JPS63128165A - Thermosensitive resistor and its production - Google Patents

Thermosensitive resistor and its production

Info

Publication number
JPS63128165A
JPS63128165A JP27453986A JP27453986A JPS63128165A JP S63128165 A JPS63128165 A JP S63128165A JP 27453986 A JP27453986 A JP 27453986A JP 27453986 A JP27453986 A JP 27453986A JP S63128165 A JPS63128165 A JP S63128165A
Authority
JP
Japan
Prior art keywords
temperature
tantalum
film
sputtering
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27453986A
Other languages
Japanese (ja)
Inventor
Kazuo Yamada
山田 数男
Hisashi Ito
寿 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAGAWA DENGU KK
Original Assignee
MIYAGAWA DENGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAGAWA DENGU KK filed Critical MIYAGAWA DENGU KK
Priority to JP27453986A priority Critical patent/JPS63128165A/en
Publication of JPS63128165A publication Critical patent/JPS63128165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the title thermosensitive resistor suitable for the practical resistance value as a thermistor by forming an amorphous film consisting of Si, C, Ta, etc., on the surface of a porcelain substrate by sputtering. CONSTITUTION:A sheet consisting of high-purity SiC and >=1 kind among Ta, Ni, Cr, Fe, etc., (expressed Ta, etc., hereunder) is placed on the cathode target in a high-frequency sputtering device, and the porcelain substrate set in a rotating cylindrical basket is arranged in opposition to the target. An inert gas such as Ar is introduced into the device, the device is kept at a specified vacuum, a high-frequency electric power is impressed to heat a substrate holder, etc., and hence to keep the porcelain substrate at about 300-400 deg.C, and sputtering is carried out. As a result, the amorphous film 1 consisting of the Ta, etc., C, and Si is formed. The material is then heat-treated at a specified temp., an electrode cap 2 of stainless steel is put on both ends, and the film 1 is helically cut to form a spiral groove 3.

Description

【発明の詳細な説明】 本発明は、スパッタリング蒸着装置内のターゲットとし
て、メンタル、ニッケル、クローム、鉄などの一種ある
いは二種類以上と、炭化珪素を用い、比較的中温度に維
持された磁器基体の表面に、炭素と珪素とタンタル等か
らなる非晶質皮膜を形成し、次に所定温度で熱処理(ア
ニーリング)する感温抵抗体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses one or more types of metal, nickel, chromium, iron, etc., and silicon carbide as targets in a sputtering vapor deposition apparatus, and uses a porcelain substrate maintained at a relatively medium temperature. The present invention relates to a temperature-sensitive resistor in which an amorphous film made of carbon, silicon, tantalum, etc. is formed on the surface of the element, and then heat-treated (annealed) at a predetermined temperature.

(従来技術) スパッタリング蒸着法によシ多結晶の炭化珪素皮膜を形
成した高温用(1000以上)のサーミスタが′開発さ
れ(特公昭56−26965号公報)、温度・出力電圧
特性や検出感度の向上を図るべく異なった抵抗温度特性
を有する二層の皮膜を形成しく特開昭57−12503
号公報)、耐熱特性(信頼性)を高める基体温度(65
0C)や皮膜形成速度が追求され(特開昭56−122
104号公報)、基体を使用環境の汚染から保護すべく
その基体をガラス層で被覆する(特開昭56−1201
02号公報)等の改良が行なわれてきた。これらのスパ
ッタ蒸着により形成される皮膜は、基体が650C前後
と高温域のために、多結晶の炭化珪素が形成され、その
電気伝導には不純物元素よシも皮膜中に含まれる各種の
欠陥(格子欠陥)が関係していると考えられている(特
開昭56−122104号)。
(Prior art) A thermistor for high temperatures (more than 1000) with a polycrystalline silicon carbide film formed by sputtering vapor deposition was developed (Japanese Patent Publication No. 56-26965), and improvements in temperature/output voltage characteristics and detection sensitivity were developed. JP-A-57-12503 to form a two-layer film with different resistance-temperature characteristics in order to improve the resistance.
(No. 65), substrate temperature (65
0C) and film formation speed were pursued (Japanese Patent Laid-Open No. 56-122
No. 104), the substrate is coated with a glass layer to protect it from contamination in the environment in which it is used (Japanese Patent Application Laid-Open No. 56-1201)
Improvements such as 02 Publication) have been made. The films formed by these sputter depositions are made of polycrystalline silicon carbide because the substrate is in a high temperature range of around 650C, and its electrical conductivity is affected by impurity elements and various defects contained in the films. It is thought that lattice defects) are involved (Japanese Patent Application Laid-Open No. 122104/1983).

この電気伝導機構ゆえに面積抵抗値は著るしく高くなり
、サーミスタとしての実用化に際しては、白金と金等の
焼付は厚膜によるくし型電極を採用する。面積抵抗値が
サーミスタとしての実用抵抗値を採りうる高温用感温抵
抗体を提供するのが本発明であり、炭素と珪素とタンタ
ル等との非晶質皮膜を基体の表面に形成し、熱処理した
のち皮膜をヘリカルカットするもので、以下図面に基づ
いて詳しく説明する。
Because of this electrical conduction mechanism, the sheet resistance value becomes significantly high, and when put to practical use as a thermistor, a comb-shaped electrode with a thick film of platinum and gold baked on is used. The present invention provides a high-temperature temperature-sensitive resistor whose sheet resistance value can reach a practical resistance value as a thermistor, in which an amorphous film of carbon, silicon, tantalum, etc. is formed on the surface of the base material, and heat treatment is performed. The film is then helically cut, and will be explained in detail below based on the drawings.

(手段) 高周波スパッタリング装置内の陰極ターゲット上に、高
純度の炭化珪素(8iC)と、タンタル、ニッケル、ク
ローム、鉄、などの一種あるいは二種類以上(以下単に
タンタル等と称す)の板を置き、このターゲットに対向
させて回転する円筒バスケットに入れた磁器基体を配置
する。珪酸アルミナ、珪酸マグネシア、ムライト等を焼
結して作製される磁器基体は、耐熱性に優れ、皮膜抵抗
器等に広く使用されている。装置内にアルゴンなどの不
活性気体を導入し、2.0〜2.2 X 10”’−3
Torr程度の真空度に保ち、IKW〜1.5KWの高
周波電力を印加し、基体ホルダー等を加熱して磁器基体
を300℃〜400Cに設定維持し、1時間〜6時間ス
パッタリングする。スパッタされたメンタル等の原子や
珪素原子、炭素原子そして炭化珪素分子は、300℃〜
400Cに保たれた基体の表面に蒸着し、タンタル等と
炭素と珪素からなる非晶質皮膜(1)を形成する。
(Means) A plate of high purity silicon carbide (8iC) and one or more types of tantalum, nickel, chromium, iron, etc. (hereinafter simply referred to as tantalum etc.) is placed on the cathode target in a high frequency sputtering device. , a porcelain substrate placed in a rotating cylindrical basket is placed opposite this target. Porcelain substrates made by sintering alumina silicate, magnesia silicate, mullite, etc. have excellent heat resistance and are widely used in film resistors and the like. Introducing an inert gas such as argon into the device, 2.0 to 2.2
The degree of vacuum is maintained at approximately Torr, high frequency power of IKW to 1.5 KW is applied, and the substrate holder is heated to maintain the porcelain substrate set at 300° C. to 400° C., and sputtering is performed for 1 hour to 6 hours. Sputtered mental atoms, silicon atoms, carbon atoms, and silicon carbide molecules are heated at 300℃~
It is deposited on the surface of a substrate maintained at 400C to form an amorphous film (1) consisting of tantalum, etc., carbon, and silicon.

300℃〜400Cと中温域に設定された基体表面に原
子が付着して積み重なる過程は、結晶性を有しないアモ
ルファス状態であり、分光分析結果では、タンタル等と
炭素と珪素そして不純物である酸素の各原子特有のスペ
クトルのみ検出され、炭化珪素のスペクトルは検出され
ない。アモルファス状の皮膜(1)を形成するには、基
体の設定温度を300℃〜400cに採るのが好ましい
。スパッタリング終了後、装置内に窒素ガスを導入し冷
却後大気圧に戻して基体を取シ出す。
The process of atoms adhering to the substrate surface and stacking up at a medium temperature range of 300°C to 400°C is an amorphous state with no crystallinity, and spectroscopic analysis shows that tantalum, etc., carbon, silicon, and the impurity oxygen. Only the spectrum unique to each atom is detected, and the spectrum of silicon carbide is not detected. In order to form an amorphous film (1), it is preferable to set the temperature of the substrate to 300°C to 400°C. After sputtering, nitrogen gas is introduced into the apparatus, and after cooling, the pressure is returned to atmospheric pressure and the substrate is taken out.

ターゲット上に載せるタンタル板(20X50X2t)
の枚数と皮膜(1)の抵抗値の関係を示すのが下記の表
置であシ、タンタル板の増加に伴なって抵抗値が急激に
低下する。熱処理をしてない無処理の抵抗値は、後述す
るようににΩの単位が好ましく、ターゲット上における
タンタルの割合が5〜40重量%(この時炭化珪素は6
0〜95重量%になる)の範囲に設定すれば良いことが
知得された。特にタンタル10重量%で炭化珪素が90
重量%が好ましいことも解った。
Tantalum plate placed on the target (20x50x2t)
The table below shows the relationship between the number of tantalum plates and the resistance value of the film (1), and the resistance value decreases rapidly as the number of tantalum plates increases. The untreated resistance value without heat treatment is preferably expressed in Ω as described below, and the proportion of tantalum on the target is 5 to 40% by weight (at this time, silicon carbide is 6% by weight).
It has been learned that it is sufficient to set the content to a range of 0 to 95% by weight. Especially when tantalum is 10% by weight, silicon carbide is 90%
It has also been found that % by weight is preferred.

次に熱処理について説明する。第3図は熱処理のプロフ
ァイルであり、300CまではIC/secのレイトに
て昇温し、次に熱処理温度までは600 c/Hのレイ
トにて昇温し、600Cの処理温度にて60分間保持し
、非晶質の皮膜(1)を組織制御する。降温は400C
まではlC/secのレイトで行い、150Cに達した
時に取り出す。なお、加熱中は10傭HP以下のアルゴ
ンガスを導入する。表(4)に示すように、熱処理によ
り抵抗値は僅かに増加する。
Next, heat treatment will be explained. Figure 3 shows the heat treatment profile; the temperature was raised at a rate of IC/sec up to 300C, then the temperature was raised at a rate of 600 c/H until it reached the heat treatment temperature, and the treatment temperature was 600C for 60 minutes. The structure of the amorphous film (1) is controlled. Temperature drop is 400C
It is carried out at a rate of 1C/sec until the temperature reaches 150C, and it is taken out. During heating, argon gas of 10 HP or less is introduced. As shown in Table (4), the resistance value increases slightly with heat treatment.

熱処理した磁器基体の両端部にステンレスの電極キャッ
プ(2)を嵌合し、これにリード線を取9つける。また
、磁器基体の両端部にリード線を接触付着しても良い。
Stainless steel electrode caps (2) are fitted to both ends of the heat-treated porcelain base, and lead wires 9 are attached to these. Further, lead wires may be attached in contact with both ends of the ceramic base.

そして、サーミスタとしての実用抵抗値を得るべく、皮
膜(1)をヘリカルカッティングしてら線溝(3)を刻
設し、25CでIOKΩ〜IMΩの範囲の抵抗値を得る
。表(4)のタンタル板4枚で600Cの熱処理後の抵
抗値をみると、10%程度の幅があるが、ヘリカルカッ
ティングにより所望の抵抗値を再現良く製造できる。皮
膜(1)を使用雰囲気による汚染から保護すべく、シリ
コーン系等の耐熱性塗膜(4)やガラスで基体を被覆す
る。
Then, in order to obtain a practical resistance value as a thermistor, the film (1) is helically cut and line grooves (3) are formed, thereby obtaining a resistance value in the range of IOKΩ to IMΩ at 25C. Looking at the resistance values of the four tantalum plates shown in Table (4) after heat treatment at 600C, there is a range of about 10%, but the desired resistance value can be manufactured with good reproducibility by helical cutting. In order to protect the coating (1) from contamination due to the atmosphere in which it is used, the substrate is coated with a heat-resistant coating (4) such as silicone or glass.

このように作製された感温抵抗体の温度・抵抗特性を第
2図に示す。150C以上の高温域(サーミスタとして
の高温)では優れた抵抗特性を有するのが理解される。
FIG. 2 shows the temperature/resistance characteristics of the temperature-sensitive resistor produced in this manner. It is understood that it has excellent resistance characteristics in a high temperature range of 150 C or higher (high temperature for a thermistor).

ターゲット上の割合として、タンタルが10重量%、炭
化珪素が90重量%の時の特性図である。
It is a characteristic diagram when the ratio on the target is 10% by weight of tantalum and 90% by weight of silicon carbide.

また、300Cの周囲温度でi、ooo時間連続使用し
た時の抵抗値変化は±1%以下であり、信頼性は非常に
高い。熱処理によって組織が安定するからである。
Furthermore, when used continuously for i, ooo hours at an ambient temperature of 300C, the resistance value change is less than ±1%, and the reliability is extremely high. This is because the structure is stabilized by heat treatment.

(効果) 以上のように、本発明は不活性気体雰囲気中で磁器基体
の温度を300t:’〜400Cと中温域に設定維持し
、スパッタリング法でその表面に炭素と珪素とメンタル
等からなる非晶質の皮膜(1)を形成し、400℃〜8
00Cの範囲内で所定時間熱処理するため、サーミスタ
としての実用抵抗値(処理回路との整合性)に適った感
温抵抗体を提供することができる。従来の炭化珪素を6
001:’以上の高温域でスパッタリング蒸着して作製
されるサーミスタが、炭化珪素の多結晶皮膜を有し、そ
の伝導機構が格子欠陥によるために非常に高い抵抗値を
有するのに較べて、本発明は非晶質皮膜(1)のメンタ
ル等の原子が主に伝導に関与するために、その混合割合
の制御によシ、所望の抵抗値を再現良く得ることが可能
になる。また、ヘリカルカッティングすることで抵抗値
許容差の小さいサーミスタが得られる。製法的には既設
の抵抗器生産ラインを利用することができ、安価で耐熱
性に優れたサーミスタを提供できる。
(Effects) As described above, the present invention sets and maintains the temperature of the porcelain substrate in an intermediate temperature range of 300T:' to 400C in an inert gas atmosphere, and uses a sputtering method to coat the surface with a non-metallic material made of carbon, silicon, mental material, etc. Forms a crystalline film (1) at 400℃~8
Since heat treatment is performed within the range of 00C for a predetermined time, it is possible to provide a temperature-sensitive resistor suitable for practical resistance value (compatibility with a processing circuit) as a thermistor. Conventional silicon carbide 6
Compared to thermistors manufactured by sputtering deposition at high temperatures above 001:', which have a polycrystalline film of silicon carbide and whose conduction mechanism is based on lattice defects, they have a very high resistance value. In the present invention, since the mental atoms of the amorphous film (1) mainly participate in conduction, it is possible to obtain a desired resistance value with good reproducibility by controlling the mixing ratio. In addition, by helical cutting, a thermistor with small resistance value tolerance can be obtained. As for the manufacturing method, existing resistor production lines can be used, and a thermistor with excellent heat resistance can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明実施の一例を示すものにして、第1図は斜
視図、第2図は温度・抵抗特性図、第3図は熱処理のプ
ロファイル図である。 1・・・・皮  膜  2・・・・電極キャップ  3
・・・・ら線溝4・・・・耐熱性塗膜 特許出願人  宮川電具株式会社 第2図 亀1(・C)
The drawings show an example of the implementation of the present invention, and FIG. 1 is a perspective view, FIG. 2 is a temperature/resistance characteristic diagram, and FIG. 3 is a profile diagram of heat treatment. 1... Film 2... Electrode cap 3
...Line groove 4 ...Heat-resistant coating film patent applicant Miyagawa Dengu Co., Ltd. Figure 2 Turtle 1 (・C)

Claims (6)

【特許請求の範囲】[Claims] (1)不活性気体雰囲気中で、タンタル、ニッケル、ク
ローム、鉄、などの一種あるいは二種類以上と、炭化珪
素を同時にスパッタリングし、磁器基体の表面に珪素と
炭素とタンタル等からなる非晶質皮膜を形成してなる、
感温抵抗体。
(1) In an inert gas atmosphere, one or more of tantalum, nickel, chromium, iron, etc. and silicon carbide are simultaneously sputtered to form an amorphous material made of silicon, carbon, tantalum, etc. on the surface of a porcelain substrate. formed by forming a film,
Temperature-sensitive resistor.
(2)炭化珪素を50〜90重量%、タンタル等を50
〜10重量%の割合でスパッタリングする、特許請求の
範囲第1項記載の感温抵抗体。
(2) 50 to 90% by weight of silicon carbide, 50% of tantalum, etc.
The temperature-sensitive resistor according to claim 1, which is sputtered at a rate of ~10% by weight.
(3)スパッタリング時に磁器基体の温度を400℃以
下の中温域に保つ、特許請求の範囲第2項記載の感温抵
抗体。
(3) The temperature-sensitive resistor according to claim 2, wherein the temperature of the ceramic substrate is maintained in a medium temperature range of 400° C. or less during sputtering.
(4)非晶質皮膜を形成した基体の両端部に電極キャッ
プを嵌合するか、あるいは電極を接触させてなる、特許
請求の範囲第2項記載の感温抵抗体。
(4) The temperature-sensitive resistor according to claim 2, wherein electrode caps are fitted or electrodes are brought into contact with both ends of the base body on which an amorphous film is formed.
(5)不活性気体雰囲気中で磁器基体の表面に、タンタ
ル、ニッケル、クローム、鉄、などの一種あるいは二種
以上と、炭素と、珪素からなる非晶質皮膜を、スパッタ
リング蒸着法により形成し、次に所定温度で熱処理する
、感温抵抗体の製造方法。
(5) An amorphous film made of one or more of tantalum, nickel, chromium, iron, etc., carbon, and silicon is formed on the surface of the porcelain substrate in an inert gas atmosphere by sputtering vapor deposition. , followed by heat treatment at a predetermined temperature.
(6)不活性気体雰囲気中で400℃〜800℃の範囲
内で熱処理し、形成される非晶質皮膜をヘリカルカット
して実用抵抗値をえる、特許請求の範囲第5項記載の感
温抵抗体の製造方法。
(6) The temperature sensor according to claim 5, wherein a practical resistance value is obtained by heat treatment in a range of 400°C to 800°C in an inert gas atmosphere and by helically cutting the formed amorphous film. Method of manufacturing a resistor.
JP27453986A 1986-11-18 1986-11-18 Thermosensitive resistor and its production Pending JPS63128165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27453986A JPS63128165A (en) 1986-11-18 1986-11-18 Thermosensitive resistor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27453986A JPS63128165A (en) 1986-11-18 1986-11-18 Thermosensitive resistor and its production

Publications (1)

Publication Number Publication Date
JPS63128165A true JPS63128165A (en) 1988-05-31

Family

ID=17543118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27453986A Pending JPS63128165A (en) 1986-11-18 1986-11-18 Thermosensitive resistor and its production

Country Status (1)

Country Link
JP (1) JPS63128165A (en)

Similar Documents

Publication Publication Date Title
US4746896A (en) Layered film resistor with high resistance and high stability
KR100227490B1 (en) Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element
US4276535A (en) Thermistor
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
JPS6344269B2 (en)
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
CN111613400A (en) Normal-temperature NTC thermistor film and preparation method thereof
US3503030A (en) Indirectly-heated thermistor
JPS63128165A (en) Thermosensitive resistor and its production
JPS62241301A (en) Temperature sensitive resistance element and manufacture of the same
JP4136755B2 (en) PTC thermistor made of ternary alloy material
Nagai et al. SiC thin-film thermistor
WO2022210428A1 (en) Cr-si film
JP4742758B2 (en) Thin film resistor and manufacturing method thereof
JP2727541B2 (en) Manufacturing method of thin film thermistor
JPH06275409A (en) Manufacture of thin-film resistive element
RU2207644C2 (en) Method for manufacturing thin-film resistors
JPS5923082B2 (en) Thermistor and its manufacturing method
JP2646246B2 (en) Method for producing gas-sensitive membrane element
SU834778A1 (en) Resistive material
JPS6019642B2 (en) Manufacturing method of thermistor
JPS6367319B2 (en)
JPH04170002A (en) Thin-film thermistor and its manufacture
JPH04170001A (en) Thin-film thermistor and its manufacture
JPS63211702A (en) Temperature sensor