JPS63125651A - Production of high-strength ti alloy member - Google Patents

Production of high-strength ti alloy member

Info

Publication number
JPS63125651A
JPS63125651A JP27110186A JP27110186A JPS63125651A JP S63125651 A JPS63125651 A JP S63125651A JP 27110186 A JP27110186 A JP 27110186A JP 27110186 A JP27110186 A JP 27110186A JP S63125651 A JPS63125651 A JP S63125651A
Authority
JP
Japan
Prior art keywords
alloy
strength
phase
subjecting
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27110186A
Other languages
Japanese (ja)
Inventor
Yoshiharu Mae
前 義治
Satoshi Yamazaki
敏 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP27110186A priority Critical patent/JPS63125651A/en
Publication of JPS63125651A publication Critical patent/JPS63125651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To develop a high-strength Ti alloy member by subjecting the Ti alloy formed by adding a specific ratio of Mo to a Ti-Al-V alloy which is heretofore generally used to plastic working under specific conditions, and subjecting the alloy further to an aging treatment after cooling. CONSTITUTION:Mo is further added at 0.5-8wt% to the Ti alloy as a structural member for aircraft which contains 2-5wt% Al and 5-12wt% V and is heretofore used generally as the high-strength Ti alloy. The Ti alloy stock is plastically worked to the prescribed temp. in a 650-850 deg.C temp. range and is then cooled with air or forcibly cooled with gas with substantially no dimensional changes and residual strains, by which the two-phase structure of alpha+beta enriched with the beta phase is obtd. Such alloy is subjected to the aging treatment at the prescribed temp. in a 400-600 deg.C range. The high-strength Ti alloy member is produced with simple process without subjecting to a soln. heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば航空機の構造部材として広く用いら
れている高強度Ti合金部材の製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing high-strength Ti alloy members that are widely used, for example, as structural members of aircraft.

[従来の技術〕 従来、一般に上記の高強度Ti合金部材が、重量%で(
以下%は重量%を示す)、 M=2〜5%、 v:5〜12%、 を含有し、残りがTiと不可避不純物からなる組成を有
するTi合金素材を、超塑性組織であるβ相富化のα+
β2相組織を呈する650〜850℃の範囲内の所定温
度で塑性加工して部材に成形し、一方この塑性加工後の
部材は、α相富化のα→−β2相組織となっており、こ
れに時効処理を兇iしてもα相の析出による強度向上は
期待できないので、この部材に850〜900℃の範囲
内の所定温度に加熱した後、急冷(水冷)の溶体化処理
を施してβ相富化のα+β2相組織とし、最終的にこれ
に400〜600℃の範囲内の所定温度に加熱保持の時
効処理を施してα相析出による強度向上をはかることに
よって製造されることは良く知られるところである。
[Prior Art] Conventionally, the above-mentioned high-strength Ti alloy members generally have a weight percentage of (
Hereinafter, % indicates weight %), M = 2 to 5%, v: 5 to 12%, and the rest is Ti and unavoidable impurities. α+ of enrichment
A member is formed by plastic working at a predetermined temperature within the range of 650 to 850°C exhibiting a β2 phase structure, and on the other hand, the member after this plastic working has an α→-β2 phase structure enriched in the α phase, Even if this material is subjected to aging treatment, no improvement in strength due to α phase precipitation can be expected, so after heating this member to a predetermined temperature within the range of 850 to 900°C, it is subjected to solution treatment by rapid cooling (water cooling). It is manufactured by creating an α + β two-phase structure with β phase enrichment, and finally subjecting this to aging treatment by heating and holding at a predetermined temperature within the range of 400 to 600°C to improve the strength due to α phase precipitation. It is a well-known place.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の従来高強度Ti合金部材の製造法におい
ては、高温加熱および急冷を伴う溶体化処理を必要とす
るために、部材に寸法変化が起り易く、かつ内部歪も残
留し易いなどの問題点がある。
However, the above-mentioned conventional manufacturing method for high-strength Ti alloy members requires solution treatment that involves high-temperature heating and rapid cooling, resulting in problems such as dimensional changes in the member and internal strain easily remaining. There is a point.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、溶体化
処理を必要としないで、高強度Ti合金部材を製造すべ
く研究を行なった結果、上記の組成を有する従来Ti合
金素材に合金成分としてMoを含有させると、溶体化処
理温度が塑性加工温度と同じとなるばかりでなく、相対
的に遅い冷却速度、すなわち寸法変化や残留歪のほとん
どない空冷あるいは強制ガス冷却で、溶体化処理組織と
同等のβ相富化のα+β2相組織が得られるようになり
、したがって塑性加工後に空冷または強制ガス冷却し、
引続いて溶体化処理を行なうことなく、時効処理を施せ
ば、高強度T1合金部材が得られるようになるという知
見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to produce high-strength Ti alloy members without the need for solution treatment, and as a result, they found that an alloy of When Mo is included as a component, not only the solution treatment temperature becomes the same as the plastic working temperature, but also the solution treatment can be performed at a relatively slow cooling rate, that is, with air cooling or forced gas cooling with almost no dimensional change or residual strain. It is now possible to obtain an α+β two-phase structure with the same β-phase enrichment as the microstructure, so air cooling or forced gas cooling is performed after plastic working.
It was discovered that a high-strength T1 alloy member can be obtained by performing aging treatment without subsequent solution treatment.

この発明は、上記知見にもとづいてなされたものであっ
て、 M=2〜5%、 v:5〜12%、 Mo : 0.5〜8%、 を含有し、残りがTtと不可避不純物からなる組成を有
するTi合金素材を、 650〜850℃の範囲内の所定温度で塑性加工した後
、直ちに空冷または強制ガス冷却し、ついで、400〜
600℃の範囲内の所定温度で時効処理することによっ
て高強度Ti合金部材を製造する方法に特徴を有するも
のである。
This invention was made based on the above knowledge, and contains M=2-5%, v: 5-12%, Mo: 0.5-8%, and the rest is Tt and inevitable impurities. A Ti alloy material having a composition of
This method is characterized by a method of manufacturing a high-strength Ti alloy member by aging treatment at a predetermined temperature within the range of 600°C.

つぎに、この発明のTi合金部材の製造法において、成
分組1戊、塑性加工温度、および時効処理温度を上記の
通りに限定した理由を説明する。
Next, in the method for manufacturing a Ti alloy member of the present invention, the reason why the component set, the plastic working temperature, and the aging treatment temperature are limited to the above values will be explained.

A、成分組成 (a)  M M成分には、部材の耐熱性および耐酸化性を向上させる
作用があるが、その含有量が2%未満では前記作用に所
望の効果が得られず、一方その含有量が5%を越えると
、塑性加工性の低下を招くばか;〕でなく、塑塑性加工
度も上昇するようになることから、その含有酸な2〜5
%と定めた。
A. Component composition (a) M The M component has the effect of improving the heat resistance and oxidation resistance of the member, but if its content is less than 2%, the desired effect cannot be obtained; If the content exceeds 5%, the plastic workability will not only decrease, but also the degree of plastic workability will increase.
%.

(b)  v ■成分には、β相の形成を促進し、時効処理時における
β相からのα相の析出を活発にして、部材の強度を向上
させる作用があるが、その含有量が5%未満では前記作
用に所望の効果が得られず、一方そのな有量が[2%を
越えると、β明相化を招き、時効処理時のα相の析出が
不十分となって所望の高強度を得ることができないこと
から、その含有量を5〜12%と定めた。
(b) v Component has the effect of promoting the formation of the β phase and activating the precipitation of the α phase from the β phase during aging treatment, thereby improving the strength of the member. If the amount is less than 2%, the desired effect cannot be obtained; on the other hand, if the amount exceeds 2%, the β phase becomes clear, and the precipitation of the α phase during aging treatment becomes insufficient, resulting in the desired effect. Since high strength cannot be obtained, its content is set at 5 to 12%.

(c)  M。(c) M.

Mo成分には、上記のように溶体化処理温度を塑性加工
温度にまで下げると共に、比較的遅い冷却速度で、溶体
化処理組織であるβ相富化のα+β2相組織を形成せし
める作用があるが、その含有量が0.2%未満では前記
作用に所望の効果が得られず、一方その含有量が8%を
越えると、β相が安定化し、時効処理時におけるα相の
析出が著しく抑制されるようになって所望の高強度を確
保するのが困雅になることから、その含有量を0.5〜
8%と定めた。
As mentioned above, the Mo component has the effect of lowering the solution treatment temperature to the plastic working temperature and forming a β phase-enriched α+β two-phase structure, which is the solution treatment structure, at a relatively slow cooling rate. If the content is less than 0.2%, the desired effect cannot be obtained in the above action, while if the content exceeds 8%, the β phase is stabilized and the precipitation of the α phase during aging treatment is significantly suppressed. Since it becomes difficult to secure the desired high strength, the content should be increased from 0.5 to
It was set at 8%.

B、塑性加工温度 その温度が650℃未満では゛、α相富化のα+β2相
組織とな【)、一方その温度が850℃を越えるとβ相
組織となり、いずれの組織の場合も塑性加工性が悪く、
特に超塑性加工を行なうことができなく□なることから
、その温度を650〜850℃と定めた。
B. Plastic working temperature If the temperature is lower than 650℃, the structure becomes an α+β two-phase structure enriched with α phase.On the other hand, if the temperature exceeds 850℃, the structure becomes a β-phase structure. is bad,
In particular, since superplastic working cannot be carried out, the temperature was set at 650 to 850°C.

C0時効処理温度 その温度が400℃未満ではβ相よりのα相の析出が不
十分で所望の高強度を得ることができず、一方その温度
が600℃を越えると、析出したα相が再結晶するよう
になって十分な強度向上がはかれないことから、その温
度を400〜600℃と定めた。
C0 aging treatment temperature If the temperature is lower than 400℃, the precipitation of the α phase from the β phase will be insufficient and the desired high strength cannot be obtained.On the other hand, if the temperature exceeds 600℃, the precipitated α phase will be re-precipitated. The temperature was determined to be 400 to 600°C since it crystallized and the strength could not be improved sufficiently.

〔実施例〕〔Example〕

つぎに、この発明のTi合金部材の製造法を実施例によ
り具体的に説明する。
Next, the method for manufacturing a Ti alloy member of the present invention will be specifically explained using examples.

Ti合金素材として、それぞれ第1喪に示される成分組
成、並びに12喘の板厚を有する板材を用意し、ついで
熱間バルジ加工用成形装置を用い、これら板材に、同じ
く第1表に示される塑性加工温度で、かつArガス田カ
ニ2.5気圧、歪速度:約2、5 X I Q−2se
c−1の条件で型張出し成形を旋し、この塑性加工後、
直ちに成形装置を開放して空冷し、引続いて、これらの
塑性加工部材を、真空熱処理炉にて、5 X l 0−
4torrの真空中、同じく第1表に示される条件で時
効処理を行ない、炉冷することにより本発明法1〜9を
それぞれ実施した。
As Ti alloy materials, plates having the composition shown in Table 1 and a plate thickness of 12 mm were prepared, and then using a hot bulging forming device, these plates were processed as shown in Table 1. Plastic working temperature, Ar gas field crab 2.5 atm, strain rate: approx. 2.5 x I Q-2se
Stretch molding is performed under the conditions of c-1, and after this plastic working,
Immediately, the molding device was opened and air-cooled, and subsequently, these plastic processed parts were heated in a vacuum heat treatment furnace at 5 X l 0-
Methods 1 to 9 of the present invention were carried out by aging in a vacuum of 4 torr under the same conditions shown in Table 1 and cooling in a furnace.

また、比較の目的で、同じく第1表に示される条件(な
お、溶体化処理は、5 X I O””’ torrの
真空中で行ない、処理後水冷した)で従来法1〜5を行
なった。この結果得られた各種部材の02%耐力、引張
強さ、および伸びを測定し、第1表に示した。
In addition, for the purpose of comparison, conventional methods 1 to 5 were performed under the same conditions shown in Table 1 (the solution treatment was performed in a vacuum of 5 X IO""' torr, and water cooling was performed after the treatment). Ta. The 02% yield strength, tensile strength, and elongation of the various members obtained as a result were measured and shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜9においては
、いずれも溶体化処理を行なわないにもかかわらず、溶
体化処理が不可欠の従来法1〜5で得られ、たTi合金
部材と同じ、あるいはこれ以上の甚強度、および高い伸
びを有するTi合金部材を製造することができることが
明らかである。
From the results shown in Table 1, it can be seen that in methods 1 to 9 of the present invention, Ti alloy members obtained by conventional methods 1 to 5, which require solution treatment, were obtained even though solution treatment was not performed. It is clear that it is possible to produce Ti alloy members having the same or greater strength and high elongation.

上述のように、この発明の方法によれば、溶体化処理を
行なうことなく、高強度Ti合金部材を製造することが
でき、しかも製造されたTi合金部材は高い寸法精度を
有し、かつ高温加熱と急冷を伴う溶体化処理を省略でき
るので、工程管理が簡素化され、コスト低減をはかるこ
とができるなど工業上有用な効果がもたらされるのであ
る。
As described above, according to the method of the present invention, a high-strength Ti alloy member can be manufactured without solution treatment, and the manufactured Ti alloy member has high dimensional accuracy and is resistant to high temperatures. Since solution treatment involving heating and rapid cooling can be omitted, process control is simplified, and industrially useful effects such as cost reduction can be achieved.

Claims (1)

【特許請求の範囲】 Al:2〜5%、 V:5〜12%、 Mo:0.5〜8%、 を含有し、残りがTiと不可避不純物からなる組成(以
上重量%)を有するTi合金素材を、 650〜850℃の範囲内の所定温度で塑性加工した後
、直ちに空冷または強制ガス冷却し、 ついで、400〜600℃の範囲内の所定温度で時効処
理することを特徴とする高強度Ti合金部材の製造法。
[Scope of Claims] Ti having a composition (wt %) containing Al: 2 to 5%, V: 5 to 12%, Mo: 0.5 to 8%, with the remainder being Ti and unavoidable impurities. After the alloy material is plastically worked at a predetermined temperature within the range of 650 to 850°C, it is immediately air cooled or forced gas cooled, and then aged at a predetermined temperature within the range of 400 to 600°C. A method for manufacturing a high strength Ti alloy member.
JP27110186A 1986-11-14 1986-11-14 Production of high-strength ti alloy member Pending JPS63125651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27110186A JPS63125651A (en) 1986-11-14 1986-11-14 Production of high-strength ti alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27110186A JPS63125651A (en) 1986-11-14 1986-11-14 Production of high-strength ti alloy member

Publications (1)

Publication Number Publication Date
JPS63125651A true JPS63125651A (en) 1988-05-28

Family

ID=17495361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27110186A Pending JPS63125651A (en) 1986-11-14 1986-11-14 Production of high-strength ti alloy member

Country Status (1)

Country Link
JP (1) JPS63125651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508886A (en) * 2014-02-13 2017-03-30 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation High strength alpha-beta titanium alloy
CN113604757A (en) * 2021-07-21 2021-11-05 中南大学 Ultrahigh-strength heterostructure titanium alloy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508886A (en) * 2014-02-13 2017-03-30 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation High strength alpha-beta titanium alloy
CN113604757A (en) * 2021-07-21 2021-11-05 中南大学 Ultrahigh-strength heterostructure titanium alloy and preparation method thereof
CN113604757B (en) * 2021-07-21 2022-01-25 中南大学 Ultrahigh-strength heterostructure titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US4618382A (en) Superplastic aluminium alloy sheets
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JPH0474856A (en) Production of beta ti alloy material having high strength and high ductility
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
JP2841630B2 (en) Manufacturing method of magnesium alloy forged wheel
JPH07252617A (en) Production of titanium alloy having high strength and high toughness
JPS63125651A (en) Production of high-strength ti alloy member
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS6224498B2 (en)
JPH08269656A (en) Production of titanium alloy
JPH03240939A (en) Manufacture of high ductility and high toughness titanium alloy
GB2248849A (en) Process for working a beta type titanium alloy
JPH0116910B2 (en)
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH03183750A (en) Production of superplastic aluminum alloy having high strength
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JPH02217452A (en) Method for toughening near beta-type titanium alloy
JPS6086249A (en) Preparation of super-plastic aluminum alloy
JPS62133052A (en) Heat treatment of titanium alloy
JPS60155657A (en) Production of ti-ni superelastic alloy