JPS63127248A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63127248A
JPS63127248A JP27438386A JP27438386A JPS63127248A JP S63127248 A JPS63127248 A JP S63127248A JP 27438386 A JP27438386 A JP 27438386A JP 27438386 A JP27438386 A JP 27438386A JP S63127248 A JPS63127248 A JP S63127248A
Authority
JP
Japan
Prior art keywords
carrier
layer
photoreceptor
transport layer
residual potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27438386A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Hitoshi Takemura
仁志 竹村
Kazumasa Okawa
大川 和昌
Kokichi Ishiki
石櫃 鴻吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27438386A priority Critical patent/JPS63127248A/en
Publication of JPS63127248A publication Critical patent/JPS63127248A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based

Abstract

PURPOSE:To enhance mobility of carriers, to reduce residual potential, and to prevent image fog by setting the molar proportion of C and Si contained in a carrier transfer layer made of amorphous silicon carbide within a specified range. CONSTITUTION:The electrophotographic sensitive body to be used is a laminate type photosensitive body provided with a carrier injection layer 6, the carrier transfer layer 7, a carrier generating layer 8, and a surface protective layer 9 on a conductive substrate 1. The layer 7 is made of amorphous silicon carbide hydride containing C and Si in a C to Si molar ratio set within the specified range of 1:100-1:9, preferably, 1:50-1:9, thus permitting the carrier mobility in the carrier transfer layer 7 to be remarkably enhanced, accordingly, residual potential to be reduced, and image fog to be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は残留電位を小さくして画像にカブリが生じない
ようにした電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor whose residual potential is reduced to prevent fogging on images.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、電子写真感光体の進歩は目覚ましく、超高速複写
機やレーザービームプリンタなどの開発が活発に進めら
れており、これらの機器に用いられる感光体は長期間高
速で使用されるため、動作の安定性及び耐久性が要求さ
れる。この要求に対して水素化アモルファスシリコンが
耐熱性、耐摩耗性、無公害性並びに光感度特性等に優れ
ているという理由から注目されている。
In recent years, progress in electrophotographic photoreceptors has been remarkable, and the development of ultra-high-speed copying machines and laser beam printers is actively underway.The photoreceptors used in these devices are used at high speeds for long periods of time, so their operation is slow. Stability and durability are required. In response to this demand, hydrogenated amorphous silicon is attracting attention because it has excellent heat resistance, wear resistance, non-pollution properties, and photosensitivity characteristics.

かかるアモルファスシリコン(以下、a−3iと略す)
から成る電子写真感光体には第2図に示す通りの積層型
感光体が提案されてル)る。
Such amorphous silicon (hereinafter abbreviated as a-3i)
As an electrophotographic photoreceptor, a laminated type photoreceptor as shown in FIG. 2 has been proposed.

即ち、第2図によれば、アルミニウムなどの導電性基板
(1)上にa−3tキャリア注入阻止層(2)、a−3
iキャリア発生層(3)及び表面保8IN(4)を順次
積層しており、このキャリア注入阻止層(2)は基板(
1)からのキャリアの注入を阻止して表面電位を高める
ために形成されており、そして、表面保護層(4)には
高硬度な材料を用いて感光体の耐久性を高めている。
That is, according to FIG. 2, on a conductive substrate (1) such as aluminum, a-3T carrier injection blocking layer (2), a-3
An i-carrier generation layer (3) and a surface protection layer (4) are sequentially laminated, and this carrier injection blocking layer (2) is formed on the substrate (
The surface protective layer (4) is formed to prevent injection of carriers from 1) and increase the surface potential, and a highly hard material is used for the surface protective layer (4) to increase the durability of the photoreceptor.

ところが、このa−Si感光体によれば、a−Siキャ
リア発生N(3)自体が有する暗抵抗率が1011Ω・
CIl+以下であり、これにより、この感光体の暗減衰
率が大きくなると共にそれ自体の帯電能を高めることが
難しくなり、その結果、この感光体を高速複写用に用い
た場合には光メモリ効果により先の画像が完全に除去さ
れずに残存し、次の画像形成に伴って先の画像が再び現
れる(ゴースト現象)という問題がある。
However, according to this a-Si photoreceptor, the dark resistivity of the a-Si carrier generation N(3) itself is 1011Ω·
CIl+, which increases the dark decay rate of this photoreceptor and makes it difficult to increase its own charging ability.As a result, when this photoreceptor is used for high-speed copying, it suffers from the optical memory effect. There is a problem in that the previous image remains without being completely removed, and the previous image reappears with the formation of the next image (ghost phenomenon).

この問題を解決するために第3図に示すような機能分離
型感光体が提案されている。
In order to solve this problem, a functionally separated photoreceptor as shown in FIG. 3 has been proposed.

即ち、第3図によれば、前述したキャリア注入阻止層(
2a)とキャリア発生N (3a)の間にキャリア輸送
層(5)を形成しており、そして、このキャリア輸送層
(5)には暗抵抗率及びキャリア移動度のそれぞれが大
きい材料で形成されており、これにより、表面電位及び
光感度に優れ且つ残留電位が小さい高性能な感光体が得
られ、その結果、ゴースト現象が生じなくなる。
That is, according to FIG. 3, the carrier injection blocking layer (
A carrier transport layer (5) is formed between the carrier generation N (2a) and the carrier generation N (3a), and this carrier transport layer (5) is made of a material having high dark resistivity and carrier mobility. As a result, a high-performance photoreceptor with excellent surface potential and photosensitivity and low residual potential can be obtained, and as a result, no ghost phenomenon occurs.

このキャリア輸送層(5)については高抵抗且つ広いバ
ンドギャップ並びに半導体特性を具備した水素化アモル
ファスシリコンカーバイドを用いることが特開昭58−
192046号公報などに提案されている。
For this carrier transport layer (5), it is recommended to use hydrogenated amorphous silicon carbide, which has high resistance, wide bandgap, and semiconductor properties.
It has been proposed in Publication No. 192046 and the like.

しかしながら、この公報に示された水素化アモルフブス
シリコンカーバイド(以下、a−S+CトQす)から成
るキャリア輸送層を形成するに当たってシリコン元素(
Si)とカーボン元素(C)の原子組成比を1=9乃至
9:1の範囲内に設定した場合、キャリア移動度が低下
傾向にあり、これにより、キャリアがa−5iCキャリ
ア輸送層でトラップされ易くなって高光感度特性且つ残
留電位の一層の低減化が難しくなり、その結果、画像に
カブリが生じ易くなる。
However, when forming a carrier transport layer made of hydrogenated amorphous silicon carbide (hereinafter referred to as a-S+C) shown in this publication, silicon element (
When the atomic composition ratio of Si) and carbon element (C) is set within the range of 1=9 to 9:1, carrier mobility tends to decrease, and as a result, carriers are trapped in the a-5iC carrier transport layer. This makes it difficult to achieve high photosensitivity characteristics and further reduce residual potential, and as a result, images tend to become foggy.

〔発明の目的〕[Purpose of the invention]

従って本発明は上記事情に鑑みて完成されたものであり
、その目的はa−5iCキャリア輸送層のキャリア移動
度を一段と向上させ、これにより、残留電位を小さくし
て画像にカブリが生じないようにした電子写真感光体を
提供することにある。
Therefore, the present invention was completed in view of the above circumstances, and its purpose is to further improve the carrier mobility of the a-5iC carrier transport layer, thereby reducing the residual potential and preventing fogging on images. An object of the present invention is to provide an electrophotographic photoreceptor that has the following properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、基板上に少なくともキャリア輸送層と
キャリア発生層を形成した電子写真感光体において、前
記キャリア輸送層がa−SiCから成ると共にCとSi
の原子組成比が1:100乃至1:9の範囲内に設定し
たことを特徴とする電子写真感光体が提供される。
According to the present invention, in an electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a substrate, the carrier transport layer is made of a-SiC, and C and Si.
Provided is an electrophotographic photoreceptor characterized in that the atomic composition ratio of is set within the range of 1:100 to 1:9.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の電子写真感光体の典型的な層構成を示
しており、この図によれば、導電性基板(1)上にキャ
リア注入阻止層(6)、キャリア輸送層(7)、キャリ
ア発生層(8)及び表面保護層(9)が順次形成された
積層型感光体を示しており、そして、この感光体に対し
てキャリア輸送層(7)とキャリア発生層(8)の積層
順序を変えた積層型感光体であってもよい。
FIG. 1 shows a typical layer structure of the electrophotographic photoreceptor of the present invention. According to this figure, a carrier injection blocking layer (6), a carrier transporting layer (7) are formed on a conductive substrate (1). , shows a laminated photoreceptor in which a carrier generation layer (8) and a surface protection layer (9) are sequentially formed, and a carrier transport layer (7) and a carrier generation layer (8) are formed on this photoreceptor. A laminated photoreceptor with a different lamination order may also be used.

本発明によれば、上記キャリア輸送層(7)をa−3i
Cにより形成するに当たってC元素とSi元素の原子組
成比を1 : 100乃至1:9の範囲内に、好適には
1 :50乃至1 :9の範囲内に設定し、これにより
、このキャリア輸送N(7)のキャリア移動度を向上さ
せることができることを特徴とする。
According to the present invention, the carrier transport layer (7) is a-3i
When forming with C, the atomic composition ratio of C element and Si element is set within the range of 1:100 to 1:9, preferably within the range of 1:50 to 1:9, thereby improving this carrier transport. It is characterized by being able to improve the carrier mobility of N(7).

C元素とSi元素の原子組成比が1 : 100から外
れた場合、キャリア輸送層の暗抵抗率を大きくして表面
電位を斉くするーという効果が顕著でなくなり、この原
子組成比が1:9から外れた場合、キャリア輸送層の暗
抵抗率が大きくなって表面電位が高くなるが、その反面
、キャリア移動度が低下傾向にあり、これによって残留
電位が増加して画像にカブリが生じ易くなる。
When the atomic composition ratio of C element and Si element deviates from 1:100, the effect of increasing the dark resistivity of the carrier transport layer and making the surface potential uniform becomes less noticeable, and this atomic composition ratio becomes 1:9. If it deviates from this, the dark resistivity of the carrier transport layer increases and the surface potential increases, but on the other hand, the carrier mobility tends to decrease, which increases the residual potential and tends to cause image fogging. .

このギヤリア輸送層(7)はa−5iCから実質上構成
されるが、そのアモルファス状態のダングリングボンド
を終端させるために水素元素(H)やハロゲン元素を含
有させる必要があり、これらの元素の含有量は5乃至5
0原子%、好適には5乃至40原子%、最適には10乃
至30原子%がよく、通常、H元素が用いられる。この
H元素が用いられるとその元素が上記終端部に取り込ま
れ易いのでバンドギャップ中の局在準位密度を低減化さ
せ、これにより、優れた半導体特性が得られる。
This gear transport layer (7) is substantially composed of a-5iC, but it is necessary to contain hydrogen elements (H) and halogen elements in order to terminate the dangling bonds in the amorphous state. The content is 5 to 5
The content is preferably 0 atomic %, preferably 5 to 40 atomic %, optimally 10 to 30 atomic %, and H element is usually used. When this H element is used, it is easily incorporated into the terminal portion, thereby reducing the localized level density in the band gap, thereby providing excellent semiconductor properties.

また、このH元素の一部をハロゲン元素に置換してもよ
く、これにより、この層の局在準位密度を下げて光導電
性及び耐熱性(温度特性)を高めることができ、その置
換比率はダングリングボンド終端用全元素中0.01乃
至50原子%、好適には1乃至30原子%がよい。この
ハロゲン元素にはF、CI、Br+I、At等があるが
、就中、Fを用いるとその大きな電気陰性度によって原
子間の結合が大きくなり、これによって熱的安定性に優
れるという点で望ましい。
In addition, a part of this H element may be replaced with a halogen element, which lowers the localized level density of this layer and increases photoconductivity and heat resistance (temperature characteristics). The ratio is preferably 0.01 to 50 atomic %, preferably 1 to 30 atomic %, of all the elements for dangling bond termination. This halogen element includes F, CI, Br+I, At, etc., but F is particularly desirable because its large electronegativity increases the bonding between atoms, resulting in excellent thermal stability. .

上記キャリア輸送層(7)の厚みは1乃至50μm、好
適には5乃至30μmの範囲内に設定するのがよく、1
μm未満であれば電荷保持能力に劣ってゴースト現象が
顕著になり、50μmを超えると画像の分解能が劣化す
ると共に残留電位が大きくなる。
The thickness of the carrier transport layer (7) is preferably set within a range of 1 to 50 μm, preferably 5 to 30 μm, and 1 to 50 μm.
If it is less than μm, the charge retention ability will be poor and the ghost phenomenon will become noticeable, and if it exceeds 50 μm, the image resolution will deteriorate and the residual potential will increase.

このキャリア輸送層(7)には周期律表第Va族元素(
以下、Va族元素と略す)又は周期律表第1I[a族元
素(以下、ma族元素と略す)を所要の範囲内で含有さ
せてもよい。
This carrier transport layer (7) contains elements of Group Va of the periodic table (
(hereinafter abbreviated as group Va elements) or group II elements of the periodic table (hereinafter abbreviated as group ma elements) may be contained within a required range.

卯ち、Va族元素を含有させる場合、その含有量を0乃
至10,000ppm 、好適には0.1乃至1100
0ppの範囲内で含有させると負帯電に有利な感光体と
なり、このVa族元素としてはP、N、As、Sb等が
あり、就中、Pが望ましい。
In the case of containing a Va group element, the content should be 0 to 10,000 ppm, preferably 0.1 to 1100 ppm.
When the content is within the range of 0 pp, the photoreceptor becomes advantageous for negative charging, and examples of the Va group element include P, N, As, and Sb, and P is particularly desirable.

また、ma族元素を含有させる場合にはその含有量を0
.1乃至10.OOOppm 、好適には0.5乃至1
1000ppの範囲内で含有させると正帯電に有利な感
光体となり、このma族元素としてはB、AI、Ga。
In addition, when containing a Ma group element, the content should be reduced to 0.
.. 1 to 10. OOOppm, preferably 0.5 to 1
When the content is within the range of 1000 pp, the photoreceptor becomes advantageous for positive charging, and the MA group elements include B, AI, and Ga.

In等があり、就中、Bが望ましい。Among them, B is preferable.

上述したような不純物元素をドーピングして所要の通り
に帯電させるという場合、それに加えて暗抵抗率を更に
一層大きくして表面電位を高めるという目的のためには
ma族元素を添加すると有利である。
When doping impurity elements as described above to charge the material as required, it is advantageous to add a Ma group element for the purpose of further increasing the dark resistivity and increasing the surface potential. .

本発明によれば、前記キャリア発生層(8)にはそれ自
体周知の光電変換材料を用いることができ、例えばPV
Kなどの有機半導体、Se、5e−Te、5e−As。
According to the present invention, for the carrier generation layer (8), a photoelectric conversion material that is well known per se can be used, such as PV
Organic semiconductors such as K, Se, 5e-Te, 5e-As.

CdS、ZnO,a−3i、a−3iC,a−3iGe
、 a−3iGeCなどの無機半導体がある。
CdS, ZnO, a-3i, a-3iC, a-3iGe
, a-3iGeC and other inorganic semiconductors.

前記キャリア注入阻止層(6)はキャリア輸送層(7)
へのキャリアの注入を阻止するために形成されており、
例えばポリイミド樹脂などの有機材料、5iOz、Si
O,AlzO++SiC+5iJ4. a−St、 a
−5iCなどの無機材料を用いて形成される。
The carrier injection blocking layer (6) is a carrier transporting layer (7).
is formed to prevent carrier injection into the
For example, organic materials such as polyimide resin, 5iOz, Si
O, AlzO++SiC+5iJ4. a-St, a
It is formed using an inorganic material such as -5iC.

また、このキャリア注入阻止層(6)を半導体材料によ
り形成するに当たって、感光体を正極性に帯電させる場
合にはその伝導型をP型に制御し、負極性に帯電させる
場合にはN型に制御するのがよく、これによってキャリ
アの注入阻止作用が一段と向上する。例えば、このP型
半導体材料にはB等のl1lla族元素を、N型半導体
材料にはP等のVa族元素をそれぞれ50乃至5000
ppmの範囲内で含有させたa−Si又はa−SiCが
ある。
In forming this carrier injection blocking layer (6) from a semiconductor material, the conductivity type is controlled to be P type when the photoreceptor is charged to a positive polarity, and to N type when charged to a negative polarity. It is preferable to control this, and thereby the carrier injection blocking effect is further improved. For example, the P-type semiconductor material contains 11lla group elements such as B, and the N-type semiconductor material contains 50 to 5000 Va group elements such as P.
There is a-Si or a-SiC contained within a ppm range.

前記表面保護層(9)にはそれ自体高絶縁性、高耐食性
及び高硬度特性を有するものであれば種々の材料を用い
ることができる。例えば、前記のキャリア注入層(6)
に用いたのと同じ無機材料又は有機材料を用いることで
き、これにより、感光体の耐久性及び耐環境性を高める
ことができる。
Various materials can be used for the surface protective layer (9) as long as they themselves have high insulation properties, high corrosion resistance, and high hardness properties. For example, the carrier injection layer (6)
The same inorganic or organic materials used in the photoreceptor can be used, thereby increasing the durability and environmental resistance of the photoreceptor.

次に本発明の電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−3iCキャリア輸送層(7)はグロー放電分解法、
イオンブレーティング法、反応性スパンタリング法、真
空蒸着法、熱CVO法等の薄膜形成手段によって形成す
ることができる。また、これに用いられる原料には固体
、液体、気体のいずれでもよい。
a-3iC carrier transport layer (7) is formed by glow discharge decomposition method,
It can be formed by a thin film forming method such as an ion blasting method, a reactive sputtering method, a vacuum evaporation method, or a thermal CVO method. Moreover, the raw material used for this may be solid, liquid, or gas.

例えばグロー放電分解法に用いられる気体原料としては
5ilt、5IJs、St:+IIeなどのSi系ガス
、C)14.。
For example, gaseous raw materials used in the glow discharge decomposition method include Si-based gases such as 5ilt, 5IJs, St:+IIe, C) 14. .

Czllt、C211□、CJi、CJeなどのC系ガ
スを用いればよく、更にHz+He+Ne+Arなどを
キャリアーガスとして用いられる。
C-based gas such as Czllt, C211□, CJi, and CJe may be used, and furthermore, Hz+He+Ne+Ar or the like may be used as a carrier gas.

また、キャリア輸送層(7)以外の層を形成するに当た
って、その層をa−3i又はa−5iCにより形成する
のであれば、同様な薄膜形成手段を用いることができる
という点で望ましく、更に同一の成膜装置を用いた場合
、共通した薄膜形成手段によって連続的に積層すること
ができるという利点がある。
Further, when forming layers other than the carrier transport layer (7), it is preferable that the layers are formed of a-3i or a-5iC, since similar thin film forming means can be used, and furthermore, the same When this film forming apparatus is used, there is an advantage that layers can be continuously stacked using a common thin film forming means.

次に本発明の実施例に用いられる電子写真感光体をグロ
ー放電分解法を用いてa−3i又はa−5iCにより形
成する場合、その製作法を第4図の容量結合型グロー放
電分解装置により説明する。
Next, when the electrophotographic photoreceptor used in the embodiments of the present invention is formed from a-3i or a-5iC using the glow discharge decomposition method, the manufacturing method is performed using the capacitively coupled glow discharge decomposition apparatus shown in FIG. explain.

図中、タンク(10) (11) (12) (13)
 (14)にはそれぞれ5i114.CzHz+BJ6
()12ガス希釈で0.2χ含有)、11□、NOガス
が密封されており、H2はキャリアガスとしても用いら
れる。これらのガスは対応する調整弁(15) (16
) (17) (18) (19)を開放することによ
って放出され、その流量がマスフローコントローラ(2
0) (21) (22) (23) (24)により
制御され、タンク(10) (11) (12) (1
3)からのガスは主管(25)へ、タンク(14)から
のNOガスは主管(26)へ送られる。尚、(27) 
(28)は止め弁である。主管(25) (26)を通
じて流れるガスは反応管(29)へと送り込まれるが、
この反応管(29)の内部には容量結合型放電用電極(
30)が設置されており、それに印加される高周波電力
は5〇−乃至3KWが、また周波数はIMHz乃至10
M1lzが適当である。反応管(29)の内部にはアル
ミニウムから成る筒状の成膜用基板(31)が試料保持
台(32)の上に載置されており、この保持台(32)
はモーター(33)により回転駆動されるようになって
おり、そして、基板(31)は適当な加熱手段により、
約200乃至400度、好ましくは約200乃至350
℃の温度に均一に加熱される。更に反応管(29)の内
部にはa−5iC膜形成時に高度の真空状態(放電時の
ガス圧0.1乃至2.0Torr )を必要とすること
により回転ポンプ(34)と拡散ポンプ(35)に連結
されている。
In the figure, tanks (10) (11) (12) (13)
(14) respectively 5i114. CzHz+BJ6
(12 gas dilution containing 0.2χ), 11□, NO gas is sealed, and H2 is also used as a carrier gas. These gases are controlled by the corresponding regulating valves (15) (16
) (17) (18) (19), and the flow rate is controlled by the mass flow controller (2).
0) (21) (22) (23) (24), tank (10) (11) (12) (1
3) is sent to the main pipe (25), and NO gas from the tank (14) is sent to the main pipe (26). Furthermore, (27)
(28) is a stop valve. The gas flowing through the main pipes (25) and (26) is sent to the reaction pipe (29),
Inside this reaction tube (29) is a capacitively coupled discharge electrode (
30) is installed, and the high frequency power applied to it is 50-3KW, and the frequency is IMHz to 10KW.
M1lz is suitable. Inside the reaction tube (29), a cylindrical film-forming substrate (31) made of aluminum is placed on a sample holder (32).
is rotatably driven by a motor (33), and the substrate (31) is heated by suitable heating means.
about 200 to 400 degrees, preferably about 200 to 350 degrees
Evenly heated to a temperature of ℃. Furthermore, inside the reaction tube (29), a rotary pump (34) and a diffusion pump (35) are required because a high vacuum condition (gas pressure during discharge of 0.1 to 2.0 Torr) is required during a-5iC film formation. ) is connected to.

以上のように構成されたグロー放電分解装置において、
例えばa−SiC膜を基板(32)に形成する場合には
、調整弁(15) (16) (18)を開いてそれぞ
れ5iH4,I C2H2+ llzガスを放出する。
In the glow discharge decomposition device configured as above,
For example, when forming an a-SiC film on the substrate (32), the regulating valves (15), (16), and (18) are opened to release 5iH4 and I C2H2+ llz gases, respectively.

放出量はマスフローコントローラ(20) (21) 
(23)により制御され、これらの混合ガスは主管(2
5)を介して反応管(29)へと流し込まれる。そして
、反応管(29)の内部が0.1乃至2.0Torr程
度の真空状態、基板温度が200乃至400℃、容量結
合型放電用電極(30)の高周波電力が5〇−乃至3K
W 、周波数が1乃至50MHzに設定されていること
に相俟ってグロー放電が起こり、ガスが分解してa−5
iC膜が基板上に高速に形成される。
The amount of release is determined by the mass flow controller (20) (21)
(23), and these mixed gases are controlled by the main pipe (23).
5) into the reaction tube (29). The interior of the reaction tube (29) is in a vacuum state of about 0.1 to 2.0 Torr, the substrate temperature is 200 to 400°C, and the high frequency power of the capacitively coupled discharge electrode (30) is 50 to 3K.
W, the frequency is set from 1 to 50 MHz, glow discharge occurs, the gas decomposes, and a-5
An iC film is formed on a substrate at high speed.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第4図に示したグロー放電分解装置を用いて第1表に示
した製作条件によって基板(31)上にキャリア注入阻
止1’!!(6)、キャリア輸送Ji(7)、キャリア
発生層(8)、表面保護層(9)を順次形成し、電子写
真感光体ドラムを製作した。尚、キャリア注入阻止層(
6)の形成にNOガスを用いて酸素と窒素をドープし、
基板に対する密着性を高めている。
(Example 1) Using the glow discharge decomposition apparatus shown in FIG. 4 and the manufacturing conditions shown in Table 1, carrier injection is inhibited 1' onto the substrate (31)! ! (6), carrier transport Ji (7), carrier generation layer (8), and surface protection layer (9) were sequentially formed to produce an electrophotographic photosensitive drum. Note that the carrier injection blocking layer (
6) doping with oxygen and nitrogen using NO gas to form
Improves adhesion to the substrate.

c以下余白〕 このようにして得られた感光体に対して+5.6KVの
コロナ帯電を行ったところ、表面電位が約800Vにな
り、また、この感光体に波長650nmの単色光(露光
量0.3μW/cm2)を照射した結果、光感度が0.
50cm2erg刊になり、残留電位は約20Vにまで
著しく低減化した。そして、この感光体ドラムを超高速
複写機(複写速度70枚/分)に装着して画像を出した
ところ、カブリがなくて高濃度且つ高鮮明な画像が得ら
れた。
Margin below c] When the photoconductor thus obtained was corona charged at +5.6KV, the surface potential became approximately 800V. As a result of irradiation with 0.3μW/cm2), the photosensitivity was 0.3μW/cm2).
The voltage was 50cm2erg, and the residual potential was significantly reduced to about 20V. When this photosensitive drum was attached to an ultrahigh-speed copying machine (copying speed: 70 sheets/min) and an image was produced, a high-density, highly clear image without fogging was obtained.

尚、上記成膜用基板(3)の一部を切り欠いて、その切
り欠き部に3×30fflの矩形のアルミニウム製平板
を装着し、この平板上に上記キャリア発生層を第1表に
示した条件で成膜し、その膜のCとSiの含有比率をオ
ージェ電子分光法により分析したところ、1:30であ
った。
Incidentally, a part of the film forming substrate (3) was cut out, a 3 x 30 ffl rectangular aluminum flat plate was attached to the cut out part, and the carrier generation layer was placed on this flat plate as shown in Table 1. A film was formed under these conditions, and the content ratio of C and Si in the film was analyzed by Auger electron spectroscopy, and it was found to be 1:30.

(例2) 本例においては、(例1)中キャリア輸送層(7)の形
成に当たってCzHzガス流量を30secmに変更し
、更にその成膜時間を190分に変えて25μmの厚み
のキャリア輸送層を形成し、他の層は(例1)と同じ条
件でキャリア注入阻止層(6)、キャリア発生層(8)
及び表面保護層(9)を形成した。
(Example 2) In this example, (Example 1) When forming the medium carrier transport layer (7), the CzHz gas flow rate was changed to 30 seconds, and the film forming time was further changed to 190 minutes to form a carrier transport layer with a thickness of 25 μm. The other layers were a carrier injection blocking layer (6) and a carrier generation layer (8) under the same conditions as in (Example 1).
And a surface protective layer (9) was formed.

かくして得られた感光体を(例1)と同じ条件で表面電
位、光感度及び残留電位を測定したところ、それぞれ約
900v、0.40cm2erg−’及び約50Vとな
り、更にキャリア輸送層のC(!:Siの含有比率を測
定した結果、1:3であった。
When the surface potential, photosensitivity, and residual potential of the thus obtained photoreceptor were measured under the same conditions as in Example 1, they were approximately 900 V, 0.40 cm2 erg-', and approximately 50 V, respectively, and the C(!) of the carrier transport layer was measured. :Si content ratio was measured and found to be 1:3.

このように上記感光体は(例1)の感光体に比べて表面
電位が高くなったが、その反面、光感度が低減し、更に
残留電位が大きくなった。そして、この感光体ドラムを
、最もカブリが生じ易くなる苛酷な条件を備えた超高速
複写機(複写速度70枚/分)に装着して画像を出した
ところ、カブリがわずかながら見られた。
As described above, the above photoreceptor had a higher surface potential than the photoreceptor of Example 1, but on the other hand, the photosensitivity was reduced and the residual potential was also increased. When this photoreceptor drum was mounted on an ultrahigh-speed copying machine (copying speed 70 sheets/min) equipped with severe conditions where fogging is most likely to occur and an image was produced, a slight amount of fogging was observed.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、a−3
iCキャリア輸送層から成る機能分離型感光体を製作す
るに際してCとSiの原子組成比を所定の範囲内に設定
することによって残留電位を小さくして画像にカブリが
生じなくなった。そして、この感光体によれば、カブリ
が最も生じ易い高速複写機に装着された場合、その効果
が顕著であり、これによって本発明の電子写真感光体は
高速複写機に好適な感光体として提供できる。
As mentioned above, according to the electrophotographic photoreceptor of the present invention, a-3
When manufacturing a functionally separated photoreceptor comprising an iC carrier transport layer, by setting the atomic composition ratio of C and Si within a predetermined range, the residual potential is reduced and no fogging occurs in the image. According to this photoreceptor, the effect is remarkable when it is installed in a high-speed copying machine where fogging is most likely to occur.Therefore, the electrophotographic photoreceptor of the present invention can be provided as a photoreceptor suitable for high-speed copying machines. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に示した電子写真感光体の層構
成を表わす断面図、第2図は従来周知のアモルファスシ
リコン感光体の層構成を表わす断面図、第3図は従来の
機能分離型感光体を説明する層構成の断面図、そして、
第4図は容量結合型グロー放電分解装置の概略図である
。 1 ・・・導電性基板 2.2a、6・・・キャリア注入阻止層5.7  ・・
・キャリア輸送層 3.3a、8・・・キャリア発生層 4.9  ・・・表面像1IFi! 特許出願人 (663)京セラ株式会社代表者安城欽寿 同    汚材 孝夫 代 理 人(8898)弁理士 田原 勝彦第1図 第2図
FIG. 1 is a sectional view showing the layer structure of an electrophotographic photoreceptor shown in an embodiment of the present invention, FIG. 2 is a sectional view showing the layer structure of a conventionally well-known amorphous silicon photoreceptor, and FIG. 3 is a sectional view showing the conventional function. A cross-sectional view of a layer structure illustrating a separate type photoreceptor, and
FIG. 4 is a schematic diagram of a capacitively coupled glow discharge decomposition device. 1... Conductive substrate 2.2a, 6... Carrier injection blocking layer 5.7...
-Carrier transport layer 3.3a, 8...Carrier generation layer 4.9...Surface image 1IFi! Patent Applicant (663) Kyocera Corporation Representative Kinju Anjo Stain Material Takao Yo Rinto (8898) Patent Attorney Katsuhiko Tahara Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板上に少なくともキャリア輸送層とキャリア発生層を
形成した電子写真感光体において、前記キャリア輸送層
がアモルファスシリコンカーバイドから成ると共にカー
ボンとシリコンの原子組成比が1:100乃至1:9の
範囲内に設定したことを特徴とする電子写真感光体。
In an electrophotographic photoreceptor in which at least a carrier transport layer and a carrier generation layer are formed on a substrate, the carrier transport layer is made of amorphous silicon carbide and the atomic composition ratio of carbon and silicon is within the range of 1:100 to 1:9. An electrophotographic photoreceptor characterized by:
JP27438386A 1986-11-18 1986-11-18 Electrophotographic sensitive body Pending JPS63127248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27438386A JPS63127248A (en) 1986-11-18 1986-11-18 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27438386A JPS63127248A (en) 1986-11-18 1986-11-18 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63127248A true JPS63127248A (en) 1988-05-31

Family

ID=17540899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27438386A Pending JPS63127248A (en) 1986-11-18 1986-11-18 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63127248A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219561A (en) * 1982-06-15 1983-12-21 Konishiroku Photo Ind Co Ltd Recording body
JPS58219560A (en) * 1982-06-15 1983-12-21 Konishiroku Photo Ind Co Ltd Recording body
JPS59212843A (en) * 1983-05-18 1984-12-01 Konishiroku Photo Ind Co Ltd Photosensitive body
JPS60235150A (en) * 1984-05-09 1985-11-21 Konishiroku Photo Ind Co Ltd Photosensitive body
JPS61138958A (en) * 1984-12-12 1986-06-26 Toshiba Corp Photoconductive material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219561A (en) * 1982-06-15 1983-12-21 Konishiroku Photo Ind Co Ltd Recording body
JPS58219560A (en) * 1982-06-15 1983-12-21 Konishiroku Photo Ind Co Ltd Recording body
JPS59212843A (en) * 1983-05-18 1984-12-01 Konishiroku Photo Ind Co Ltd Photosensitive body
JPS60235150A (en) * 1984-05-09 1985-11-21 Konishiroku Photo Ind Co Ltd Photosensitive body
JPS61138958A (en) * 1984-12-12 1986-06-26 Toshiba Corp Photoconductive material

Similar Documents

Publication Publication Date Title
JPS63135949A (en) Electrophotographic sensitive body
JPS63127248A (en) Electrophotographic sensitive body
JPS63132252A (en) Electrophotographic sensitive body
JP2608401B2 (en) Electrophotographic photoreceptor
JPS63135954A (en) Electrophotographic sensitive body
JPS63133157A (en) Electrophotographic sensitive body
JP2562583B2 (en) Electrophotographic photoreceptor
JPS63132253A (en) Electrophotographic sensitive body
JP2566762B2 (en) Electrophotographic photoreceptor
JPS63132254A (en) Electrophotographic sensitive body
JPS6381435A (en) Production of electrophotographic sensitive body
JPS63135951A (en) Electrophotographic sensitive body
JPS63165857A (en) Electrophotographic sensitive body
JPS63135950A (en) Electrophotographic sensitive body
JPS6299759A (en) Electrophotographic sensitive body
JPS63121057A (en) Electrophotographic sensitive body
JPS635348A (en) Electrophotographic sensitive body
JPS63135952A (en) Electrophotographic sensitive body
JPS6381436A (en) Production of electrophotographic sensitive body
JPS63271356A (en) Electrophotographic sensitive body
JPS63133159A (en) Electrophotographic sensitive body
JPS6329762A (en) Electrophotographic sensitive body
JPS6382416A (en) Electrophotographic sensitive body
JPS634239A (en) Electrophotographic sensitive body
JPS6270854A (en) Electrophotographic sensitive body