JPS6312912B2 - - Google Patents

Info

Publication number
JPS6312912B2
JPS6312912B2 JP55078150A JP7815080A JPS6312912B2 JP S6312912 B2 JPS6312912 B2 JP S6312912B2 JP 55078150 A JP55078150 A JP 55078150A JP 7815080 A JP7815080 A JP 7815080A JP S6312912 B2 JPS6312912 B2 JP S6312912B2
Authority
JP
Japan
Prior art keywords
coal
coke
molded
less
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078150A
Other languages
Japanese (ja)
Other versions
JPS573884A (en
Inventor
Katsuaki Okuhara
Katsuaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7815080A priority Critical patent/JPS573884A/en
Publication of JPS573884A publication Critical patent/JPS573884A/en
Publication of JPS6312912B2 publication Critical patent/JPS6312912B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は原料の粒度を調製することにより、
高品質、特に冶金用コークスの性質として重要な
熱間性状の優れた成型コークスを製造する方法に
関するものである。 近年、冶金用コークス製造プロセスとして、非
微粘結炭の活用、プロセスの連続化、および発生
物のクローズド化等といつた省資源、省力化、お
よび無公害をねらつた成型コークス製造プロセス
の研究開発が活発に行なわれている。そしていろ
いろな方法が提案されており、またいくつかの製
造プロセスが開発されている。しかしまた実際に
冶金用コークスとして商用ベースで稼働している
プロセスは見られない。これの原因の1つとし
て、成型コークスの品質上の問題、特にその熱間
性状が現在の室炉コークスにくらべ劣つているこ
とが提議されている。即ち成型コークスの高炉で
の使用試験の結果では、炉内における粉化が顕著
で、通気性が悪くなる結果、コークス比の増加、
棚吊り、スリツプ等による円滑な高炉操業に対す
る障害を生ずることになる。 成型コークスの熱間性状が劣るのは、一般に原
料の主体が粘結性のないか、または少ない非微粘
結炭であるため、成型という前処理を行なつても
コークスの基質および組織が室炉コークスにくら
べ劣つていることに起因しているためである。即
ち成型コークスは乾留時に軟化溶融しがたい非微
粘結炭を多量に使用するため、室炉コークスにく
らべ基質が劣り、また石炭粒子同志がお互いに溶
融して結合する溶融型結合(室炉コークスの場
合)よりも、粒子同志が接触して結合する接触型
結合の度合が強いことが影響して熱間において粒
子間の結合が弱い。 そこで成型コークスの熱間性状を向上させるた
めの研究を行なつた結果、原料石炭の粉砕粒度を
特定の範囲内に調製することにより、熱間性状の
優れた冶金用成型コークスを製造する方法を見出
した。 従来の成型コークス製造用原料石炭は、通常イ
ンペラーブレーカーやハンマーミル等の中間粉砕
機を用いて3mm以下からせいぜい1mm以下(74μ
mm以下が10%程度)に粉砕したものを使用してい
た。 これに対し本発明法は原料石炭をインペラブレ
ーカーやハンマーミル等の中間粉砕機とボールミ
ルや振動ミル等の微粉砕機の組合せ、または微粉
砕機単独で、1.5mm以下が100%、かつ74μm以下
が20〜60%になるように粒度調製したものを使用
することを特徴とするものである。 以下、本発明法の詳細について記述する。 成型コークス製造用原料石炭の粉砕粒度につい
て基礎的に研究した結果、次の事実を見出した。 (1) 石炭の粒度を細かくすることにより成型コー
クスは均質な網目構造を呈してコークス組織が
改善出来、また乾留時に軟化溶融する粘結性の
ある成分(粘結炭、各種歴青物)を比較的多く
配合しても、乾留時の成型炭のふくれ、融着と
いつた現象が少なくなるため、それら粘結成分
の増配合によるコークス基質の改良ができ、そ
れらの結果として成型コークスの性状(特に熱
間性状)が大巾に向上することが見出された。
この場合、最大粒度として1.5mm以下が好まし
くそれより大きいと組織の不均質性および乾留
時のふくれが大きくなり成型コークスの品質が
低下する。 (2) 一方、石炭粒度を必要以上に細かくすると成
型炭の強度が弱くなりすぎ、成型炭の破損によ
り乾留操作に支障をきたし、また成型コークス
の性状も悪化した。また石炭の粉砕費用も大巾
に上昇する。 (3) (1)において増配合する粘結成分として高流動
性粘結物質(ギーセラープラストメーターによ
る最高流動度が10000ddpm以上の石灰、ピツ
チ(石炭系および石油系)、石炭溶剤精製炭等
の歴青物)は少量であれば、主原料石炭より粗
く粉砕した方が成型炭の性状(強度)の劣化を
低減する効果が認められ好ましい。しかしあま
り多量に加えると成型炭の性状は良くなるが成
型コークスのふくれや融着が大きくなり乾留操
作に支障をきたす恐れがある。 なお高流動性粘結物質の粉砕粒度はインペラブ
レーカー等の中間粉砕機を用い1.5mm以下100%、
74μm以下20%以内が好ましく、これより粗いと
成型コークスの品質に悪影響をおよぼし、またこ
れより細かくなると成型炭性状(強度)の劣化を
低減する効果が少なくなることが認められた。 現在、成型炭の工業的製造は主としてダブルロ
ール型成型機でおこなわれている。そこでダブル
ロール型成型機を用いて、いろいろな石炭粒度の
原料から成型炭および成型コークスを製造し、そ
れぞれの性状を調べた。第1図は原料を先ずイン
ペラーブレーカーで1.5mm以下100%に粉砕したの
ちボールミルで更に粉砕し74μm以下の比率を変
えた場合の粉砕粒度と成型炭性状の関係を示した
一例である。成型炭の品質としては圧潰強度100
Kg以上、トロンメル強度8.5%以上あれば、乾留
工程での取扱上、成型炭の破損によるトラブルが
ないことを確かめているので、それ以上を確保す
ることを目標にした。第1図より石炭の粉砕粒度
を1.5mm以下100%、かつ74μm以下60%以下であ
れば、満足すべき成型炭が得られたが、74μm以
下が60%以上になると成型炭の強度は急激に低下
していくことがわかつた。第2図は原料石炭の粉
砕粒度と成型コークス性状の関係を示した一例で
ある。原料石炭の粉砕粒度が細かくなるほど成型
コークスの性状が向上している。特にコークスの
熱間性状を示す指標としているCO2との反応後強
度の向上が著しくなつていることがわかる。 以上の結果を総合して、成型コークス製造用原
料の粉砕粒度の適正範囲は、成型炭および成型コ
ークスの両者の性状から、1.5mm以下100%、かつ
74μm以下20〜60%の範囲に調製することが好ま
しいことが見出された。 即ち、原料をこの適正範囲より粗くすると、成
型コークスの性状、特に熱間性状が低く、冶金用
コークスの品質としては十分とはいえず、一方、
適正範囲より細かくすると、成型炭の性状が悪化
し、成型炭の破損によるトラブルをおこすと同時
に成型コークスの性状も低下してくる。また原料
の粉砕費用が大巾に上昇する。 以下本発明法の具体的実施例について記す。 実施例 1 非微粘結炭65%と粘結炭35%の配合炭をまずイ
ンペラーブレーカーで1.5mm以下に粉砕し、更に
ボールミルで粉砕し74μm以下が約40%程度にな
るように粒度調製した。 粒度調製した原料石炭にバインダーとして軟ピ
ツチ8%を添加し、水蒸気を吹込みながら混練
し、ダブルロール型成型機で成型炭を製造した。
なお比較のため、インペラーブレーカーで1.5mm
以下に粉砕しただけの原料石炭について同じ方法
で成型炭を製造した。表1に原料の粒度と成型炭
の強度を示す。
By adjusting the particle size of the raw material, this invention
The present invention relates to a method for producing high quality molded coke, particularly excellent hot properties, which are important properties of metallurgical coke. In recent years, as a metallurgical coke manufacturing process, research has been conducted on molded coke manufacturing processes that aim to save resources, labor, and be pollution-free by utilizing non-slightly caking coal, making the process continuous, and closing the generated materials. Development is actively underway. Various methods have been proposed and several manufacturing processes have been developed. However, there is no process that is actually operating on a commercial basis as metallurgical coke. It has been proposed that one of the reasons for this is that the quality of molded coke, especially its hot properties, is inferior to that of current room furnace coke. In other words, the results of tests using molded coke in blast furnaces show that pulverization in the furnace is significant, resulting in poor ventilation and an increase in the coke ratio.
Hanging shelves, slips, etc. will cause obstacles to smooth blast furnace operation. The reason why molded coke has poor hot properties is that the main raw material is generally non-caking or slightly non-caking coal, so even if pre-treatment by molding is performed, the coke matrix and structure remain in the chamber. This is because it is inferior to furnace coke. In other words, molded coke uses a large amount of non-slightly caking coal that is difficult to soften and melt during carbonization, so it has an inferior matrix compared to room furnace coke, and also has a molten bond (indoor furnace coke) in which coal particles melt and bond with each other. In the case of coke, the bond between particles is weaker in hot conditions due to the stronger degree of contact type bonding in which particles come into contact with each other and bond together. As a result of conducting research to improve the hot properties of shaped coke, we discovered a method for producing metallurgical shaped coke with excellent hot properties by adjusting the pulverized particle size of raw coal within a specific range. I found it. Conventional coking coal for molded coke production is usually processed using an intermediate crusher such as an impeller breaker or hammer mill to reduce the raw material coal to 3mm or less to 1mm or less (74μ).
The powder used was one that had been crushed into pieces (about 10% of which were less than mm). In contrast, the method of the present invention uses a combination of an intermediate pulverizer such as an impeller breaker or a hammer mill and a pulverizer such as a ball mill or a vibration mill, or a pulverizer alone to process raw coal into particles with a particle size of 1.5 mm or less and 74 μm or less. It is characterized by using particles whose particle size has been adjusted so that the ratio is 20 to 60%. The details of the method of the present invention will be described below. As a result of basic research on the pulverized particle size of raw material coal for molded coke production, the following facts were discovered. (1) By making the grain size of coal finer, the coke structure can be improved by giving the molded coke a homogeneous network structure, and we also compared the components with caking properties (caking coal and various bituminous materials) that soften and melt during carbonization. Even if a large amount is blended, phenomena such as blistering and fusion of the briquette coal during carbonization are reduced, so the coke matrix can be improved by increasing the content of these viscous components, and as a result, the properties of the briquette coke ( In particular, it was found that the hot properties were significantly improved.
In this case, the maximum particle size is preferably 1.5 mm or less, and if it is larger than that, the quality of the molded coke will deteriorate due to increased structure heterogeneity and blistering during carbonization. (2) On the other hand, if the coal particle size was made finer than necessary, the strength of the briquette coal became too weak, which caused damage to the briquettes, which hindered the carbonization operation, and also deteriorated the properties of the molten coke. The cost of pulverizing coal will also rise significantly. (3) Highly fluid caking substances (lime with a maximum fluidity of 10,000 ddpm or more as measured by a Gieseler plastometer, pitch (coal-based and petroleum-based), coal-based solvent-refined coal, etc.) are used as the caking component to be added in (1). If the amount of bituminous coal is small, it is preferable to grind it more coarsely than the main raw material coal because it is effective in reducing the deterioration of the properties (strength) of the briquette coal. However, if too large a quantity is added, although the properties of the briquette improve, the swelling and fusion of the molten coke become large, which may impede the carbonization operation. The particle size of the highly fluid caking substance is 100% below 1.5 mm using an intermediate pulverizer such as an impeller breaker.
It has been found that 20% or less of 74 μm or less is preferable; if it is coarser than this, it will have an adverse effect on the quality of the molded coke, and if it is finer than this, it will be less effective in reducing the deterioration of the molded coal properties (strength). Currently, industrial production of briquette coal is mainly carried out using double roll molding machines. Molded coal and molded coke were produced from raw materials with various coal particle sizes using a double roll molding machine, and the properties of each were investigated. Figure 1 shows an example of the relationship between the pulverized particle size and the properties of molten coal when the raw material is first pulverized to 100% of 1.5 mm or less using an impeller breaker, then further pulverized using a ball mill, and the ratio of 74 μm or less is varied. The quality of briquette coal is crushing strength 100.
Kg or more and trommel strength of 8.5% or more, we have confirmed that there will be no trouble in handling the coal briquettes due to breakage during the carbonization process, so we aimed to secure a trommel strength of 8.5% or more. From Figure 1, satisfactory briquettes were obtained when the particle size of the pulverized coal was 100% below 1.5 mm and 60% below 74 μm, but when the particle size of 74 μm or below exceeded 60%, the strength of the briquette suddenly decreased. It was found that the value gradually decreased. FIG. 2 is an example showing the relationship between the pulverized particle size of raw coal and the properties of molded coke. The finer the particle size of the raw coal, the better the properties of the molded coke. In particular, it can be seen that the strength improves markedly after the reaction with CO 2 , which is an indicator of the hot properties of coke. Combining the above results, the appropriate range for the pulverized particle size of the raw material for molded coke production is 100% of 1.5 mm or less, and
It has been found that it is preferable to adjust the thickness to 74 μm or less in a range of 20 to 60%. That is, if the raw material is made coarser than this appropriate range, the properties of the formed coke, especially the hot properties, will be poor and the quality of the coke for metallurgical use will not be sufficient.
If it is made finer than the appropriate range, the properties of the briquette will deteriorate, causing troubles such as breakage of the briquette, and at the same time, the properties of the briquette coke will also deteriorate. In addition, the cost of grinding raw materials will increase significantly. Specific examples of the method of the present invention will be described below. Example 1 A coal blend of 65% non-slightly caking coal and 35% caking coal was first pulverized to 1.5 mm or less using an impeller breaker, and then further pulverized using a ball mill to adjust the particle size so that about 40% was 74 μm or less. . 8% soft pitch was added as a binder to raw coal whose particle size had been adjusted, and the mixture was kneaded while blowing in steam to produce briquette charcoal using a double roll molten machine.
For comparison, the impeller breaker is 1.5mm.
Molten coal was produced in the same manner using raw coal that was only pulverized. Table 1 shows the particle size of the raw material and the strength of the briquette coal.

【表】 本法の成型炭は比較の成型炭にくらべ強度は低
いが、乾留作業には十分耐え得るものである。次
にこれらの成型炭を加熱媒体としてコークス炉ガ
スの燃焼ガスと高温窒素ガスの混合ガスを用い
て、4.5時間で成型コークスの中心温度が約1000
℃になる条件で乾留して成型コークスを製造し
た。表2に成型コークスの性状を示す。
[Table] Although the strength of the briquette charcoal produced by this method is lower than that of comparative briquette coal, it can withstand carbonization work. Next, using these briquettes as a heating medium and a mixture of coke oven combustion gas and high-temperature nitrogen gas, the center temperature of the briquettes was raised to approximately 1000 in 4.5 hours.
Molded coke was produced by carbonization at ℃. Table 2 shows the properties of molded coke.

【表】 これから本法の成型コークスは従来法による成
型コークス(比較の成型コークス)にくらべ強度
が高く、特に熱間性状の指標としているCO2反応
後強度の向上が著しく、本法の効果が非常に大き
いことがわかる。 実施例 2 非微粘結炭65%と粘結炭35%の配合炭を、まず
インペラーブレーカーで1.5mm以下に粉砕し、更
にボールミルで粉砕し、74μm以下が約50%程度
になるように粒度調製した。粒度調製した原料石
炭にバインダーとして軟ピツチ10%を添加し、水
蒸気を吹込みながら混練し、ダブルロール型成型
機で成型炭を製造した。なお比較のためインペラ
ーブレーカーで1.5mm以下に粉砕しただけの原料
石炭について同じ方法で成型炭を製造した。表3
に原料の粒度と成型炭の強度を示す。
[Table] It can be seen that the strength of the molded coke produced by this method is higher than that produced by the conventional method (comparative molded coke), and the strength after the CO 2 reaction, which is an indicator of hot properties, is particularly markedly improved. You can see that it is very large. Example 2 A coal blend of 65% non-slightly caking coal and 35% caking coal was first pulverized to 1.5 mm or less using an impeller breaker, and then further pulverized using a ball mill to reduce the particle size so that about 50% was 74 μm or less. Prepared. 10% soft pitch was added as a binder to raw coal whose particle size had been adjusted, and the mixture was kneaded while blowing in steam to produce briquette coal using a double-roll molten machine. For comparison, briquette coal was produced using the same method using raw material coal that was simply crushed to 1.5 mm or less using an impeller breaker. Table 3
shows the particle size of the raw material and the strength of the briquette coal.

【表】 本法の成型炭は比較の成型炭にくらべ強度は低
いが、乾留作業には十分耐え得るものである。次
にこれらの成型炭を加熱媒体としてコークス炉ガ
スの燃焼ガスと高温窒素ガスの混合ガスを用いて
4.5時間でコークスの中心温度が約1000℃となる
条件で乾留し成型コークスを製造した。表4に成
型コークス性状を示す。
[Table] Although the strength of the briquette charcoal produced by this method is lower than that of comparative briquette coal, it can withstand carbonization work. Next, using these briquettes as a heating medium, a mixture of coke oven combustion gas and high-temperature nitrogen gas is used.
Molded coke was produced by carbonization under conditions such that the center temperature of the coke reached approximately 1000°C in 4.5 hours. Table 4 shows the properties of the molded coke.

【表】 これから本法の成型コークスは、ドラム強度
(DI150 15)およびCO2反応後強度とも高いものが得
られた。なお比較の成型コークスは表2に示した
比較の成型コークスよりピツチの添加量が多いた
め、コークス性状は向上しているが、乾留時にお
ける成型コークス同志の融着が激しく円滑な乾留
操作を行なうことがむずかしかつた。一方本法の
成型コークスは円滑な乾留操作を行なうことがで
きた。 実施例 3 非微粘結炭65%と粘結炭30%と溶剤精製炭5%
の配合を行なうに際し、非微粘結炭と粘結炭の配
合炭にはインペラブレーカー1.5mm以下に粉砕し、
更にボールミルで粉砕し、74μm以下が約50%程
度に粒度調製する。一方溶剤精製炭はインペラブ
レーカーで1.5mm以下、100%、74μm以下18%に
粉砕した後、粒度調製した非微粘結炭と粘結炭の
配合炭に混合し、成型用原料とした。次にこれに
バインダーとして軟ピツチ8%を添加し、水蒸気
を吹込みながら混練し、ダブルロール型成型機で
成型炭を製造した。なお比較のため非微粘結炭、
粘結炭および溶剤精製炭を配合したのち、インペ
ラブレーカーで1.5mm以下に粉砕しただけの原料
について同じ方法で成型炭を製造した。表5に原
料の粒度と成型炭の強度を示す。
[Table] The molded coke produced by this method had high drum strength (DI 150 15 ) and high strength after CO 2 reaction. The comparative molded coke has a higher amount of pitch added than the comparative molded coke shown in Table 2, so the coke properties are improved, but the molded coke strongly fuses together during carbonization, making it difficult to carry out a smooth carbonization operation. It was difficult. On the other hand, the molded coke produced by this method could be carbonized smoothly. Example 3 65% non-slightly caking coal, 30% caking coal, and 5% solvent-refined coal
When blending non-slightly caking coal and caking coal, an impeller breaker is used to crush the coal to 1.5 mm or less.
It is further ground in a ball mill to adjust the particle size to about 50% of the particles being 74 μm or less. On the other hand, the solvent-refined coal was pulverized with an impeller breaker to 100% of 1.5 mm or less, and 18% of 74 μm or less, and then mixed with a blended coal of non-slightly caking coal and caking coal whose particle size had been adjusted, and used as a raw material for molding. Next, 8% soft pitch was added as a binder, and the mixture was kneaded while blowing in steam to produce briquette charcoal using a double roll molten machine. For comparison, non-slightly caking coal,
Molded coal was produced using the same method using raw materials that were simply pulverized to 1.5 mm or less using an impeller breaker after blending caking coal and solvent-refined coal. Table 5 shows the particle size of the raw material and the strength of the briquette coal.

【表】 本法の成型炭は比較の成型炭にくらべ強度は低
いが、乾留作業には十分耐え得るものである。次
にこれらの成型炭を加熱媒体としてコークス炉ガ
スの燃焼ガスと高温窒素ガスの混合ガスを用いて
4.5時間でコークス中心温度が約1000℃になる条
件で乾留し、成型コークスを製造した。表6に成
型コークスの性状を示す。
[Table] Although the strength of the briquette charcoal produced by this method is lower than that of comparative briquette coal, it can withstand carbonization work. Next, using these briquettes as a heating medium, a mixture of coke oven combustion gas and high-temperature nitrogen gas is used.
Molded coke was produced by carbonization under conditions such that the center temperature of the coke reached approximately 1000°C in 4.5 hours. Table 6 shows the properties of the molded coke.

【表】 これから本法の成型コークスは従来法による成
型コークス(比較の成型コークス)にくらべ強度
が高く、特にCO2反応後強度の向上が著しく本法
の効果が大きいことがわかる。 なお比較の成型コークスは乾留時に成型コーク
スの融着が一部生じ乾留作業上支障が生じた。 実施例 4 非微粘結炭65%と粘結炭35%の配合炭を、まず
インペラーブレーカーで1.5mm以下に粉砕し、更
にボールミルで粉砕し74μm以下が約60%程度に
なるように粒度調製した。 粒度調製した原料石炭にバインダーとして軟ピ
ツチ10%を添加し、水蒸気を吹込みながら混練
し、ロールプレスで予備成型した後<15mm程度に
粗砕した原料をダブルロール型成型機に供給して
成型炭を製造した。 なお比較のためインペラブレーカーで1.5mm以
下に粉砕しただけの原料石炭に軟ピツチ10%を添
加し、水蒸気を吹込みながら混練し、ダブルロー
ル型成型機で成型炭を製造した。表7に原料の粒
度と成型炭の強度を示した。
[Table] From this it can be seen that the strength of the molded coke produced by this method is higher than that of the molded coke produced by the conventional method (comparison molded coke), and that the strength of the coke produced by this method is particularly significant after the CO 2 reaction, which shows a significant improvement in strength. In the comparative molded coke, some of the molded coke was fused during carbonization, which caused problems in carbonization work. Example 4 A coal blend of 65% non-slightly caking coal and 35% caking coal was first pulverized to 1.5 mm or less using an impeller breaker, and then further pulverized using a ball mill to adjust the particle size so that approximately 60% of the coal was 74 μm or less. did. Add 10% soft pitch as a binder to raw coal whose particle size has been adjusted, knead it while blowing steam, pre-form it with a roll press, and then feed the coarsely crushed raw material to a size of <15 mm to a double-roll molding machine and mold it. produced charcoal. For comparison, 10% soft pitch was added to raw coal that had just been crushed to 1.5 mm or less using an impeller breaker, and the mixture was kneaded while blowing in steam to produce briquette coal using a double-roll molding machine. Table 7 shows the particle size of the raw material and the strength of the briquette coal.

【表】 本法の成型炭は比較の成型炭にくらべ強度は低
いが、乾留作業に十分耐え得るものである。なお
本法の成型炭は実施例2の成型炭にくらべべ原料
粒度は細かいにもかかわらず、強度は大きくなつ
ており、ダブルロール型成型機に供給する前に原
料を粗粒化しておくことが好ましいことがわか
る。 次にこれらの成型炭を加熱媒体としてコークス
炉ガスの燃焼ガスと高温窒素ガスの混合ガスを用
いて4.5時間でコークスの中心温度が約1000℃に
なる条件で乾留し、成型コークスを製造した。表
8に成型コークスの性状を示す。
[Table] Although the strength of the briquette charcoal produced by this method is lower than that of comparative briquette coal, it can withstand carbonization work. Although the briquette charcoal of this method has finer raw material particle size than the briquette of Example 2, it has greater strength, so it is necessary to coarsen the granule of the raw material before feeding it to the double roll molding machine. It turns out that is preferable. Next, these briquettes were carbonized using a mixture of coke oven combustion gas and high-temperature nitrogen gas as a heating medium under conditions such that the center temperature of the coke reached approximately 1000°C in 4.5 hours to produce briquette coke. Table 8 shows the properties of the molded coke.

【表】 これから本法の成型コークスは、ドラム強度の
(DI150 15)、およびCO2反応後強度とも高いものが
得られた。なお比較の成型コークスは表2に示し
た比較の成型コークスよりピツチの添加量が多い
ため、コークス性状は向上しているが乾留時にお
けるコークス同志の融着が激しく、円滑な乾留操
作を行なうことがむずかしかつた。一方本法の成
型コークスは円滑な乾留操作を行なうことができ
た。 以上の実施例に示したように本法により原料の
粒度調製を行なうことにより、乾留作業の支障を
きたすことなく、高品質、特に熱間性状の優れた
成型コークスを得ることができた。
[Table] The molded coke produced by this method was found to have high drum strength (DI 150 15 ) and high strength after CO 2 reaction. The comparative molded coke has a larger amount of pitch added than the comparative molded coke shown in Table 2, so the coke properties are improved, but the coke fusion during carbonization is severe, making it difficult to carry out a smooth carbonization operation. It was difficult. On the other hand, the molded coke produced by this method could be carbonized smoothly. By adjusting the particle size of the raw material using this method as shown in the examples above, it was possible to obtain molded coke of high quality, particularly excellent hot properties, without interfering with the carbonization work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原料の粉砕度と成型炭性状の関係の一
例を示すグラフ、第2図は原料の粉砕度と成型コ
ークス性状の関係の一例を示すグラフである。
FIG. 1 is a graph showing an example of the relationship between the degree of grinding of the raw material and the properties of molded coke, and FIG. 2 is a graph showing an example of the relationship between the degree of grinding of the raw material and the properties of formed coke.

Claims (1)

【特許請求の範囲】 1 原料石炭類を1.5mm以下100%、かつ74μm以
下を20〜60%の範囲に調製したのち、コールター
ル、ピツチ、石油アスフアルト等の歴青物をバイ
ンダーとして加えて成形した成型炭を高温乾留す
ることを特徴とする成型コークス製造法。 2 原料石炭類を1.5mm以下100%、かつ74μm以
下を20〜60%の粒度範囲に調製したのち、1.5mm
以下100%、74μm以下20%以下に粒度調製した
高流動性粘結物質(ギーセラプラストメーターの
最高流動度10000ddpm以上の粘結物質。)を配合
し、これにコールタール、ピツチ、石油アスフア
ルト等の歴青物をバインダーとして加えて成形し
た成型炭を高温乾留することを特徴とする成型コ
ークス製造法。
[Scope of Claims] 1. After preparing raw coal to have 100% of the raw material coal below 1.5 mm and 20% to 60% below 74 μm, a bituminous material such as coal tar, pitch, petroleum asphalt, etc. is added as a binder and molded. A molded coke production method characterized by high-temperature carbonization of molded coal. 2. After preparing raw coal to a particle size range of 100% of 1.5 mm or less and 20 to 60% of 74 μm or less,
A highly fluid caking substance (caking substance with a maximum fluidity of 10,000 ddpm or more on a Gieseler plastometer) whose particle size has been adjusted to 100% or less, 74 μm or less, and 20% or less is blended with coal tar, pitch, petroleum asphalt, etc. A molded coke manufacturing method characterized by high temperature carbonization of molded coal formed by adding bituminous material as a binder.
JP7815080A 1980-06-10 1980-06-10 Preparation of molded coke for metallurgy Granted JPS573884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7815080A JPS573884A (en) 1980-06-10 1980-06-10 Preparation of molded coke for metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7815080A JPS573884A (en) 1980-06-10 1980-06-10 Preparation of molded coke for metallurgy

Publications (2)

Publication Number Publication Date
JPS573884A JPS573884A (en) 1982-01-09
JPS6312912B2 true JPS6312912B2 (en) 1988-03-23

Family

ID=13653873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7815080A Granted JPS573884A (en) 1980-06-10 1980-06-10 Preparation of molded coke for metallurgy

Country Status (1)

Country Link
JP (1) JPS573884A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728049B2 (en) * 2005-06-09 2011-07-20 日機装株式会社 Diaphragm pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109901A (en) * 1975-03-25 1976-09-29 Nippon Kokan Kk Datsupaiotomonau sekitanruinoseikeihoho
JPS51130402A (en) * 1975-05-08 1976-11-12 Idemitsu Kosan Co Ltd A method for manufacturing coal briquette

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109901A (en) * 1975-03-25 1976-09-29 Nippon Kokan Kk Datsupaiotomonau sekitanruinoseikeihoho
JPS51130402A (en) * 1975-05-08 1976-11-12 Idemitsu Kosan Co Ltd A method for manufacturing coal briquette

Also Published As

Publication number Publication date
JPS573884A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
JP3953420B2 (en) Method for producing metallized briquette
US7674314B2 (en) Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
KR101405478B1 (en) Method for manufacturing coal bruquettes and apparatus for the same
JP3027084B2 (en) Method for producing molded coke for metallurgy
CN1153810A (en) Cast coke briquette produced with anthracite and its production process
JPH0121855B2 (en)
JPH0665579A (en) Method for compounding raw material of coal briquet for producing metallurgical formed coke
CN212687965U (en) Coke production device
KR20090116377A (en) The making method of granule coke using coke dust and sludge and the granule coke
JPS6312912B2 (en)
US6918947B2 (en) Method for making reduced iron
CN102295944A (en) Foundry coke brick and production method thereof
CN114507553A (en) Mixed fuel with high coal-coke replacement ratio for blast furnace injection and preparation method thereof
JP2005053986A (en) Method for producing ferrocoke for blast furnace
US2732333A (en) Graphite containing metallurgical
JPS6113517B2 (en)
JPS6040192A (en) Production of metallurgical coke
CN112063781A (en) Coke powder-containing mixed fuel for blast furnace coal injection and preparation method thereof
JP7493121B1 (en) Coke manufacturing method
JPH11181441A (en) Production of coke for metallurgy
JP7371610B2 (en) Method for producing shaped sintered raw material and method for producing sintered ore
JPH04335093A (en) Method for treating coal
JPH06330052A (en) Production of formed coal
JPS6246593B2 (en)
KR20230161680A (en) Method of iron making used coal briquette to improve slag discharge