JPS63128167A - Electrically conductive solid lubricative film - Google Patents

Electrically conductive solid lubricative film

Info

Publication number
JPS63128167A
JPS63128167A JP27362786A JP27362786A JPS63128167A JP S63128167 A JPS63128167 A JP S63128167A JP 27362786 A JP27362786 A JP 27362786A JP 27362786 A JP27362786 A JP 27362786A JP S63128167 A JPS63128167 A JP S63128167A
Authority
JP
Japan
Prior art keywords
film
target
plasma
gaseous
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27362786A
Other languages
Japanese (ja)
Inventor
Iwao Sugimoto
杉本 岩雄
Shojiro Miyake
正二郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27362786A priority Critical patent/JPS63128167A/en
Publication of JPS63128167A publication Critical patent/JPS63128167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To make a lubricative film electrically conductive and to improve the mechanical properties of the film by sputtering a fluoropolymer contg. chlorine as a target with one or more kinds of plasma gases selected among inert gases, gaseous fluorocarbons and gaseous oxygen. CONSTITUTION:Substrates 3 are fixed in a substrate holder 2 in a vessel 1 and a target 4 is set. A sheet or film of a fluoropolymer contg. chlorine such as polychlorotrifluoroethylene is used as the target 4. The vessel 1 is evacuated to a prescribed pressure in two steps with a rotary oil pump 10 and a diffusion oil pump 9 and the whole vessel 1 is heated with a heater 16. One or more kinds of plasma gases selected among the inert gases such as Ar and He, gaseous fluorocarbons such as CF4 and freon and gaseous O2 are then introduced to a set pressure from a plasma gas cylinder 15 and plasma is stably generated by impressing high frequency voltage to an electrode 6 from a power source 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化を受けにくく、空気中で安定した導電性
を示し、さらに、真空中においても優れた固体潤滑特性
を示す導電性固体潤滑膜に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a conductive solid lubricant that is resistant to oxidation, exhibits stable conductivity in air, and exhibits excellent solid lubricant properties even in vacuum. It concerns membranes.

〔従来技術とその問題点〕[Prior art and its problems]

従来、この種の固体’IAWI膜としては、ターゲット
にポリテトラフルオロエチレン(PTFE)を、プラズ
マガスに不活性ガスを用いたスパッタ法により形成され
たものが知られている。
Conventionally, this type of solid 'IAWI film is known to be formed by sputtering using polytetrafluoroethylene (PTFE) as a target and an inert gas as plasma gas.

しかしながら、この固体潤滑膜の周拙動運動下における
sm特性は第5図に示すように揺動回数の小さな領域で
は不安定であり、さらに真空中においては潤滑能力を示
す寿命が短かくなる欠点がある。また、この固体imm
腹膜電気抵抗値は大きく、絶縁性であり、電気接点やタ
ッチパネルなどの導電性と潤滑性とを必要とする部分に
は適用できない不都合があった。さらに、この固体潤滑
膜の機械的強度は非常に小さく、蒸着面からの膜のはく
離、脱落が容易に起こり、潤滑機能が失われるという欠
点もあった。
However, the sm characteristics of this solid lubricant film under circumferential motion are unstable in a region where the number of oscillations is small, as shown in Figure 5, and furthermore, the life of the solid lubricant film, which indicates the lubricating ability, is shortened in a vacuum. There is. Also, this solid imm
The peritoneal electrical resistance value is large and the membrane is insulative, which has the disadvantage that it cannot be applied to parts that require electrical conductivity and lubricity, such as electrical contacts and touch panels. Furthermore, the mechanical strength of this solid lubricant film is very low, and the film easily peels off or falls off from the deposition surface, resulting in a loss of lubricating function.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明にあっては、含塩素系フルオロポリマ
ーをターゲットとし、不活性ガス、フッ化炭素ガス、M
素ガスのいずれか1種または2TI以上をプラズマガス
とすることにより上記問題点を解決するようにした。
Therefore, in this invention, chlorine-containing fluoropolymer is targeted, inert gas, fluorocarbon gas, M
The above-mentioned problems are solved by using one of the elementary gases or 2TI or more as the plasma gas.

第1図は、この発明の導電性固体潤滑膜を製造するため
の装置の一例を示すもので、高周波スパツタによるもの
である。第1図中符号1は真空容器、2は基板ホルダー
、3は基板、4はターゲット、5はシャッター、6は高
周波電極、7はマツチングボックス、8は高周波電源、
9は油拡散ポンプ、10は油回転ポンプ、11はメイン
バルブ、12は荒引きバルブ、13は油拡散ポンプ用吸
引バルブ、14はプラズマガス導入用可変バルブ、15
はプラズマガスボンベ、16はヒーターである。
FIG. 1 shows an example of an apparatus for manufacturing the conductive solid lubricant film of the present invention, which uses high-frequency sputtering. In FIG. 1, reference numeral 1 is a vacuum container, 2 is a substrate holder, 3 is a substrate, 4 is a target, 5 is a shutter, 6 is a high frequency electrode, 7 is a matching box, 8 is a high frequency power supply,
9 is an oil diffusion pump, 10 is an oil rotary pump, 11 is a main valve, 12 is a roughing valve, 13 is a suction valve for the oil diffusion pump, 14 is a variable valve for introducing plasma gas, 15
is a plasma gas cylinder, and 16 is a heater.

次に、この装置を用いて導電性固体側WJl1gを製造
する手順を以下に述べる。
Next, the procedure for manufacturing the conductive solid side WJl1g using this apparatus will be described below.

まず、容器1内の基板ホルダー2に熱処理ステンレス鋼
やシリコンウェハ等の基板3を取り付け、さらにターゲ
ット4をセットする。ターゲット4にはポリクロロトリ
フルオロエチレン(PCT FE)などの含塩素系フル
オロポリマーのシート。
First, a substrate 3 such as heat-treated stainless steel or a silicon wafer is attached to a substrate holder 2 in a container 1, and a target 4 is further set. Target 4 is a sheet of chlorine-containing fluoropolymer such as polychlorotrifluoroethylene (PCT FE).

フィルムを用いる。つぎに、油回転ポンプ10を作動さ
せた後、荒引きバルブ12を開いて排気を開始する。圧
力が104torr程度になると荒引きバルブ12を閏
じて、油拡散ポンプ用吸引バルブ13を開き、油拡改ポ
ンプ9を作動させてメインバルブ11を開き、これと平
行して排気効果を高めるためヒーター16を作動させて
容器1全体を加熱する。容器1内の圧力が10’Tor
r程度にまで真空度が上がるとプラズマガス導入用可変
バルブ14を開けてプラズマガスボンベ15からプラズ
マガスを導入しガス圧を設定する。高周波電源8により
高周波電極6に高周波電圧を印加し、プラズマが安定に
発生ずるようメインバルブ11で容器1内の圧力を調節
する。マツチングボックス7内のコンデンサにより投入
高周波電力を設定し、メインバルブ11で圧力を再び調
節しなおし、安定なプラズマ状態を得るようにする。つ
いで、ターゲット4の表面の汚染物を取り除くためスパ
ッタクリーニングを30分行った模、シャッター5を開
き、基板3上での潤滑膜形成を行う。
Use film. Next, after operating the oil rotary pump 10, the rough evacuation valve 12 is opened to start exhausting. When the pressure reaches about 104 torr, the roughing valve 12 is operated to open the suction valve 13 for the oil diffusion pump, and the oil expansion pump 9 is operated to open the main valve 11, and in parallel with this, to enhance the exhaust effect. The heater 16 is activated to heat the entire container 1. The pressure inside container 1 is 10'Tor
When the degree of vacuum increases to about r, the variable valve 14 for plasma gas introduction is opened, plasma gas is introduced from the plasma gas cylinder 15, and the gas pressure is set. A high frequency voltage is applied to the high frequency electrode 6 by a high frequency power source 8, and the pressure inside the container 1 is adjusted by a main valve 11 so that plasma is stably generated. The input high frequency power is set by the capacitor in the matching box 7, and the pressure is readjusted by the main valve 11 to obtain a stable plasma state. Next, after 30 minutes of sputter cleaning to remove contaminants from the surface of the target 4, the shutter 5 is opened and a lubricant film is formed on the substrate 3.

上記プラズマガスとしては、アルゴンガス、ヘリウムガ
スなどの不活性ガス、CF4 、フレオンガスなどのフ
ッ化炭素ガス、m素ガスの1種または2種以上の混合ガ
スが使用される。酸素ガスを用いる場合にはアルゴンガ
スなどの不活性ガスとの濃度10〜30vo1%の混合
ガスとして使用するのが好ましい。
As the plasma gas, one or a mixture of two or more of inert gases such as argon gas and helium gas, fluorocarbon gases such as CF4 and Freon gas, and hydrogen gases is used. When oxygen gas is used, it is preferably used as a mixed gas with an inert gas such as argon gas at a concentration of 10 to 30 vol%.

以上の操作により、基板3表面に目的とする導電性固体
潤滑膜が形成される。この固体潤W#膜は、ハロゲン化
炭素よりなる分子骨格を有しており、その低表面エネル
ギーに起因して良好な!1′1滑性を有し、かつ導電性
を示す。
By the above operations, the intended conductive solid lubricant film is formed on the surface of the substrate 3. This solid wet W# film has a molecular skeleton made of halogenated carbon, and has good properties due to its low surface energy. It has 1'1 lubricity and exhibits electrical conductivity.

第2図は、ターゲットにポリクロロトリフルオロエチレ
ン(PCTFE)を、プラズマガスにCF4ガスまたは
20%酸素混合アルゴンガスを用い、基板にステンレス
鋼を用いて、基板表面に本発明の固体r4滑膜を形成し
た試料について、真空中において速度3112.半径2
0顯、揺動角60゜で周揺動させ、これにステンレス鋼
製球状圧子を4.9Nで押しつけ摩擦させて、潤滑寿命
揺動回数を求めた結果を示すものである。ここでの潤滑
寿命揺動回数は揺動運動中の摩擦係数が0.3以上にな
った時の揺動回数である。このグラフより、ターゲット
にポリテトラフルオロエチレン(PTFE) 、プラズ
マガスにアルゴンを用いた従来の固体[膜に比べて寿命
が大幅に伸びていることがわかる。また、これらの固体
潤滑膜の平均摩擦係数は0.28であり、優れた潤滑性
を右する潤滑膜であることが認められた。
Figure 2 shows the solid R4 synovial film of the present invention on the substrate surface using polychlorotrifluoroethylene (PCTFE) as the target, CF4 gas or 20% oxygen mixed argon gas as the plasma gas, and stainless steel as the substrate. For a sample formed with a velocity of 3112. radius 2
This figure shows the results of determining the number of oscillations during the lubrication life by oscillating the material circumferentially at a 60° oscillation angle and pressing a stainless steel spherical indenter at 4.9N to create friction. The number of oscillations during the lubrication life here is the number of oscillations when the friction coefficient during the oscillation motion becomes 0.3 or more. From this graph, it can be seen that the lifespan is significantly longer than that of the conventional solid film that uses polytetrafluoroethylene (PTFE) as the target and argon as the plasma gas. Furthermore, the average coefficient of friction of these solid lubricant films was 0.28, and it was confirmed that the solid lubricant films had excellent lubricity.

また、第3図は、ターゲットにポリクロロトリフルオロ
エチレン(PCTFE)を、20%酸素混合アルゴンガ
スをプラズマガスとして得られた固体11滑脱の大気中
および真空中での周揺動回数と摩擦係数との関係を示す
ものである。これより、真空中では105回以上におい
ても摩擦係数が0゜3種度であり、すぐれたT!1滑耐
久性を示すことがわかる。
In addition, Figure 3 shows the number of circumferential oscillations and friction coefficient in the air and vacuum of the solid 11 obtained by using polychlorotrifluoroethylene (PCTFE) as a target and argon gas mixed with 20% oxygen as plasma gas. It shows the relationship between From this, the friction coefficient is 0°3 degrees even after 105 cycles in vacuum, which is an excellent T! It can be seen that it exhibits 1-slip durability.

第4図は、本発明の固体潤滑膜(ターゲット;PCTF
E、プラズマガス;フレオン)の構造解析をXta光電
子分光法(XPS)で行った際に得られたスペクトルの
C1s領域を示すものである。
Figure 4 shows the solid lubricant film (target: PCTF) of the present invention.
This shows the C1s region of the spectrum obtained when the structural analysis of E, plasma gas (freon) was performed using Xta photoelectron spectroscopy (XPS).

これよりこの固体潤滑膜は主にCFにより構成されてお
り、若干、主鎖中にCF2が、ターミナルにCF3が存
在するものと考えられる。さらに赤外線分光(IR)ス
ペクトルでは波数1640c屑−1にメインビークが波
数1400α−1にサブピークが見られるのみであるこ
とからCFの炭素はSP2炭素であると考えられる。こ
れらの分析結果より、この固体潤滑膜は1フフ化SP2
炭素がつながったポリフッ化アセチレン: (CF=C
F)、構造をとりフッ素原子上の高電子密度による主鎖
間のクーロン斥力に帰因して高潤滑能が現われると考え
られる。
From this, it is considered that this solid lubricant film is mainly composed of CF, with some CF2 in the main chain and CF3 in the terminal. Further, in the infrared spectroscopy (IR) spectrum, a main peak is observed at a wave number of 1640c-1, and only a subpeak is observed at a wave number of 1400α-1, so that the carbon in the CF is considered to be SP2 carbon. From these analysis results, this solid lubricant film is 1fufu SP2
Polyfluorinated acetylene with carbon atoms connected: (CF=C
F), it is thought that the high lubrication ability appears due to the Coulomb repulsion between the main chains due to the high electron density on the fluorine atom.

つぎに、本発明の固体潤滑膜の電気的特性については、
X線光電子分光法測定の際、電子放出に伴うチャージア
ップ現象が見られなかったことより導電性膜であること
がわかり、その程度は潤滑膜の接触電気抵抗測定より、
抵抗率が103に0cm以下である。さらに、電子供与
性や電子吸引性のイオンをイオン注入法、Ti解耐酸化
法より膜内ドーピングすることにより抵抗率をさらに下
げることも可能である。また、この固体潤滑膜は酸素プ
ラズマ中において、はとんどエツチングされず、耐環境
性に優れた特性を有していることがわがつた。
Next, regarding the electrical characteristics of the solid lubricant film of the present invention,
During X-ray photoelectron spectroscopy measurements, no charge-up phenomenon accompanying electron emission was observed, indicating that the film was conductive, and the extent of this was determined by measuring the contact electrical resistance of the lubricating film.
The resistivity is 103 to 0 cm or less. Furthermore, it is possible to further lower the resistivity by doping the film with electron-donating or electron-withdrawing ions using an ion implantation method or a Ti decomposition anti-oxidation method. It was also found that this solid lubricant film was hardly etched in oxygen plasma and had excellent environmental resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の導電性固体潤滑膜は、含
塩素糸フルオロポリマーをターゲットとし、不活性ガス
、フッ化炭素、酸素のいずれか1種または2種以上をプ
ラズマガスとしてスパッタして得られたものであるので
、摩擦係数が低く、機械的強度が高く、低摩擦特性の耐
久性に優れ、しかも導電性である。よって、この潤滑膜
はメンテナンスフリー軸受、電気接点などに好適に適用
することができる。
As explained above, the conductive solid lubricant film of the present invention is produced by sputtering a chlorine-containing thread fluoropolymer as a target and using one or more of inert gas, fluorocarbon, and oxygen as a plasma gas. Since it is obtained, it has a low coefficient of friction, high mechanical strength, excellent durability with low friction characteristics, and is electrically conductive. Therefore, this lubricating film can be suitably applied to maintenance-free bearings, electrical contacts, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の導電性固体潤滑膜を得るための1!J
f1装置の一例を示す概略構成図、第2図は本発明およ
び従来の固体im潤滑膜寿命揺動回数を示すグラフ、第
3図は、本発明の導電性固体潤滑膜の周揺動回数とrf
Jta係数との関係を示すグラフ、第4図は本発明の導
電性固体fII滑膜のX線光電子分光法によるスペクト
ルを示すグラフ、第5図は従来の固体潤滑膜の周揺動回
数と摩擦係数との関係を示すグラフである。 4・・・ターゲット 15・・・プラズマがスボンベ
FIG. 1 shows 1! for obtaining the conductive solid lubricant film of the present invention! J
A schematic configuration diagram showing an example of the f1 device, FIG. 2 is a graph showing the number of cycles of the lifetime of the solid im lubricant film of the present invention and the conventional one, and FIG. 3 is a graph showing the number of circumferential swings of the conductive solid lubricant film of the present invention rf
A graph showing the relationship with the Jta coefficient, Fig. 4 is a graph showing the spectrum of the conductive solid fII synovial film of the present invention obtained by X-ray photoelectron spectroscopy, and Fig. 5 shows the number of circumferential oscillations and friction of the conventional solid lubricant film. It is a graph showing the relationship with coefficients. 4...Target 15...Plasma is a bomb

Claims (1)

【特許請求の範囲】[Claims] 含塩素系フルオロポリマーをターゲットとし、不活性ガ
ス、フッ化炭素、酸素のいずれか1種または2種以上を
プラズマガスとしてスパッタして得られた導電性固体潤
滑膜。
A conductive solid lubricant film obtained by sputtering a chlorine-containing fluoropolymer as a target and using one or more of inert gas, fluorocarbon, and oxygen as a plasma gas.
JP27362786A 1986-11-17 1986-11-17 Electrically conductive solid lubricative film Pending JPS63128167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27362786A JPS63128167A (en) 1986-11-17 1986-11-17 Electrically conductive solid lubricative film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27362786A JPS63128167A (en) 1986-11-17 1986-11-17 Electrically conductive solid lubricative film

Publications (1)

Publication Number Publication Date
JPS63128167A true JPS63128167A (en) 1988-05-31

Family

ID=17530342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27362786A Pending JPS63128167A (en) 1986-11-17 1986-11-17 Electrically conductive solid lubricative film

Country Status (1)

Country Link
JP (1) JPS63128167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129702A1 (en) * 2005-06-02 2006-12-07 National University Corporation Kanazawa University Medical appliance having polyimide film and method for manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129702A1 (en) * 2005-06-02 2006-12-07 National University Corporation Kanazawa University Medical appliance having polyimide film and method for manufacture thereof
US8900714B2 (en) 2005-06-02 2014-12-02 Terumo Kabushiki Kaisha Medical appliance having polyimide film and method for manufacture thereof

Similar Documents

Publication Publication Date Title
JP2990608B2 (en) Surface treatment method
Tressaud et al. Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes
Cvelbar et al. Increased surface roughness by oxygen plasma treatment of graphite/polymer composite
US5302420A (en) Plasma deposition of fluorocarbon
Kumar et al. Enhanced negative ion yields on diamond surfaces at elevated temperatures
Kregar et al. Monitoring oxygen plasma treatment of polypropylene with optical emission spectroscopy
JP2000150170A (en) Fluorocarbon conductive polymer and electroluminescence element
Fanelli et al. Deposition and etching of fluorocarbon thin films in atmospheric pressure DBDs fed with Ar–CF4–H2 and Ar–CF4–O2 mixtures
CN109177136A (en) A kind of modified perfluoroethylene-propylene film
Lamontagne et al. Large-area microwave plasma etching of polyimide
JPS6350478A (en) Formation of thin film
JPS63128167A (en) Electrically conductive solid lubricative film
JPH0514722B2 (en)
US3504325A (en) Beta-tungsten resistor films and method of forming
Egitto et al. Reactive ion etching of poly (tetrafluoroethylene) in O2–CF4 plasmas
JP6091659B2 (en) Method for hydrophilic modification of PTFE surface
KR20070083333A (en) A plasma treatment apparatus comprising a conductive o-ring
Goto et al. Study on CF4/O2 plasma resistance of O-ring elastomer materials
JPS63195261A (en) Production of lubricative film of fluorocarbon polymer
JPS61136678A (en) Formation of high-hardness carbon film
JP6928448B2 (en) Method for forming a conductive carbon film, method for manufacturing a conductive carbon film coating member, and method for manufacturing a separator for a fuel cell
WO2002078749A2 (en) Atmospheric pressure rf plasma source using ambient air and complex molecular gases
KR102273595B1 (en) Manufacturing Method of Electrode for Gas Sensor and Gas Sensor
JPS62164883A (en) Polyfluoroolefin film and its production
US1041076A (en) Vapor-rectifier and method of manufacture.