JPS63128670A - Manufacture of isolation - Google Patents

Manufacture of isolation

Info

Publication number
JPS63128670A
JPS63128670A JP27395086A JP27395086A JPS63128670A JP S63128670 A JPS63128670 A JP S63128670A JP 27395086 A JP27395086 A JP 27395086A JP 27395086 A JP27395086 A JP 27395086A JP S63128670 A JPS63128670 A JP S63128670A
Authority
JP
Japan
Prior art keywords
layer
nitride film
gap
semiconductor substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27395086A
Other languages
Japanese (ja)
Other versions
JPH0766963B2 (en
Inventor
Masatoshi Tabei
田部井 雅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP27395086A priority Critical patent/JPH0766963B2/en
Publication of JPS63128670A publication Critical patent/JPS63128670A/en
Publication of JPH0766963B2 publication Critical patent/JPH0766963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form an extremely narrow isolating region for the realization of an enhanced integration by a method wherein the middle one of three layers vertically installed on a semiconductor substrate is removed for the creation of a gap equivalent in thickness to the removed layer and an insulating layer of silicon oxide is built in the gap. CONSTITUTION:On the surface of a P<->-type semiconductor substrate 1, a SiO2 layer 5, nitride film 6, and a polycrystalline silicon layer 7 of appropriate dimensions are formed. Further, a polycrystalline silicon oxide film 8 is deposited and a nitride film 9 is formed by vapor growth. A process follows wherein the nitride film 9 is so etched that it will be as wide as the width W of the nitride film T and then the oxide film 8 is removed. The result is a gap 10, formed between the ends of the nitride films 7 and 9, with its depth equivalent to the thickness (DELTAl=0.2mum) of the now-removed oxide film 8. The nitride film 9 is then removed by etching, when a part of the nitride film 6 exposed in the gap 10 is removed at the same time. After this, the polycrystalline silicon layer 7 is also removed. A process follows wherein thermal oxidation is accomplished for the formation of an SiO2 insulating layer 11 in the gap 10. Finally, the nitride film 6 and SiO2 film 5 are removed, for the exposure of the surface of the P<->-type semiconductor substrate 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路において複数の半導体素子の
相互間を電気的に分離するためなどに設けられるアイソ
レーションの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing isolation provided for electrically isolating a plurality of semiconductor elements from each other in a semiconductor integrated circuit.

〔従来例〕[Conventional example]

従来のアイソレーションの構造を第9図に示すC0D(
電荷転送デノセイス)の場合について説明する。同図に
おいて、斜線で示した櫛形状の部分1がアイソレーショ
ン領域fあり、半導体基板の表面から内部に向けて高濃
度の不純物を拡散などすることによ多形成される。半導
体基板の上面には、ゲート酸化膜(図示せず)を介して
複数の転送電極2が形成され、アイソレーション領域1
を除く転送電極20下に電荷転送チャンネル6が形成さ
れている。そして、夫々の転送電極2に転送駆動信号Φ
■、〜Φ■4を印加するととKより信号電荷を転送し、
又、相互に隣接する転送チャンネル3の間はアイソレー
ションf電気的に分離されているの1常に信号電荷は所
定の転送チャンネル3を移動するよう罠なっている。
The conventional isolation structure is C0D (
The case of charge transfer denoise will be explained. In the figure, a comb-shaped portion 1 indicated by diagonal lines is an isolation region f, which is formed by diffusing highly concentrated impurities from the surface of the semiconductor substrate toward the inside. A plurality of transfer electrodes 2 are formed on the upper surface of the semiconductor substrate via a gate oxide film (not shown), and isolation regions 1
A charge transfer channel 6 is formed under the transfer electrode 20 except for the transfer electrode 20 . Then, a transfer drive signal Φ is applied to each transfer electrode 2.
When applying ■, ~Φ■4, the signal charge is transferred from K,
Further, adjacent transfer channels 3 are electrically separated by isolation f, so that signal charges always move through a predetermined transfer channel 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのような構造のアイソレーションにあっ
ては、フォトリソグラフィー(Phot□ −I it
hography ) Kよって形成されろため、最小
幅!(第9図参照)は通常の製造工程1は1〜2μm、
高密度の製造工程でも0.8μm程度が限界fあり、例
えば、高密度・高画素化を図ろうとする固体撮像素子そ
の他の電子回路装置の開発を困難にしていた。
However, in isolation of such a structure, photolithography (Photo□-I it
hography ) K is formed by the minimum width! (See Figure 9) is 1 to 2 μm in normal manufacturing process 1,
Even in a high-density manufacturing process, there is a limit f of about 0.8 μm, making it difficult to develop, for example, solid-state image sensors and other electronic circuit devices that aim to achieve high density and high pixel density.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題点に鑑みて成されたもの1あシ
、極めて幅の狭いアイソレーションを製造するための方
法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a method for manufacturing an extremely narrow isolation.

この目的を達成するため本発明は、半導体基板の上面に
第1の層を形成し、該第1の層の少なくとも側端面に第
2の層を積層し、更に第2の層の少なくとも側端面に第
3の層を積層することにより、該半導体基板の水平面に
対して相対的KW設される少なくとも3つの層を形成す
る第1の工程と、該第1.第2の層の間に介在する第3
の層を除去することKより該第3の層の厚さに相当する
隙間を形成する第2の工程と、該隙間を介して熱酸化す
ることにより該半導体基板内に酸化シリコンより成る絶
縁層を形成させる第3の工程を具備することを特徴とす
る。
In order to achieve this object, the present invention forms a first layer on the upper surface of a semiconductor substrate, stacks a second layer on at least a side end surface of the first layer, and further laminates a second layer on at least a side end surface of the second layer. a first step of forming at least three layers disposed relative KW to the horizontal plane of the semiconductor substrate by laminating a third layer on the first layer; a third layer interposed between the second layer
a second step of forming a gap corresponding to the thickness of the third layer; and thermal oxidation through the gap to form an insulating layer made of silicon oxide in the semiconductor substrate. It is characterized by comprising a third step of forming.

〔実施例〕〔Example〕

以下1本発明によるアイソレーションの製造方法の一実
施例を図面とともに説明する。第1図ないし第8図は一
連の製造工程を順番に示す要部縦断面図1ある。
An embodiment of the isolation manufacturing method according to the present invention will be described below with reference to the drawings. FIGS. 1 to 8 are longitudinal cross-sectional views of main parts sequentially showing a series of manufacturing steps.

これらの図面に基づいて製造方法及び構造を説明すると
、まず第1の製造工程においては、第1図に示すように
、例えばP−型の半導体基板(サブストレート)4の表
面忙シリコン酸化膜(Si02)5及び窒化膜(Si3
N2)6を積層し、更に上面に適宜の形状のポリシリコ
ン層7を堆積させる。例えば、CCDを形成する場合、
形成すべき転送チャンネルの形状に合わせて長さ及び幅
Wを設計する@第2の製造工程においては、第2図に示
すよう和、気相成長(CVD )等によりポリシリコン
層70表面に/す酸化膜8を堆積させる@ここ1、−例
として、シリコン酸化膜5の厚さを25OA。
The manufacturing method and structure will be explained based on these drawings. First, in the first manufacturing process, as shown in FIG. Si02)5 and nitride film (Si3
N2) 6 is laminated, and a polysilicon layer 7 of an appropriate shape is further deposited on the upper surface. For example, when forming a CCD,
In the second manufacturing process, the length and width W are designed according to the shape of the transfer channel to be formed, as shown in FIG. As an example, the thickness of the silicon oxide film 5 is 25 OA.

窒化膜6の厚さを1500A%ポリシリコン層7の厚さ
を5oooXそしてポリ酸化膜8の厚さを0.2μm程
度に形成する、 次に、第3図に示す第3の製造工程において、約150
OAの厚さの窒化膜9を気相成長率により堆積させる。
The thickness of the nitride film 6 is 1500A, the thickness of the polysilicon layer 7 is 500X, and the thickness of the polyoxide film 8 is about 0.2 μm.Next, in the third manufacturing process shown in FIG. Approximately 150
A nitride film 9 having a thickness of OA is deposited by vapor phase growth.

次の第4図に示す第4の製造工程では、窒化膜9のうち
先く形成された窒化膜7の幅Wと同じ程度の範囲をエツ
チングにより除去し、ポリ酸化膜8の上端面を露出させ
る。
In the fourth manufacturing step shown in FIG. 4, a portion of the nitride film 9 that is approximately the same width W as the previously formed nitride film 7 is removed by etching to expose the upper end surface of the polyoxide film 8. let

第5図に示す第5の製造工程においては、ポリ酸化膜8
をエツチングにより除去し、窒化膜7の表面を露出させ
る。これにより窒化膜7,9の側端部の間にポリ酸化膜
8の厚さにΔl”=0.2μm)K相当する隙間10が
形成される。
In the fifth manufacturing process shown in FIG.
is removed by etching to expose the surface of the nitride film 7. As a result, a gap 10 corresponding to the thickness of the polyoxide film 8 by Δl''=0.2 μm) is formed between the side edges of the nitride films 7 and 9.

次に1第3図に示す第3の製造工程tは、更K、窒化膜
9をエツチングにより除去し、窒化膜60表面を露出さ
せる。この時、隙間10に露出していた窒化膜6の一部
分も同時にエツチングされ、第3図に示すように、シリ
コン酸化膜7の一部分が隙間10の幅Δ4で露出する。
Next, in a third manufacturing step t shown in FIG. 3, the nitride film 9 is removed by etching to expose the surface of the nitride film 60. At this time, a portion of the nitride film 6 exposed in the gap 10 is also etched at the same time, and a portion of the silicon oxide film 7 is exposed at the width Δ4 of the gap 10, as shown in FIG.

その後、ポリシリコン層7をエツチングにより除去する
Thereafter, polysilicon layer 7 is removed by etching.

次に、第7の工程においては、熱酸化例えばウェット酸
化により、第7図に示すように半導体基板内に二酸化シ
リコン(Si02)の絶縁層11を形成する、これらの
絶縁層11は窒化膜61覆ゎれていない部分すなわち上
記隙間1oを通して形成されるの1、深さΔhを0.4
〜0.5μmに設計したとき、幅ΔWをQ、2pm程度
にすることが1きる。
Next, in a seventh step, insulating layers 11 of silicon dioxide (Si02) are formed in the semiconductor substrate by thermal oxidation, for example, wet oxidation, as shown in FIG. 1, which is formed through the uncovered portion, that is, the gap 1o, and the depth Δh is 0.4.
When designed to be ~0.5 μm, it is possible to set the width ΔW to Q, about 2 pm.

第8図に示すアイソレーション製造のための最終工程f
は、窒化膜6及びシリコン酸化膜5をエツチングにより
除去し、半導体基板40表面を露出させる。
Final step f for isolation manufacturing shown in Figure 8
Then, the nitride film 6 and silicon oxide film 5 are removed by etching to expose the surface of the semiconductor substrate 40.

以上の製造工程を経た後、CCD等の製造を行なう。例
えばCODを形成する場合、熱拡散あるいはイオン注入
技術により半導体基板4の表面部Vcn−形の不純物層
を形成し、次にゲート酸化膜を形成した後、ポリシリコ
ン等による転送電極を形成する。これにより、絶縁層1
1をアイソレーション領域とし上記不純物層を転送チャ
ネルとするCODが形成されることとなる。
After passing through the above manufacturing steps, CCDs and the like are manufactured. For example, when forming a COD, a Vcn- type impurity layer is formed on the surface of the semiconductor substrate 4 by thermal diffusion or ion implantation, then a gate oxide film is formed, and then a transfer electrode made of polysilicon or the like is formed. As a result, the insulating layer 1
A COD is formed in which 1 is an isolation region and the impurity layer is a transfer channel.

このように、この実施例によれば、絶縁層11は従来の
不純物拡散層によるアイソレーション領域1(第9図参
照)よりも極めて狭い幅にすることができるため、集積
度の向上に効果がある。又。
As described above, according to this embodiment, the width of the insulating layer 11 can be made much narrower than that of the isolation region 1 (see FIG. 9) made of the conventional impurity diffusion layer, which is effective in improving the degree of integration. be. or.

絶縁層11はそれ自体が導電性を有しないのマ、空乏層
を利用してアイソレーションを行な5場合のような配線
が不要1あり、更に高集積化を図ることができる、 〔発明の効果〕 以上説明したように本発明によれば、半導体基板の上面
に第1の層を形成し、該第1の層の少なくとも側端面に
第2の膚を積層し、更に第2の層の少なくとも側端面に
第3の層を積層することKより、該半導体基板の水平面
に対して相対的に置設される少なくとも6つの層を形成
する第1の工程と、該第1.第2の層の間に介在する第
3の層を除去するととKより該第3の層の厚さに相当す
る隙間を形成する第2の工程と、該隙間を介して熱酸化
することにより該半導体基板内に酸化シリコンより成る
絶縁層を形成する第3の工程を具備し、半導体基板内に
該第2の層の厚さに相当する絶縁層をアイソレーション
領域として形成するようKしたの1.極めて幅の狭いア
イソレーション領域を実現することが1き、半導体集積
回路を更に高集積度化することができる。
Since the insulating layer 11 itself does not have conductivity, isolation is performed using the depletion layer, eliminating the need for wiring as in the case of 5, and further increasing the degree of integration. [Effects] As explained above, according to the present invention, a first layer is formed on the upper surface of a semiconductor substrate, a second layer is laminated on at least the side end surface of the first layer, and a first step of forming at least six layers disposed relative to a horizontal surface of the semiconductor substrate by laminating a third layer on at least a side end surface; When the third layer interposed between the second layers is removed, a second step of forming a gap corresponding to the thickness of the third layer, and thermal oxidation through the gap, A third step of forming an insulating layer made of silicon oxide in the semiconductor substrate, and forming an insulating layer corresponding to the thickness of the second layer in the semiconductor substrate as an isolation region. 1. It is possible to realize an extremely narrow isolation region, and it is possible to further increase the degree of integration of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第8図は本発明によるアイソレーションの
製造方法の一実施例における製造工程を示す要部縦断面
図、第9図は従来のアイソレーションの構造をCODの
場合について示す要部平面図1ある。 4・・・半導体基板、   5・・・シリコン酸化膜、
6・・・窒化膜、     7・・・ポリシリコン層。 8・・・ポリ酸化膜、   9・・・窒化膜。 10・・・隙間、     11・・・絶縁層。 (ほか3名) iE1図 第  2  図 第3図 第  4  図 第  5  図 第3図 第  7  図 第  9  図
1 to 8 are longitudinal cross-sectional views of main parts showing the manufacturing process in an embodiment of the isolation manufacturing method according to the present invention, and FIG. 9 is a plan view of main parts showing the conventional isolation structure in the case of COD. There is Figure 1. 4... Semiconductor substrate, 5... Silicon oxide film,
6...Nitride film, 7...Polysilicon layer. 8...Polyoxide film, 9...Nitride film. 10... Gap, 11... Insulating layer. (3 others) iE1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 3 Figure 7 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の上面に第1の層を形成し、該第1の
層の少なくとも側端面に第2の層を積層し、更に第2の
層の少なくとも側端面に第3の層を積層することにより
、該半導体基板の水平面に対して相対的に立設される少
なくとも3つの層を形成する第1の工程と、該第1,第
2の層の間に介在する第3の層を除去することにより該
第3の層の厚さに相当する隙間を形成する第2の工程と
、 該隙間を介して熱酸化することにより該半導体基板内に
酸化シリコンより成る絶縁層を成長させる第3の工程を
備えることを特徴とするアイソレーションの製造方法。
(1) Forming a first layer on the upper surface of a semiconductor substrate, laminating a second layer on at least a side end surface of the first layer, and further laminating a third layer on at least a side end surface of the second layer. By doing so, a first step of forming at least three layers standing upright relative to the horizontal surface of the semiconductor substrate, and a third layer interposed between the first and second layers are performed. a second step of forming a gap corresponding to the thickness of the third layer by removing the third layer; and a second step of growing an insulating layer made of silicon oxide within the semiconductor substrate by thermal oxidation through the gap. A method for manufacturing isolation, comprising the steps of 3.
(2)前記第1の工程は、前記半導体基板の表面にシリ
コン酸化膜と第1の窒化膜を積層し、該窒化膜の上面に
所定形状のポリシリコン層より成る前記第1の層を形成
し、該第1の層の少なくとも側端面に酸化によつて形成
されるポリ酸化膜より成る前記第2の層を形成し、更に
該第2の層の少なくとも側端面に他の窒化膜より成る前
記第3の層を積層する工程からなり、 前記第2の工程は、該第3の層の上端部をエッチングに
より除去して該第2の層を露出させた後、該第2の層を
エッチングにより除去することにより前記隙間を形成す
る工程からなり、 前記第3の工程は、エッチングにより該隙間を介して上
記シリコン酸化膜に達する隙間を上記第1の窒化膜に形
成し、該第1の窒化膜に形成された該隙間を介して熱酸
化により半導体基板内に前記酸化シリコンより成る絶縁
層を形成させることを特徴とする特許請求の範囲第1項
記載のアイソレーションの製造方法。
(2) In the first step, a silicon oxide film and a first nitride film are laminated on the surface of the semiconductor substrate, and the first layer made of a polysilicon layer having a predetermined shape is formed on the upper surface of the nitride film. and forming the second layer made of a polyoxide film formed by oxidation on at least the side end faces of the first layer, and further comprising another nitride film on at least the side end faces of the second layer. The second step includes the step of stacking the third layer, and the second step includes removing the upper end of the third layer by etching to expose the second layer, and then stacking the second layer. The third step includes forming the gap in the first nitride film by etching to reach the silicon oxide film through the gap, and forming the gap in the first nitride film by etching. 2. The isolation manufacturing method according to claim 1, wherein the insulating layer made of silicon oxide is formed in the semiconductor substrate by thermal oxidation through the gap formed in the nitride film.
JP27395086A 1986-11-19 1986-11-19 Method of manufacturing isolation Expired - Fee Related JPH0766963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27395086A JPH0766963B2 (en) 1986-11-19 1986-11-19 Method of manufacturing isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27395086A JPH0766963B2 (en) 1986-11-19 1986-11-19 Method of manufacturing isolation

Publications (2)

Publication Number Publication Date
JPS63128670A true JPS63128670A (en) 1988-06-01
JPH0766963B2 JPH0766963B2 (en) 1995-07-19

Family

ID=17534828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27395086A Expired - Fee Related JPH0766963B2 (en) 1986-11-19 1986-11-19 Method of manufacturing isolation

Country Status (1)

Country Link
JP (1) JPH0766963B2 (en)

Also Published As

Publication number Publication date
JPH0766963B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
JP3003590B2 (en) Solid-state imaging device and method of manufacturing the same
JPS63128670A (en) Manufacture of isolation
JPH1126736A (en) Solid image pick-up device and manufacture thereof
JPH01503103A (en) Manufacturing method of single phase CCD
JP2004288975A (en) Charge coupled device and its manufacturing method
JPH07176714A (en) Manufacture of semiconductor device
JPH03263330A (en) Semiconductor device
JPH04207076A (en) Manufacture of solid-state image pickup device
JPH0687481B2 (en) Method of manufacturing isolation
JP2767104B2 (en) Method for manufacturing semiconductor device
JP2877656B2 (en) Method for manufacturing solid-state imaging device
JPS61198774A (en) Solid state image pick-up device and manufacture thereof
JPS6317229B2 (en)
JP2867469B2 (en) Charge transfer device and method of manufacturing the same
JPH05182992A (en) Manufacture of solid-state image sensing element
JP2723539B2 (en) Master slice type semiconductor device
JPS63116466A (en) Formation for electrode of charge coupled device
KR100364124B1 (en) Method for manufacturing isolation layer in semiconductor device
WO2011155182A1 (en) Solid-state imaging element
JP3189320B2 (en) Method for manufacturing semiconductor device
JP2002190587A (en) Method of manufacturing solid-state image pickup device
JPH07106543A (en) Manufacture of solid-state image sensing device
JPS6020909B2 (en) Method of manufacturing a charge coupled device
KR100280400B1 (en) Manufacturing method for charge coupled device
JP2946720B2 (en) Method for manufacturing semiconductor memory

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees