JPS63195261A - Production of lubricative film of fluorocarbon polymer - Google Patents

Production of lubricative film of fluorocarbon polymer

Info

Publication number
JPS63195261A
JPS63195261A JP2636487A JP2636487A JPS63195261A JP S63195261 A JPS63195261 A JP S63195261A JP 2636487 A JP2636487 A JP 2636487A JP 2636487 A JP2636487 A JP 2636487A JP S63195261 A JPS63195261 A JP S63195261A
Authority
JP
Japan
Prior art keywords
film
fluorocarbon
gas
plasma
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2636487A
Other languages
Japanese (ja)
Inventor
Iwao Sugimoto
杉本 岩雄
Shojiro Miyake
正二郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2636487A priority Critical patent/JPS63195261A/en
Publication of JPS63195261A publication Critical patent/JPS63195261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a lubricative film having a long service life, a low coefft. of friction and superior chemical resistance, by sputtering a fluoropolymer target with plasma of gaseous fluorocarbon. CONSTITUTION:Substrates 3 and a fluoropolymer target 4 are set in a vacuum vessel 1. Gaseous fluorocarbon mixed optionally with an inert gas is introduced into the vessel 1 and plasma is generated by impressing high frequency voltage to form films on the surfaces of the substrates 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大気中において長寿命、又は低摩擦係数を示
す優れた潤滑特性と耐薬品性を有するフッ化炭素系高分
子潤滑保護膜の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a fluorocarbon polymer lubricating protective film that has long life in the atmosphere and has excellent lubricating properties and chemical resistance, exhibiting a low coefficient of friction. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

フッ化炭素系高分子膜を作成する方法としては、フッ化
炭素系モノマーガスをプラズマ中で重合させるプラズマ
CVD法と、フルオロポリマーを原料とするスパッタ蒸
着法がある。
Methods for creating a fluorocarbon polymer film include a plasma CVD method in which a fluorocarbon monomer gas is polymerized in plasma, and a sputter deposition method using a fluoropolymer as a raw material.

プラズマCVD法については、モノマーガス1に流しな
がら膜形成を行うため、ガス流量!!#整が困難でTo
す、更に排気ガス量が多いため、この処理が問題になっ
てくる。次に膜を形成する基板に関しては、成膜するた
めに加熱する必要がある。このために基板材料の変質、
物性の変化などの恐れがあシ、耐熱性の材料全基板に用
いなければならない。更に成膜した膜と基板との付着性
という点では、成膜プロセス上、基板表面上に膜が成長
する過程をとるため数eVの運動エネルギーでもって基
板上に膜形成粒子が堆積して成膜が行われるスパッタ蒸
着法に比べて劣るものである。
Regarding the plasma CVD method, film formation is performed while flowing monomer gas 1, so the gas flow rate! ! #It's difficult to adjust
Furthermore, since the amount of exhaust gas is large, this treatment becomes a problem. Next, the substrate on which the film is to be formed needs to be heated in order to form the film. For this reason, changes in the substrate material,
There is a risk of changes in physical properties, so heat-resistant materials must be used for all substrates. Furthermore, in terms of adhesion between the deposited film and the substrate, the film formation process involves a process in which the film grows on the substrate surface, so the film-forming particles are deposited on the substrate with a kinetic energy of several eV. It is inferior to the sputter deposition method by which the film is formed.

そして、フッ化炭素系七ツマ−からプラズマCVD法で
得られた高分子膜について膜の構造解析に興味の中心が
あ夛、本発明で問題としている11!滑性という点に関
しては研究が進んでいない。
There is a lot of interest in the structural analysis of polymer films obtained from fluorocarbon-based polymers by plasma CVD, which is the subject of the present invention. Research regarding lubricity has not progressed.

次にスパッタ蒸着法については、ターゲット(原料)に
ポリテトラフルオロエチレン(PTFE )を、プラズ
マガスとしてアルゴンを使用した組合せに対する研究の
み進んでおシ、他のフルオロポリマーやプラズマガスを
用いた系はほとんど取扱われていない。従来のPTFE
/アルゴンの系で得られたスパッタ膜の周揺動下におけ
る摩擦特性を第3図及び第4図に示す。すなわち第3図
は高周波スパッタ法で得られた各種高分子膜の潤滑機能
を失うまでの周揺動回数(縦軸)を示したグラフ、第4
図は高周波スパッタ法で得られた各株高分子膜の摩擦係
数(縦軸)を示したグラフである。
Next, regarding the sputter deposition method, research is progressing only on combinations using polytetrafluoroethylene (PTFE) as the target (raw material) and argon as the plasma gas, but systems using other fluoropolymers or plasma gases are progressing. It is hardly handled. Conventional PTFE
The friction characteristics of the sputtered film obtained in the /argon system under circumferential oscillation are shown in FIGS. 3 and 4. In other words, Figure 3 is a graph showing the number of rotations (vertical axis) until the lubricating function of various polymer films obtained by high-frequency sputtering is lost.
The figure is a graph showing the friction coefficient (vertical axis) of each polymer film obtained by high-frequency sputtering.

〔発明が解決しようとする間亀点〕[The problem that the invention is trying to solve]

第5図及び第4図の従来例にみるとシシ、従来品は低揺
動回数時において摩擦係数が大きく、またその値もばら
つきがあり不安定な特性を示している。これは、スパッ
タ膜の分子構造が母材より変化しているため潤滑性が低
下したことによるものである。
Looking at the conventional examples shown in FIGS. 5 and 4, the conventional product has a large friction coefficient when the number of oscillations is low, and its value also varies and exhibits unstable characteristics. This is because the molecular structure of the sputtered film is different from that of the base material, resulting in a decrease in lubricity.

本発明の目的は、フッ化炭素糸高分子膜の固体潤滑性を
改善し、長寿命でありまた摩擦力の不安定特性を解決し
たフッ化炭素系高分子潤滑膜の製造方法を提供すること
にある。
An object of the present invention is to provide a method for producing a fluorocarbon polymer lubricant film that improves the solid lubricity of the fluorocarbon thread polymer film, has a long life, and solves the unstable characteristics of frictional force. It is in.

〔問題点を解決する丸めの手段〕[Rounding method to solve problems]

本発明を概説すれば、本発明は7フ化炭素系高分子潤滑
膜の製造方法に関する発明で6って、フルオロポリマー
にフッ化炭素系ガス又は不活性ガスを混合したフッ化炭
素系ガスによりスパッタリング全行い、膜形成を行うこ
とを特徴とする。
To summarize the present invention, the present invention relates to a method for producing a heptafluorocarbon polymer lubricating film. It is characterized by performing all sputtering and film formation.

本発明はフルオロポリマーに7フ化炭素系ガス又は不活
性ガスを混合したフッ化炭素糸ガス全プラズマ中で作用
させることによりスパッタリングを起し、高寿命や低摩
擦係数を示す優れた潤滑特性を有したフッ化炭素糸高分
子@を形成することを最も主g1な特徴とする。従来の
技術とはスパッタリングを起すターゲット材料、またエ
ツチングにのみ用いられていたフッ化炭素系ガスを、膜
形成に使用したことに大きな差がある。
The present invention generates sputtering by causing fluoropolymer to act in a fluorocarbon thread gas plasma containing heptafluorocarbon gas or an inert gas, thereby achieving excellent lubrication properties that exhibit long life and low coefficient of friction. The most main feature of g1 is to form a fluorocarbon thread polymer @ with The major difference from the conventional technology is that a target material that causes sputtering and a fluorocarbon gas, which was used only for etching, are used for film formation.

本発明方法においては、高周波スパッタ法による膜形成
以外にも、イオンビームスパッタ法、高速原子線(FA
B)スパッタ法、バイアス高周波スパッタ法などが挙げ
られる。更に、不活性ガスを混合したフッ化炭素系ガス
をプラズマガスに使用した場合、その混合比を変えるこ
とにより薄膜中のフッ素と炭素の混合比及び膜堆積速度
t−調整することが可能である0 〔実施例〕 以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない0 実施例1 第1図に本発明に係るフッ化炭素系高分子膜を形成する
方法の1例として、高周波スパッタ法に依る場合の装置
例の概略図金示す。第1図において、符号1は真空容器
、2は基板ホルダー、5は基板、4はターゲット、5は
シャッター、6は高周波電極、7はマツチングボックス
、8は高周波電源、?は真空排気系、10はガス導入系
、11はプラズマガスボンベ、12はヒーターである。
In the method of the present invention, in addition to film formation by high frequency sputtering, ion beam sputtering, fast atomic beam (FA)
B) Sputtering method, bias high frequency sputtering method, etc. can be mentioned. Furthermore, when a fluorocarbon gas mixed with an inert gas is used as a plasma gas, it is possible to adjust the mixing ratio of fluorine and carbon in the thin film and the film deposition rate t by changing the mixing ratio. 0 [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these embodiments.Example 1 Fig. 1 is a schematic diagram of an example of an apparatus in which high-frequency sputtering is used as an example of a method for forming a fluorocarbon polymer film according to the present invention. show. In FIG. 1, reference numeral 1 is a vacuum container, 2 is a substrate holder, 5 is a substrate, 4 is a target, 5 is a shutter, 6 is a high frequency electrode, 7 is a matching box, 8 is a high frequency power source, ? 1 is a vacuum exhaust system, 10 is a gas introduction system, 11 is a plasma gas cylinder, and 12 is a heater.

真空容器1内の基板ホルダー2に基板(熱処・環5UB
−440G、シリコンウェハ)st、更にターゲット4
をセットする。ターゲットには、テトラフルオロエチレ
ン−エチレン共重合体(ETFI!i ) 、ポリテト
ラフルオロエチレン(PTFK ) l用いた例を示す
Place the substrate (heat treatment/ring 5UB) in the substrate holder 2 inside the vacuum container 1.
-440G, silicon wafer) st, further target 4
Set. Examples are shown in which tetrafluoroethylene-ethylene copolymer (ETFI!i) and polytetrafluoroethylene (PTFK) are used as targets.

真空排気系9によシ10−・Torr程度の真空全書た
後、ガス導入系10よシフレオン(CF4)ガスを導入
し、ガス圧を設定する。そこに高周波電源8によシ高周
波電圧を印加しプラズマが安定に発生するようにメイン
バルブ(図示せず)で圧力を調整する。マツチングボッ
クス7中のコンデンサーにより投入電力を設定し、メイ
ンバルブで容器1内のガス圧t−vN整し、ターゲット
表面のスパッタクリーニングを行う。その後シャッター
5を開き、基板への膜形成を所定の時間行う。
After creating a vacuum of approximately 10 Torr in the evacuation system 9, Schifreon (CF4) gas is introduced into the gas introduction system 10, and the gas pressure is set. A high frequency voltage is applied thereto by a high frequency power source 8, and the pressure is adjusted using a main valve (not shown) so that plasma is stably generated. The input power is set by the capacitor in the matching box 7, the gas pressure t-vN in the container 1 is adjusted by the main valve, and the sputter cleaning of the target surface is performed. Thereafter, the shutter 5 is opened and film formation on the substrate is performed for a predetermined period of time.

以上の方法で得られたスパッタ膜についてX線元電子分
元法(xps)による分析を行い、C18領域について
得られた結果を第2図に示す。すなわち第2図は本発明
による高周波スパッタでターゲットにPTFE、プラズ
マガスにフレオンを用いて得られた膜のxPSスペクト
ル図であり、横軸は結合エネルギー(ev)、縦軸は相
対強度を示す。
The sputtered film obtained by the above method was analyzed by X-ray electron spectroscopy (XPS), and the results obtained for the C18 region are shown in FIG. That is, FIG. 2 is an xPS spectrum diagram of a film obtained by high-frequency sputtering according to the present invention using PTFE as a target and Freon as a plasma gas, where the horizontal axis shows binding energy (ev) and the vertical axis shows relative intensity.

これよ5 P’I’FE @H1フフ化炭素の領域に大
きなピークを有しておシ、2フツ化炭素、3フツ化炭素
の領域に小さなピークが見られる。17フ化炭素は、赤
外線分光法による分析結果をも考慮して、枝分れしたS
Pl炭素及び不飽和結合をつくるSP!炭素によるもの
と推定される。
This 5 P'I'FE @H1 has a large peak in the carbon fluoride region, and small peaks in the carbon difluoride and carbon trifluoride regions. Considering the analysis results by infrared spectroscopy, carbon 17 fluoride is a branched S
SP to create Pl carbon and unsaturated bonds! It is presumed that this is due to carbon.

従来のPTFE/Ar糸の膜については、よシ低エネル
ギー側にピークが見られ、これは酸素と結合した炭素に
よるものであることを赤外線分光法よシ確認している。
Regarding the conventional PTFE/Ar yarn film, a peak is seen on the low energy side, and it has been confirmed by infrared spectroscopy that this is due to carbon bonded to oxygen.

本発明に係るフッ化炭素系高分子膜の場合、潤滑性の原
因となる低表面エネルギー金かもし出すC−F結合を有
する炭素のみから膜が構成されているため優れた潤滑性
を示すものと推定される。実際、試料を速度3Hz、半
径20m、揺動角60°で周揺動させ、これに球王子’
ii−4,9Nで押しつけ摩擦させた時の試験結果を第
5図及び第4図に示す。これよりETFIII: f:
ターゲットに用いて得られ丸腰については周揺動回数4
000回ぐらい筐で、摩擦係数13以下の長寿命潤滑膜
となることが、 PTFEをターゲットに用いて得られ
た膜については、摩擦係数α15という高潤滑膜である
ことがわかった。このように低摩擦、耐摩耗性のある膜
が得られ、活性酸素中でもこれらはエツチングされない
ことより化学的に安定であり、はっ水(油)性も兼ね備
えている。
In the case of the fluorocarbon polymer film according to the present invention, it is estimated that it exhibits excellent lubricity because the film is composed only of carbon having C-F bonds, which give rise to low surface energy gold, which is the cause of lubricity. be done. In fact, the sample was oscillated at a speed of 3 Hz, a radius of 20 m, and an oscillating angle of 60°, and the
ii-Fig. 5 and Fig. 4 show the test results when friction was caused by pressing at 4.9N. From this ETF III: f:
For the unarmed waist obtained using the target, the number of circumferential swings is 4
It was found that a long-life lubricant film with a friction coefficient of 13 or less can be obtained after approximately 1,000 cycles of casing, and a film obtained using PTFE as a target has a high lubricant film with a friction coefficient of α15. In this way, a film with low friction and wear resistance is obtained, and since it is not etched even in active oxygen, it is chemically stable and also has water (oil) repellency.

また二硫化モリブデン、二硫化タングステン、り“ラフ
ァイト等の固体潤滑剤との間で複合膜を形成すれば、こ
れらの物質の欠点となっている耐湿性を改善した優れた
固体潤滑膜も得られる。
Furthermore, if a composite film is formed with solid lubricants such as molybdenum disulfide, tungsten disulfide, or graphite, an excellent solid lubricant film can be obtained that improves moisture resistance, which is a drawback of these materials. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明により真空中における長寿
命高潤滑膜が、フルオロポリマーをターゲットにフッ化
炭素糸ガスをプラズマガスとして使用したスパッタ法に
より得ることが可能となった丸め、高潤滑性、ち密性に
よる保護、潤滑膜として以下に示す使用方法がある。
As explained above, according to the present invention, a long-life, highly lubricating film in vacuum can be obtained by a sputtering method using fluoropolymer as a target and fluorocarbon thread gas as a plasma gas. , protection by tightness, and as a lubricating film as shown below.

(11宇宙環境下で使用される機構部品の保護、潤滑膜 (2)  真空装置内で使用される機構部分の保護、潤
滑膜 (3)清浄環境下で使用される機構部品の保護、潤滑膜 (4)  磁気ディスク、磁気ヘッドの保護膜なお、本
発明に係るフッ化炭素系高分子aは導電率が高いという
特徴も有し、導電膜としても利用できる。
(11 Protection of mechanical parts used in space environment, lubricating film (2) Protection of mechanical parts used in vacuum equipment, lubricating film (3) Protection of mechanical parts used in clean environment, lubricating film (4) Protective film for magnetic disks and magnetic heads The fluorocarbon polymer a according to the present invention also has a feature of high electrical conductivity, and can be used as a conductive film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に係るフッ化炭素系高分子膜の製造
に使用する装置の1例である高周波スパッタ装置の概略
図、第2図は本発明方法による、高周波スパッタ法でタ
ーゲットにPTFE。 プラズマガスにフレオンを用いて得られた膜のXPSス
ペクトル図、第5図は高周波スパッタ法で得られた各種
高分子膜の潤滑機能を失うまでの周揺動回数を示したグ
ラフ、第4図は高周波スパッタ法で得られた各種高分子
膜の摩擦係数を示したグラフである。
Fig. 1 is a schematic diagram of a high-frequency sputtering apparatus, which is an example of an apparatus used for manufacturing a fluorocarbon polymer film according to the method of the present invention, and Fig. 2 is a schematic diagram of a high-frequency sputtering apparatus that uses PTFE as a target using the high-frequency sputtering method according to the method of the present invention. . Figure 5 is an XPS spectrum diagram of a film obtained using Freon as the plasma gas. Figure 5 is a graph showing the number of rotations until the lubricating function of various polymer films obtained by high-frequency sputtering is lost. Figure 4. is a graph showing the friction coefficients of various polymer films obtained by high-frequency sputtering.

Claims (1)

【特許請求の範囲】[Claims] 1、フルオロポリマーにフッ化炭素系ガス、又は不活性
ガスを混合したフッ化炭素系ガスによりスパッタリング
を行い、膜形成を行うことを特徴とするフッ化炭素系高
分子潤滑膜の製造方法。
1. A method for producing a fluorocarbon-based polymer lubricating film, which comprises forming a film by sputtering with a fluorocarbon-based gas or a fluorocarbon-based gas mixed with a fluoropolymer and an inert gas.
JP2636487A 1987-02-09 1987-02-09 Production of lubricative film of fluorocarbon polymer Pending JPS63195261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2636487A JPS63195261A (en) 1987-02-09 1987-02-09 Production of lubricative film of fluorocarbon polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2636487A JPS63195261A (en) 1987-02-09 1987-02-09 Production of lubricative film of fluorocarbon polymer

Publications (1)

Publication Number Publication Date
JPS63195261A true JPS63195261A (en) 1988-08-12

Family

ID=12191444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2636487A Pending JPS63195261A (en) 1987-02-09 1987-02-09 Production of lubricative film of fluorocarbon polymer

Country Status (1)

Country Link
JP (1) JPS63195261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042765A (en) * 1990-04-20 1992-01-07 Nippon Telegr & Teleph Corp <Ntt> Formation of organic thin film
EP0481498A2 (en) * 1990-10-19 1992-04-22 Canon Kabushiki Kaisha Information recording unit and apparatus and method for information recording/reproduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042765A (en) * 1990-04-20 1992-01-07 Nippon Telegr & Teleph Corp <Ntt> Formation of organic thin film
EP0481498A2 (en) * 1990-10-19 1992-04-22 Canon Kabushiki Kaisha Information recording unit and apparatus and method for information recording/reproduction
US5392275A (en) * 1990-10-19 1995-02-21 Canon Kabushiki Kaisha Information recording unit and method for information recording/reproduction

Similar Documents

Publication Publication Date Title
US6572937B2 (en) Method for producing fluorinated diamond-like carbon films
US5558903A (en) Method for coating fullerene materials for tribology
US5244730A (en) Plasma deposition of fluorocarbon
Spalvins Deposition of MoS2 films by physical sputtering and their lubrication properties in vacuum
JPH01294867A (en) Formation of coating film of carbon or consisting essentially of carbon
WO1997010688A1 (en) Method and apparatus for plasma cvd
Kersten et al. Surface modification of powder particles by plasma deposition of thin metallic films
US20230243029A1 (en) Tetrahedral amorphous hydrogenated carbon and amorphous siloxane diamond-like nanocomposite
Drábik et al. Deposition of fluorocarbon nanoclusters by gas aggregation cluster source
JPH068503B2 (en) Method for forming fluorine-containing resin coating
US20060275619A1 (en) Hard carbon films formed from plasma treated polymer surfaces
Cadman et al. Studies of polytetrafluoroethylene transfer layers produced by rubbing in ultrahigh vacuum using a relatively simple apparatus
JPS63195261A (en) Production of lubricative film of fluorocarbon polymer
Labelle et al. Surface morphology of PECVD fluorocarbon thin films from hexafluoropropylene oxide, 1, 1, 2, 2‐tetrafluoroethane, and difluoromethane
Korotkov et al. Fluorination of polymethylmethacrylate with SF6 and hexafluoropropylene using dielectric barrier discharge system at atmospheric pressure
JPH0323510B2 (en)
Biederman Deposition of polymer films in low pressure reactive plasmas
US20120164356A1 (en) Process for surface treating aluminum or aluminum alloy and article made with same
JP2019059027A (en) Laminate for use requiring hydrophilic property and oil repellency, and method for manufacturing the same
JP2005533171A (en) Amorphous hydrogenated carbon membrane
JPS6328855A (en) Production of fluorocarbon-base solid lubricative film
JPS6291538A (en) Fluorine-containing high-molecular membrane and method for forming the same
JPS59190575A (en) Low torque seal
Cho et al. Wear characteristics of fluorocarbon thin films deposited using inductively coupled and capacitively coupled plasma methods
Abdulhussein et al. Fabrication of superhydrophobic polyvinylidene fluoride membranes with polytetrafluoroethylene nano-film surface coatings