JPH03100363A - Exhaust gas reflux controller of diesel engine - Google Patents

Exhaust gas reflux controller of diesel engine

Info

Publication number
JPH03100363A
JPH03100363A JP1232980A JP23298089A JPH03100363A JP H03100363 A JPH03100363 A JP H03100363A JP 1232980 A JP1232980 A JP 1232980A JP 23298089 A JP23298089 A JP 23298089A JP H03100363 A JPH03100363 A JP H03100363A
Authority
JP
Japan
Prior art keywords
sensor
exhaust gas
egr valve
idle
gas recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232980A
Other languages
Japanese (ja)
Inventor
Yasuyuki Terasawa
保幸 寺沢
Masanori Sawara
佐原 正憲
Masatsugu Sakimoto
崎本 正嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1232980A priority Critical patent/JPH03100363A/en
Publication of JPH03100363A publication Critical patent/JPH03100363A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To prevent generation of accidental fire and smoke by controlling an EGR valve corresponding to an operation condition based on an output signal of an O2 sensor at the time of normal operation, and based on signal of a lift quantity sensor of the EGR valve at the time of an idle operation. CONSTITUTION:In an ECU 10, signals of an engine speed sensor 12 provided at a fuel injection pump 11, an acceleration opening sensor 13, water temperature sensor 15 and an outer temperature sensor 16 are inputted. An EGR valve 6 is controlled via a negative control valve 7 in response to an operation condition of an engine 1 based on an output signal of an O2 sensor 14 at a normal operation time. At an idle operation time detected by an idle sensor 18, a target EGR lift quantity in response to engine speed and acceleration opening is set so as to control an EGR valve 6 based on signals of an EGR valve lift quantity sensor 17. Generation of rotation variation at the idle operation time, accidental fire and smoke are prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディーゼルエンジンの排気ガス還流(EGR)
itを制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to exhaust gas recirculation (EGR) of diesel engines.
The present invention relates to a device for controlling IT.

(従来技術) ディーゼルエンジンの排気ガス還流制御装置では、エン
ジンの排気通路と吸気通路とを連通ずる排気ガス還流通
路に排気ガス還流制御弁(EGR弁)を設け、このEG
R弁リフト量をエンジンの運転状態に応じて制御するこ
とにより、EGR量を変え、これによりNo、およびス
モークの低減を図っている。その場合、出力値が直線的
に変化する酸素センサ(リニアOtセンサ)を排気通路
に設けるとともに、エンジン回転数とエンジン負荷とに
よって定まるエンジンの運転状態に応した目標酸素濃度
をあられすマツプを用意し、このマツプから読み出され
る目標酸素濃度と上記酸素センサの出力から求められる
実酸素濃度との比較に基づいてEGR弁のリフト量を決
定し、EGRNをフィードバック制御するものが知られ
ている(特開昭63−201356号参照)、このよう
な酸素センサの出力にもとづ< EGR量のフィードバ
ック制御は、エンジンの経時変化に影響されることなく
、一定のNOX低減率を得るのに有効な手段である。
(Prior art) In an exhaust gas recirculation control device for a diesel engine, an exhaust gas recirculation control valve (EGR valve) is provided in an exhaust gas recirculation passage that communicates an exhaust passage and an intake passage of the engine, and the EGR valve
By controlling the R valve lift amount according to the operating state of the engine, the EGR amount is changed, thereby reducing noise and smoke. In that case, an oxygen sensor whose output value changes linearly (linear Ot sensor) will be installed in the exhaust passage, and a map will be prepared to determine the target oxygen concentration according to the engine operating condition determined by the engine speed and engine load. However, it is known that the lift amount of the EGR valve is determined based on a comparison between the target oxygen concentration read from this map and the actual oxygen concentration determined from the output of the oxygen sensor, and EGRN is feedback-controlled. Based on the output of such an oxygen sensor, feedback control of the EGR amount is effective in obtaining a constant NOx reduction rate without being affected by changes in the engine over time. It is a means.

ところで、ディーゼルエンジンにおいては、燃料噴射ノ
ズルの劣化、燃料噴射ポンプの劣化および燃料性状の相
違等の要因によって、アイドル回転数が低下することが
ある。しかしながら、酸素センサの出力にもとづ<EG
RIのフィードバック制御システムでは、上述の要因に
よってアイドル回転数が低下しても、排気中の酸素濃度
、No。
Incidentally, in a diesel engine, the idle speed may decrease due to factors such as deterioration of the fuel injection nozzle, deterioration of the fuel injection pump, and differences in fuel properties. However, based on the output of the oxygen sensor <EG
In the RI feedback control system, even if the idle speed decreases due to the above-mentioned factors, the oxygen concentration in the exhaust gas, No.

濃度がほとんど変化しないため、正常時と同量のEGR
を行なってしまうから、白煙および失火の原因となる欠
点があった。また、上記要因でアイドル回転数が変動す
る場合、酸素センサの出力にもとづ<EGR量のフィー
ドバック制御システムでは、筒内ガス成分と酸素センサ
の位置における排気ガス成分との相違や、EGR弁の応
答遅れ等のために、適切なEGRMの供給ができず、回
転変動の増大や、白煙、失火を生じるという欠点があっ
た。
Because the concentration hardly changes, the same amount of EGR as normal
This has the disadvantage of causing white smoke and misfires. In addition, when the idle speed fluctuates due to the above factors, in the feedback control system of <EGR amount based on the output of the oxygen sensor, the difference between the in-cylinder gas component and the exhaust gas component at the location of the oxygen sensor, or the EGR valve Due to the delay in response, etc., it is not possible to supply appropriate EGRM, resulting in increased rotational fluctuations, white smoke, and misfires.

(発明の目的) そこで本発明は、アイドル運転時における回転変動の増
大および失火、白煙等の発生を防止しうるディーゼルエ
ンジンの排気ガス還流制御装置を提供することを目的と
する。
(Objective of the Invention) Therefore, an object of the present invention is to provide an exhaust gas recirculation control device for a diesel engine that can prevent an increase in rotational fluctuations, a misfire, and the generation of white smoke during idling operation.

(発明の構成) 本発明では、通常運転時には、排気系または吸気系に設
けた酸素センサの出力信号にもとづき、エンジンの運転
状態に応じてEGR弁を制御し、アイドル運転時には、
EGR弁リフト量センサの出力信号にもとづき、エンジ
ンの運転状態に応じてEGR弁を制御することを特徴と
する。
(Structure of the Invention) In the present invention, during normal operation, the EGR valve is controlled according to the operating state of the engine based on the output signal of an oxygen sensor installed in the exhaust system or the intake system, and during idling operation,
The present invention is characterized in that the EGR valve is controlled according to the operating state of the engine based on the output signal of the EGR valve lift amount sensor.

(発明の効果) 本発明によれば、アイドル運転時にはEGR弁のリフト
量の検出によりEGR弁をフィードバック制御している
ので、アイドル回転数が低下した場合にEGR量が減少
するように予め設定しておくことで、アイドル回転数の
低下時または変動時に適切なEGR量を供給することが
可能になり、回転変動および失火、白煙の発生を防止で
きる。
(Effects of the Invention) According to the present invention, since the EGR valve is feedback-controlled by detecting the lift amount of the EGR valve during idling operation, the EGR amount is set in advance to decrease when the idling speed decreases. By doing so, it becomes possible to supply an appropriate amount of EGR when the idle speed decreases or fluctuates, and it is possible to prevent rotational fluctuations, misfires, and generation of white smoke.

(実 施 例) 以下、図面を参照して本発明の実施例について詳細に説
明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す概略的構成図で、lは
ディーゼルエンジンのエンジン本体、2は吸気通路、3
は吸気通路2の上流に設けられたエアクリーナ、4は排
気通路である。5は排気通路4と吸気通路2とを連通ず
る排気ガス還流通路で、この通路5に排気ガス還流量(
EGR量)を制御するダイヤフラム式排気ガス還流量制
御弁(EGR弁)6.6が設けられている。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, where l is the engine body of a diesel engine, 2 is an intake passage, and 3 is a schematic diagram showing an embodiment of the present invention.
4 is an air cleaner provided upstream of the intake passage 2, and 4 is an exhaust passage. 5 is an exhaust gas recirculation passage that communicates the exhaust passage 4 and the intake passage 2, and this passage 5 has an exhaust gas recirculation amount (
A diaphragm type exhaust gas recirculation amount control valve (EGR valve) 6.6 is provided to control the amount of EGR.

EGR弁6.6の負圧室(図示は省略)には、電磁ソレ
ノイド弁よりなる負圧制御弁7.7により制御されたバ
キュームポンプ8の負圧がi圧il路9.9を通じてそ
れぞれ印加され、これによってEGR弁6.6のリフト
量が制御される。l。
Negative pressure from a vacuum pump 8 controlled by a negative pressure control valve 7.7, which is an electromagnetic solenoid valve, is applied to the negative pressure chamber (not shown) of the EGR valve 6.6 through an i-pressure path 9.9. This controls the lift amount of the EGR valve 6.6. l.

はコントローラで、燃料噴射ポンプ11の回転数センサ
12、アクセル開度センサ13 (噴射ポンプ11のレ
バー開度を検出するポテンショメータ)の出力、および
排気ガス中の酸素濃度を検出するために排気通路4に設
けられた酸素センサ14の出力、ならびにエンジン水温
センサ15 、外気温センサ16の出力が入力される。
is a controller that connects the exhaust passage 4 to detect the output of the rotation speed sensor 12 of the fuel injection pump 11, the accelerator opening sensor 13 (a potentiometer that detects the lever opening of the injection pump 11), and the oxygen concentration in the exhaust gas. The output of the oxygen sensor 14 provided at the engine, the output of the engine water temperature sensor 15, and the output of the outside air temperature sensor 16 are input.

またEGR弁6.6にはそのリフト量を検出するポテン
ショメータよりなるEGR弁リフト量センサ17がそれ
ぞれ設けられており、これらセンサ17.17の出力も
コントローラ10に入力される。さらに燃料噴射ポンプ
11には、エンジン回転数およびアクセル開度からアイ
ドル運転状態を検出するアイドルセンサとしてアイドル
スイッチ18が設けられており、このアイドルスイッチ
18の出力もコントローラlOに入力される。コントロ
ーラ10は、mれら入力信号にもとづいて、負圧制御弁
7.7をデユーティ制御し、これによってEGR弁6.
6のリフト量をフィードバック制御している。
Further, each EGR valve 6.6 is provided with an EGR valve lift amount sensor 17 consisting of a potentiometer that detects the lift amount thereof, and the outputs of these sensors 17.17 are also input to the controller 10. Further, the fuel injection pump 11 is provided with an idle switch 18 as an idle sensor that detects the idle operating state from the engine speed and the accelerator opening, and the output of the idle switch 18 is also input to the controller IO. The controller 10 performs duty control on the negative pressure control valve 7.7 based on these input signals, thereby controlling the EGR valve 6.7.
6 lift amount is feedback controlled.

第2図はコントローラ10のメモリに格納されたプログ
ラムのフローチャートを示す図で、このフローチャート
を参照しながら本発明によるEGR制御装置の動作につ
いて説明する。
FIG. 2 is a diagram showing a flowchart of a program stored in the memory of the controller 10, and the operation of the EGR control device according to the present invention will be explained with reference to this flowchart.

このフローはエンジンのイグニッション・スイッチのO
Nによってスタートし、まずステップ31で燃料噴射ポ
ンプ11の回転数センサ12の出力からエンジン回転数
NEを検出し、さらにステップS2でエンジン水温セン
サ15の出力からエンジン水温W/Tを検出する。次の
ステップS3で1よ、エンジン回転数NEおよびエンジ
ン水温W/TからEGRを行なう領域であるか否かを判
定し、この判定がrYEsJであればステップS4へ進
み、ポンプ11のアクセル開度センサ13の出力からア
クセル開度ACCを検出し、さらにステップS5で酸素
センサ14の出力VO,を検出する。
This flow is the engine ignition switch O
The engine rotation speed NE is first detected from the output of the rotation speed sensor 12 of the fuel injection pump 11 in step 31, and then the engine water temperature W/T is detected from the output of the engine water temperature sensor 15 in step S2. In the next step S3, it is determined from the engine rotation speed NE and the engine water temperature W/T whether or not it is in the region where EGR is to be performed. The accelerator opening degree ACC is detected from the output of the sensor 13, and the output VO of the oxygen sensor 14 is further detected in step S5.

次のステップS6ではアイドルスイッチ18の出力から
、アイドル運転か否かを判定し、この判定結果がrNO
JであればステップS7へ進む。
In the next step S6, it is determined from the output of the idle switch 18 whether or not the idle operation is being performed, and this determination result indicates that rNO
If it is J, the process advances to step S7.

コントローラ10のメモリには、エンジン回転数NBと
アクセル開度ACCに応じた目標酸素濃度■0□(M)
をあられす第1のマツプが格納されており、ステップS
7では上記マツプから目標酸素濃度■0□(M)を読み
出す。またステップS8で、酸素センサ14の出力から
実酸素濃度vo、(R)を検出し、次のステップS9で
vO□(M)とvO□(R)とを比較する。この判定で
VO,(M)≠V Ot (R)である間はステップS
IOへ進み、負圧制御弁6.6に対する制御用パルス信
号のデユーティ比を変えて実EGR弁リフト量を補正し
、ステップS8へ戻り、ステップS9の判定がVow(
M)−Vow(R)になるまでS8→S9→510−3
8の処理を反復する。そしてvow(M)”VOg(R
)になればステップS1へ戻る。
The memory of the controller 10 stores the target oxygen concentration ■0□ (M) according to the engine speed NB and the accelerator opening ACC.
A first map is stored, and step S
In step 7, the target oxygen concentration ■0□ (M) is read from the above map. Further, in step S8, the actual oxygen concentration vo, (R) is detected from the output of the oxygen sensor 14, and in the next step S9, vO□(M) and vO□(R) are compared. As long as VO, (M)≠V Ot (R) in this judgment, step S
Proceeding to IO, the duty ratio of the control pulse signal for the negative pressure control valve 6.6 is changed to correct the actual EGR valve lift amount, and the process returns to step S8, where the determination in step S9 is Vow (
S8→S9→510-3 until M)-Vow(R)
Repeat step 8. And vow(M)”VOg(R
), the process returns to step S1.

一方、ステップS6においてアイドル運転時であると判
定されたときは、ステップSllへ進む。
On the other hand, if it is determined in step S6 that the vehicle is in idle operation, the process advances to step Sll.

コントローラ10のメモリには、エンジン回転数NEと
アクセル開度ACCに応じた目標EGR弁リフトIIV
L(M)をあられす第2のマツプも格納されており、こ
の第2のマツプでは、アイドル回転数が低下したときに
目標EGR弁リフ)ilV L(M)が減少するように
設定されている。そしてステップSllでは上記マツプ
から目標EGR弁リフトilVL(M)を読み出す、ま
たステップS12で、EGR弁リフト量センサ17の出
ノ〕から実EGR弁リフト1lVL(R)を検出し、次
のステップS 13でVL(M)とVL(R)とを比較
する。この判定でVL(M)≠VL(R)である間はス
テップ314へ進み、負圧制御弁6.6に対する制御用
パルス信号のデユーティ比を変えて実EGR弁リフト量
を補正し、ステップS12へ戻り、ステップS13の判
定がVL(M)=VL(R)になるまで512−513
→514→S12の処理を反復する。そしてVL(M)
=VL(R)になればステップSlへ戻る。
The memory of the controller 10 stores a target EGR valve lift IIV according to the engine speed NE and accelerator opening ACC.
A second map for determining L(M) is also stored, and this second map is set so that the target EGR valve lift (ILV L(M)) decreases when the idle speed decreases. There is. Then, in step Sll, the target EGR valve lift ilVL(M) is read from the map, and in step S12, the actual EGR valve lift ilVL(R) is detected from the output of the EGR valve lift amount sensor 17, and the next step S 13, VL(M) and VL(R) are compared. As long as VL(M)≠VL(R) in this determination, the process proceeds to step 314, where the duty ratio of the control pulse signal for the negative pressure control valve 6.6 is changed to correct the actual EGR valve lift amount, and step S12 512-513 until the determination in step S13 becomes VL(M)=VL(R).
→514→Repeat the process of S12. And VL(M)
=VL(R), the process returns to step Sl.

以上述べたように、本実施例では、アイドル運転時であ
ることが検出されると、第1のマツプから読み出される
運転状態に応じた目標酸素濃度VO,(M)と、酸素セ
ンサ14の出力から求められる実酸素濃度v o z 
(R)との比較に基づ< EGR制御に変えて、第2の
マツプから読み出されるアイドル回転数に応じた目標E
GR弁リフ)IVL(M)とEGR弁リフト量センサ1
7の出力から求められる実EGR弁リフトIVL(R)
との比較にもとづ< EGR制御に切換えるようにして
いるので、アイドル運転時における回転変動の増大およ
び失火、白煙等の発生を防止しつつ的確なEGR制御を
行なうことができる。
As described above, in this embodiment, when idling is detected, the target oxygen concentration VO,(M) corresponding to the operating state read from the first map and the output of the oxygen sensor 14 are determined. Actual oxygen concentration v o z
Based on the comparison with (R) < Target E according to the idle speed read from the second map
GR valve lift) IVL (M) and EGR valve lift amount sensor 1
Actual EGR valve lift IVL (R) determined from the output of 7
Since the switch is made to EGR control based on a comparison with < EGR control, it is possible to perform accurate EGR control while preventing increases in rotational fluctuations, misfires, white smoke, etc. during idling operation.

なお、上述の実施例では、酸素センサ14を排気通路4
に設けているが、吸気通路2における排気ガス還流通路
5の開口部の下流に酸素センサを設けてもよい。
Note that in the above embodiment, the oxygen sensor 14 is connected to the exhaust passage 4.
However, an oxygen sensor may be provided downstream of the opening of the exhaust gas recirculation passage 5 in the intake passage 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略的構成図、第2図
はその動作を示すフローチャートである。 ■−エンジン本体    2−吸気通路4−排気通路 排気ガス還流通路  6 負圧制御弁 バキュームポンプ  10 1〜燃料噴射ポンプ  12 3−アクセル開度センサ 4・・・酸素センサ 7−・EGR弁リフト量センサ 8−・アイドルスイッチ EGR弁 コントローラ 回転数センサ
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 2 is a flowchart showing its operation. - Engine body 2 - Intake passage 4 - Exhaust passage Exhaust gas recirculation passage 6 Negative pressure control valve Vacuum pump 10 1 - Fuel injection pump 12 3 - Accelerator opening sensor 4 - Oxygen sensor 7 - EGR valve lift amount sensor 8-・Idle switch EGR valve controller rotation speed sensor

Claims (1)

【特許請求の範囲】 排気ガスの一部を吸気系に還流する排気ガス還流装置を
備えたディーゼルエンジンにおいて、排気ガス還流通路
に設けた排気ガス還流量制御弁と、 エンジンに供給される酸素の濃度を検出する酸素センサ
と、 上記排気ガス還流量制御弁のリフト量を検出する弁リフ
ト量センサと、 エンジンのアイドル運転状態を検出するアイドルセンサ
と、 通常運転時には上記酸素センサの出力信号にもとづき、
運転状態に対応させて上記排気ガス還流量制御弁を制御
する第1の制御手段と、 上記アイドルセンサによりアイドル運転時であることが
検出された場合、上記弁リフト量センサの出力信号にも
とづき、運転状態に対応させて上記排気ガス還流制御弁
を制御する第2の制御手段と を備えていることを特徴とするディーゼルエンジンの排
気ガス還流制御装置。
[Scope of Claims] In a diesel engine equipped with an exhaust gas recirculation device that recirculates a portion of exhaust gas to the intake system, an exhaust gas recirculation amount control valve provided in an exhaust gas recirculation passage; an oxygen sensor that detects the concentration; a valve lift amount sensor that detects the lift amount of the exhaust gas recirculation amount control valve; an idle sensor that detects the idle operating state of the engine; ,
a first control means for controlling the exhaust gas recirculation amount control valve in accordance with the operating state; and when the idle sensor detects that the idle operation is being performed, based on the output signal of the valve lift amount sensor; An exhaust gas recirculation control device for a diesel engine, comprising: second control means for controlling the exhaust gas recirculation control valve in accordance with operating conditions.
JP1232980A 1989-09-11 1989-09-11 Exhaust gas reflux controller of diesel engine Pending JPH03100363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232980A JPH03100363A (en) 1989-09-11 1989-09-11 Exhaust gas reflux controller of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232980A JPH03100363A (en) 1989-09-11 1989-09-11 Exhaust gas reflux controller of diesel engine

Publications (1)

Publication Number Publication Date
JPH03100363A true JPH03100363A (en) 1991-04-25

Family

ID=16947909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232980A Pending JPH03100363A (en) 1989-09-11 1989-09-11 Exhaust gas reflux controller of diesel engine

Country Status (1)

Country Link
JP (1) JPH03100363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050451A (en) * 2001-12-18 2003-06-25 현대자동차주식회사 Method for controlling exhaust gas recirculation of engine
WO2006056511A1 (en) * 2004-11-26 2006-06-01 Siemens Aktiengesellschaft Method for recirculating a partial exhaust gas flow to an internal combustion engine of a motor vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050451A (en) * 2001-12-18 2003-06-25 현대자동차주식회사 Method for controlling exhaust gas recirculation of engine
WO2006056511A1 (en) * 2004-11-26 2006-06-01 Siemens Aktiengesellschaft Method for recirculating a partial exhaust gas flow to an internal combustion engine of a motor vehicle

Similar Documents

Publication Publication Date Title
US4240389A (en) Air-fuel ratio control device for an internal combustion engine
US4119074A (en) Apparatus to control the ratio of air to fuel of air-fuel mixture applied to an internal combustion engine
US4763634A (en) Air-fuel ratio control system for automotive engines
JPS6045742A (en) Air-fuel ratio controller for internal-combustion engine
JP2586205B2 (en) Failure diagnosis device for exhaust gas recirculation control device
JP2000314342A (en) Air-fuel ratio control device for internal combustion engine
JP3378640B2 (en) Idling control method
JPS6229631B2 (en)
US4388905A (en) Air-fuel ratio control system
US5467593A (en) Method of electronic fuel injection feedback control
JPH03100363A (en) Exhaust gas reflux controller of diesel engine
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JPH03105042A (en) Fuel injection controller of diesel engine
JP2717442B2 (en) Engine exhaust gas recirculation control device
JPH08270508A (en) Exhaust circulating device for internal combustion engine
JPS6181568A (en) Method of controlling exhaust gas recirculation of internal-combustion engine
JP2841001B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2002130029A (en) Electronic controller for internal combustion engine
JPH03100361A (en) Exhaust gas circular controller of diesel engine
JP2663296B2 (en) Engine exhaust gas recirculation control device
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH06193492A (en) Operating method of internal combustion engine in full load operation
JPH07259609A (en) Air-fuel ratio controller of internal combustion engine
JP3453819B2 (en) Engine air-fuel ratio control device
JPS6312861A (en) Ignition timing controller for internal combustion engine