JPS63126211A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPS63126211A
JPS63126211A JP27249086A JP27249086A JPS63126211A JP S63126211 A JPS63126211 A JP S63126211A JP 27249086 A JP27249086 A JP 27249086A JP 27249086 A JP27249086 A JP 27249086A JP S63126211 A JPS63126211 A JP S63126211A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
capacitors
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27249086A
Other languages
Japanese (ja)
Inventor
土屋 宗次
竹田 武司
聰 関戸
町田 育彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27249086A priority Critical patent/JPS63126211A/en
Publication of JPS63126211A publication Critical patent/JPS63126211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はベヮプスカイト型構造を有する複合酸化物を固
体電解質として用いる固体電解コンデンサの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a composite oxide having a vaporskite structure as a solid electrolyte.

従来の技術 近年、電気機器回路のディジタル化にともなって、そこ
に使用されるコンデンサも高周波領域でのインピーダン
スが低く、小型大容量のものO2の要求が高まっている
。従来、高周波領域用のコンデンサとしては、プラスチ
ックフィルムコンデンサ、マイカコンデンサ、積層セラ
ミックコンテンサが用いられているが、フィルムコンデ
ンサおよびマイカコンデンサでは形状が太き(なってし
まうために大容量化がむすかしく、また&層セラミック
コンデンサでは、小型大容量になわばなるほど、温度特
性が悪くなり、価格が非常に高くなるという欠点がある
。一方、大容量タイプのコンデンサとして知られるもの
に、アルミニウム乾式電解コンデンサあるいはアルミニ
ウムまたはタンクル固体電解コンデンサなどがある。こ
ハらのコンデンサは誘電体となる陽極酸化皮膜を非常に
薄くできるために大容量が実現できるのであるが、その
反面、酸化皮膜の損傷がおきやすいために、酸化皮膜と
陰極の間に損傷を修復するための電解質を設ける必要が
ある。アルミニウム乾式電解コンデンサでは、エツチン
グをほどこした陽、陰極アルミニウム箔を紙のセパレー
タを介して巻き取り、液状の電解質をセパレータに含浸
して用いている。
BACKGROUND OF THE INVENTION In recent years, with the digitization of electrical equipment circuits, there has been an increasing demand for O2 capacitors used therein that have low impedance in the high frequency range and are small and large in capacity. Conventionally, plastic film capacitors, mica capacitors, and multilayer ceramic capacitors have been used as capacitors for high frequency ranges, but film capacitors and mica capacitors have thick shapes, making it difficult to increase the capacitance. , layered ceramic capacitors have the disadvantage that the smaller and larger the capacitance, the worse the temperature characteristics and the higher the price.On the other hand, aluminum dry electrolytic capacitors are known as large capacitance type capacitors. Alternatively, there are aluminum or tank solid electrolytic capacitors.In these capacitors, the anodic oxide film that serves as the dielectric material can be made very thin, making it possible to achieve large capacity, but on the other hand, the oxide film is easily damaged. Therefore, it is necessary to provide an electrolyte between the oxide film and the cathode to repair the damage.In aluminum dry electrolytic capacitors, etched positive and negative electrode aluminum foils are wound up through a paper separator, and a liquid The separator is impregnated with electrolyte.

このため、電解質の液漏れ、°蒸発等の理由により経時
的に静電容量の減少や損失(tanδ)の増大が起ると
同時に、電解質のイオン伝導性により高周波特性および
低温特性が著しく劣る等の欠点を有している。又、アル
ミニウム、タンタル固体電解コンデンサでは、上記アル
ミニウム乾式電解コンデンサの欠点を改良するために固
体電解質として二酸什マンガンが用いられている。この
固体電解質は硝酸マンガン水溶液に陽極素子を浸漬し、
350℃前後の温度で熱分解して得られている。このコ
ンデンサの場合、電解質が固体のため、高温における電
解質の流出、低温域での凝固から生ずる性能の低下など
の欠点かな(、液状電解質を用いたコンデンサに比して
良好な周波数特性および温度特性を示すが、硝酸マンガ
ンの熱分解による酸化皮膜の損傷及び二酸化マンガンの
比抵抗が高いことなどの理由から、高周波領域のインピ
ーダンスあるいは損失は積層セラミックコンデンサある
いはプラスチックフィルムコンデンサと比較して1けた
以上高い値となっている。
For this reason, capacitance decreases and losses (tan δ) increase over time due to electrolyte leakage, evaporation, etc., and at the same time, high frequency characteristics and low temperature characteristics deteriorate significantly due to the ionic conductivity of the electrolyte. It has the following disadvantages. Furthermore, in aluminum and tantalum solid electrolytic capacitors, manganese dioxide is used as the solid electrolyte in order to improve the drawbacks of the above-mentioned aluminum dry electrolytic capacitors. This solid electrolyte is produced by immersing the anode element in a manganese nitrate aqueous solution.
It is obtained by thermal decomposition at a temperature of around 350°C. In the case of this capacitor, since the electrolyte is solid, there may be disadvantages such as electrolyte leakage at high temperatures and performance degradation due to solidification at low temperatures (and better frequency and temperature characteristics than capacitors using liquid electrolytes). However, due to damage to the oxide film due to thermal decomposition of manganese nitrate and the high resistivity of manganese dioxide, the impedance or loss in the high frequency range is more than an order of magnitude higher than that of multilayer ceramic capacitors or plastic film capacitors. value.

前記の問題を解決するために近年、有機半導体であるT
CNQ塩を用いることが提案されている。TCNQ塩は
導電性が高く、陽極酸化性を有するので、高周波特性が
良好で大容量のコンデンサが可能となる。
In order to solve the above problem, in recent years, the organic semiconductor T
It has been proposed to use CNQ salt. Since TCNQ salt has high conductivity and anodic oxidation properties, a capacitor with good high frequency characteristics and large capacity can be formed.

発明が解決しようとする問題点 しかしながらTCNQ塩を用いたコンデンサでは高耐電
圧のものが得られに(い、あるいは高温放置における信
頼性においてもまた、その際に有害なHCNガスを発生
し容量の変化や、漏れ電流の増大などがあり改善されね
ばならない点がある。
Problems to be Solved by the Invention However, capacitors using TCNQ salt do not have a high withstand voltage (or are not reliable when left at high temperatures), producing harmful HCN gas and reducing the capacity. There are some issues that need to be improved, such as changes and an increase in leakage current.

上記にのべてきたコンデンサで特性がすぐれたもので薄
型の形状のものをつくるという点でも製造工程上それぞ
れに困難さをもっている。
Each of the above-mentioned capacitors has its own difficulties in the manufacturing process in terms of manufacturing capacitors with excellent characteristics and thin shapes.

本発明は上記従来の問題点を解決するもので、高周波特
性、高温放置における寿命の信頼性の改善をはかるのが
目的である。・ 問題点を解決するための手段 本発明は上記目的を達成するもので、その技術的手段は
、ペロブスカイト構造を有する電子と酸素イオン混合導
電材料5rxLa、−、Co1−、Fey034で表わ
される材料なArと02の混合ガスの雰囲気下でスパッ
タリング法により弁金属上に形成されている誘電体膜と
なる酸化皮膜上に博膜状に形成するものである。
The present invention solves the above-mentioned conventional problems, and aims to improve high frequency characteristics and reliability of life when left at high temperatures.・Means for Solving the Problems The present invention achieves the above object, and the technical means thereof is to use a mixed conductive material of electrons and oxygen ions having a perovskite structure, such as a material represented by 5rxLa, -, Co1-, Fey034. It is formed in a square shape on the oxide film which becomes the dielectric film formed on the valve metal by a sputtering method in an atmosphere of a mixed gas of Ar and 02.

作    用 本発明は、高周波特性がすぐれているコンデンサを提供
する電解質であるMr、2やTCNQ塩より電気抵抗が
1〜2けた小さいペロブスカイト型構造を有する複合酸
化物を固体電解質として用いることにより、低インピー
ダンスで使用限界周波数が改善されたコンデンサが提供
できる。また、耐熱性にすぐれているため高温において
も良好な信頼性を示す。
Function The present invention uses as a solid electrolyte a composite oxide having a perovskite structure, which has an electrical resistance 1 to 2 orders of magnitude smaller than that of Mr,2 or TCNQ salt, which is an electrolyte that provides a capacitor with excellent high frequency characteristics. A capacitor with low impedance and improved limit frequency can be provided. In addition, it has excellent heat resistance and exhibits good reliability even at high temperatures.

また本発明において、上記混合導電材料としては、電気
抵抗を小さくして高周波特性をすぐれたものにするため
に、δ<0.5、x=(1+y)/2.0≦y≦1であ
ることが望ましく、更にコンデンサを槽成する陽極とし
ては、Al、 Ti1Ta、 Nb、 Mo 。
Further, in the present invention, the mixed conductive material satisfies δ<0.5 and x=(1+y)/2.0≦y≦1 in order to reduce electrical resistance and provide excellent high frequency characteristics. It is preferable to use Al, Ti1Ta, Nb, or Mo as the anode forming the capacitor.

Wのような弁金属が望ましい。ここで用いるペロブスカ
イト型の複合酸化物の薄膜の固有抵抗は10〜10Ω・
(7)の範囲にある。スパッタリングを行う際、一般に
、結晶性や密着性を向上させるために、基板を加熱した
り、製膜後熱処理を行う。
A valve metal such as W is preferable. The specific resistance of the perovskite-type composite oxide thin film used here is 10 to 10Ω・
It is within the range of (7). When performing sputtering, the substrate is generally heated or a heat treatment is performed after film formation in order to improve crystallinity and adhesion.

ここで用いる複合酸化物も結晶性がよいものほど電気抵
抗が低い、すでに形成している酸化皮膜を破壊しないた
めには、熱処理は温和な方がよい。
The better the crystallinity of the composite oxide used here, the lower the electrical resistance.In order not to destroy the oxide film that has already been formed, it is better to perform the heat treatment mildly.

スパッタリングの雰囲気なArと0.の混合ガス中で行
うと熱処理を行わなくても結晶性のよい膜が得られ、電
気抵抗も10〜10Ω・mのものが容易に得られる。特
に02の濃度が20〜40チの場合は結晶性と密着性の
よい膜が得られた。o2濃度が高いと結晶性のよいもの
は得られるが、スパッタ速度は低下し、かつ、かえって
密着性が悪い膜となってしまう。この場合、このペロプ
スカイト型構造を有する複合酸化物は固体電解質の役目
と同時に他方の電極の役目もかねることができる。また
、この複合酸化物の膜と誘電体である酸化皮膜との密着
性はTCNQ塩などと比較してすぐれているし、この材
料の耐熱性は酸化皮膜よりすぐれているので、このコン
デンサを良好な高温安定性を示す。
Sputtering atmosphere Ar and 0. When carried out in a mixed gas of , a film with good crystallinity can be obtained without heat treatment, and an electrical resistance of 10 to 10 Ω·m can be easily obtained. In particular, when the concentration of 02 was 20-40%, a film with good crystallinity and adhesion was obtained. If the o2 concentration is high, a film with good crystallinity can be obtained, but the sputtering speed will be lower and the adhesion will be poorer. In this case, the composite oxide having a perovskite structure can serve as the solid electrolyte and the other electrode at the same time. In addition, the adhesion between this composite oxide film and the dielectric oxide film is superior to that of TCNQ salt, and the heat resistance of this material is superior to that of the oxide film, making this capacitor a good choice. It exhibits excellent high temperature stability.

実施例 以下に本発明の実施例を詳細に説明する。Example Examples of the present invention will be described in detail below.

複合酸化物としてはSro、5Lao、5Co3−δを
選択した。
Sro, 5Lao, and 5Co3-δ were selected as the composite oxides.

この焼成物は次のようにして作製した。出発原料である
酢酸ランタニウム、酢酸ストロンチウム、酢酸コバルト
の混合物を450〜500℃で熱分解し、ひきつづき9
00℃以上の温度で固相反応させることによって作製し
た。δはヨードメトリイより求めた結果0,05であっ
た。固有抵抗値は5×10″Ωφmであった。
This fired product was produced as follows. A mixture of starting materials, lanthanium acetate, strontium acetate, and cobalt acetate, was thermally decomposed at 450 to 500°C, followed by 9
It was produced by performing a solid phase reaction at a temperature of 00°C or higher. δ was found to be 0.05 as determined by iodometry. The specific resistance value was 5×10″Ωφm.

弁金属としてはA1を用いて、75V化成処理を行って
誘電皮膜を作製した。この表面にRFスパッタリング法
により上記焼成物の薄膜を作製した。
Using A1 as the valve metal, a dielectric film was prepared by performing a 75V chemical conversion treatment. A thin film of the fired product was formed on this surface by RF sputtering.

薄膜の作製条件としては、ターゲツト材としては上記の
焼成物を粉末状で使用し、ガス算囲気は02ガス30チ
であるArガスとの混合ガスで、ガス圧は10 tor
rで、出力は300Wであった。膜厚は1.5μであっ
た。薄膜にした場合の電気抵抗は2×10−20・αで
あった。AI金金属陽極とし、他方の陰極としてこの固
体電解質膜を用いてコンデンサ特性を測定したところ、
IKHgにおいて、容量0.55μF、tanδ7チで
あった。漏れ電流は10v印加で2μA程度であった。
The conditions for producing the thin film were as follows: The above fired product was used in powder form as the target material, the calculated surrounding atmosphere was a mixed gas with Ar gas of 30 g of 02 gas, and the gas pressure was 10 torr.
r, and the output was 300W. The film thickness was 1.5μ. The electrical resistance when formed into a thin film was 2×10 −20·α. When we measured the capacitor characteristics using the AI gold metal anode and this solid electrolyte membrane as the other cathode, we found that:
In IKHg, the capacitance was 0.55 μF and the tan δ was 7 chi. The leakage current was about 2 μA when 10 V was applied.

容量達成率は85%程度であった。IMHgでのインピ
ータンスは10n・Ωと低く高周波特性がすぐれている
ことがわかった。焼成物の組成を前記でのべた範囲で変
化しても、スパッタリングにより作製さねた電気抵抗は
10〜10Ω・釧であり、前記と同等のコンデンサ特性
を示した。弁金鴇をTi、 Ta、 Nb、 Mo、 
W を用いても同等のコンデンサが得ら名だ。薄膜の作
製方法を@流スパッタリングで行っても電解質膜の特性
は同様なものであった。
The capacity achievement rate was about 85%. It was found that the impedance at IMHg was as low as 10 nΩ, and the high frequency characteristics were excellent. Even if the composition of the fired product was changed within the range mentioned above, the electrical resistance of the sample produced by sputtering was 10 to 10 Ω·m, and the same capacitor characteristics as above were exhibited. Ti, Ta, Nb, Mo,
An equivalent capacitor can be obtained using W. The properties of the electrolyte membrane were similar even when the thin film was prepared by @flow sputtering.

また、この様にして作製されたコンデンサを130℃に
長時間放置後、コンデンサ特性を測定しても特性の劣化
はみられず、耐熱性にすぐれているコンデンサであるこ
とがわかった。
Further, when the capacitor characteristics produced in this way were left at 130° C. for a long time, no deterioration of the characteristics was observed, indicating that the capacitor had excellent heat resistance.

発明の効果 以上要するに本発明は、固体電解質としてペロブスカイ
ト型構造を有する複合酸化物のArと02の混合ガス雰
囲気中でのスパッタリング法により作製された薄膜を用
いることにより、高周波特性がすぐね、かつ耐熱性のす
ぐねたコンデンサが提供できる利点を有する。
Effects of the Invention In short, the present invention uses a thin film of a composite oxide having a perovskite structure as a solid electrolyte prepared by a sputtering method in a mixed gas atmosphere of Ar and 02, thereby achieving excellent high frequency characteristics and It has the advantages that a high temperature resistant solid state capacitor can offer.

Claims (4)

【特許請求の範囲】[Claims] (1)弁作用金属からなる一方の電極と、前記弁作用金
属の酸化物表面上に、化学式Sr_xLa_1_−_x
Co_1_−_yFe_yO_3_−_δで表わされる
ペロブスカイト型構造を有する複合酸化物の薄膜をAr
とO_2の混合ガスの雰囲気の下でスパッタリング法に
より作製することを特徴とする固体電解コンデンサの製
造方法。
(1) One electrode made of a valve metal and the chemical formula Sr_xLa_1_-_x on the oxide surface of the valve metal.
A thin film of a composite oxide having a perovskite structure represented by Co_1_-_yFe_yO_3_-_δ
A method for manufacturing a solid electrolytic capacitor, the method comprising manufacturing a solid electrolytic capacitor by a sputtering method in an atmosphere of a mixed gas of and O_2.
(2)複合酸化物は、0≦y≦1、δ≦0.5であり、
かつx=(1+y)/2の関係を有することを特徴とす
る特許請求の範囲第1項記載の固体電解コンデンサの製
造方法。
(2) The complex oxide satisfies 0≦y≦1, δ≦0.5,
The method of manufacturing a solid electrolytic capacitor according to claim 1, characterized in that the relationship x=(1+y)/2 is satisfied.
(3)弁作用金属が、Al、Ti、Ta、Nb、Wのい
ずれかであることを特徴とする特許請求の範囲第1項記
載の固体電解コンデンサの製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the valve metal is any one of Al, Ti, Ta, Nb, and W.
(4)ArとO_2の混合ガスにおいてO_2の混合ガ
ス濃度が20〜40%である特許請求の範囲第1項記載
の固体電解コンデンサの製造方法。
(4) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the mixed gas concentration of O_2 in the mixed gas of Ar and O_2 is 20 to 40%.
JP27249086A 1986-11-14 1986-11-14 Manufacture of solid electrolytic capacitor Pending JPS63126211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27249086A JPS63126211A (en) 1986-11-14 1986-11-14 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27249086A JPS63126211A (en) 1986-11-14 1986-11-14 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63126211A true JPS63126211A (en) 1988-05-30

Family

ID=17514644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27249086A Pending JPS63126211A (en) 1986-11-14 1986-11-14 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63126211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124584A1 (en) * 2011-03-15 2012-09-20 三洋電機株式会社 Solid electrolytic capacitor and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124584A1 (en) * 2011-03-15 2012-09-20 三洋電機株式会社 Solid electrolytic capacitor and method of producing same
US9431178B2 (en) 2011-03-15 2016-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor and method of producing same
JP6010772B2 (en) * 2011-03-15 2016-10-19 パナソニックIpマネジメント株式会社 Manufacturing method of solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
McLean et al. Tantalum solid electrolytic capacitors
US20030147203A1 (en) Niobium capacitor and method of manufacture thereof
US3397446A (en) Thin film capacitors employing semiconductive oxide electrolytes
JPH05159987A (en) Solid electrolytic capacitor
JPS6057693B2 (en) metal oxide capacitor
JPH0766901B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000114108A (en) Solid electrolytic capacitor and its manufacture
JPS63126211A (en) Manufacture of solid electrolytic capacitor
JPS63126210A (en) Manufacture of solid electrolytic capacitor
WO2007074875A1 (en) Complex oxide film and method for producing same, composite body and method for producing same, dielectric material, piezoelectric material, capacitor and electronic device
JPS63245917A (en) Manufacture of solid electrilytic capacitor
JP2637207B2 (en) Solid electrolytic capacitors
JP2694454B2 (en) Solid electrolytic capacitors
JPH02257611A (en) Solid electrolytic capacitor and manufacture thereof
JPS6017909A (en) Solid electrolytic condenser
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0315332B2 (en)
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JPH06151255A (en) Solid electrolytic capacitor
JPS6344713A (en) Solid electrolytic capacitor
JPH03225910A (en) Manufacture of solid electrolytic capacitor
JPH08203783A (en) Solid electrolytic capacitor and its manufacture
JPH04253316A (en) High polymer solid electrolytic capacitor
JPH01160006A (en) Manufacture of aluminum solid electrolytic capacitor