Fig. 6 Heater 6p applied voltage Fig. 9 Fig. 8 Fig. 11 Fig. 10 Fig. 1 Fig. 7 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンに供給する混合気の空燃比を調整する空
燃比調整手段と、エンジンの排気通路に配設され、エン
ジンに供給された混合気の空燃比を検出するヒータ付排
気センサと、該ヒータ付排気センサの出力を受け、エン
ジンの空燃比が目標値になるように上記空燃比調整手段
をフィードバック制御する制御手段と、上記ヒータ付排
気センサのヒータ能力を検出するヒータ能力検出手段と
、該ヒータ能力検出手段の出力を受け、上記制御手段に
おけるフィードバック制御信号を補正する補正手段とを
備えたことを特徴とするエンジンの空燃比制御装置。
(1) An air-fuel ratio adjusting means for adjusting the air-fuel ratio of the air-fuel mixture supplied to the engine; an exhaust sensor with a heater that is disposed in the exhaust passage of the engine and detects the air-fuel ratio of the air-fuel mixture supplied to the engine; a control means that receives an output of the exhaust sensor with a heater and performs feedback control on the air-fuel ratio adjusting means so that the air-fuel ratio of the engine reaches a target value; and a heater capacity detection means that detects the heating capacity of the exhaust sensor with a heater; An air-fuel ratio control device for an engine, comprising: correction means for receiving the output of the heater capacity detection means and correcting a feedback control signal in the control means.
JP27428386A 1986-11-18 1986-11-18 Air-fuel ratio control device for engine Pending JPS63129146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27428386A JPS63129146A (en) 1986-11-18 1986-11-18 Air-fuel ratio control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27428386A JPS63129146A (en) 1986-11-18 1986-11-18 Air-fuel ratio control device for engine

Publications (1)

Publication Number Publication Date
JPS63129146A true JPS63129146A (en) 1988-06-01

Family

ID=17539489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27428386A Pending JPS63129146A (en) 1986-11-18 1986-11-18 Air-fuel ratio control device for engine

Country Status (1)

Country Link
JP (1) JPS63129146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731266A1 (en) * 1995-03-10 1996-09-11 Ford Motor Company Controlling exhaust emission from an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131640A (en) * 1984-07-23 1986-02-14 Nippon Soken Inc Air-fuel ratio controller
JPS63106343A (en) * 1986-10-23 1988-05-11 Ngk Spark Plug Co Ltd Air-fuel ratio control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131640A (en) * 1984-07-23 1986-02-14 Nippon Soken Inc Air-fuel ratio controller
JPS63106343A (en) * 1986-10-23 1988-05-11 Ngk Spark Plug Co Ltd Air-fuel ratio control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731266A1 (en) * 1995-03-10 1996-09-11 Ford Motor Company Controlling exhaust emission from an internal combustion engine

Similar Documents

Publication Publication Date Title
US5197450A (en) Air-fuel ratio control system for internal combustion engine
JPH09236031A (en) Internal combustion engine with air-fuel ratio controller
US4947820A (en) Combustion control system for internal combustion engine adaptable to on and off of exhaust gas recirculation
JP4365553B2 (en) Engine fuel control device and idling air-fuel ratio control method
JPS63195351A (en) Air-fuel ratio control device for internal combustion engine
JPS63129146A (en) Air-fuel ratio control device for engine
US4714064A (en) Control device for internal combustion engine
JPS61138858A (en) Internal-conbustion engine controller
JPH0586934A (en) Transient fuel quantity corrector for engine
JPS62103437A (en) Suction device for engine
JP2987675B2 (en) Intake control device for internal combustion engine
JPH09203337A (en) Air-fuel ratio controller for internal combustion engine
JP2867816B2 (en) Air-fuel ratio control device for internal combustion engine
JP2802312B2 (en) Exhaust gas purification device for internal combustion engine
JPS61106941A (en) Air-fuel ratio control device of engine
JPS585471A (en) Firing timing controller for engine
JPH10274108A (en) Evaporated fuel purging device for engine
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPS61101634A (en) Air-fuel ratio controlling method for internal-combustion engine
JPH03100363A (en) Exhaust gas reflux controller of diesel engine
JP3349250B2 (en) Engine air-fuel ratio control device
JPH07133735A (en) Control device for internal combustion engine
JPS63992Y2 (en)
JPS62103439A (en) Suction device for engine
JPH0437251Y2 (en)