JPS63125647A - Production of beryllium copper alloy - Google Patents

Production of beryllium copper alloy

Info

Publication number
JPS63125647A
JPS63125647A JP61268743A JP26874386A JPS63125647A JP S63125647 A JPS63125647 A JP S63125647A JP 61268743 A JP61268743 A JP 61268743A JP 26874386 A JP26874386 A JP 26874386A JP S63125647 A JPS63125647 A JP S63125647A
Authority
JP
Japan
Prior art keywords
alloy
temperature
subjected
strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61268743A
Other languages
Japanese (ja)
Other versions
JPS647148B2 (en
Inventor
Yosuke Matsui
洋介 松井
Shuhei Ishikawa
修平 石川
Koji Iwatate
岩立 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61268743A priority Critical patent/JPS63125647A/en
Priority to EP87309945A priority patent/EP0271991B1/en
Priority to DE8787309945T priority patent/DE3773470D1/en
Priority to KR1019870012754A priority patent/KR910009877B1/en
Priority to US07/120,543 priority patent/US4792365A/en
Publication of JPS63125647A publication Critical patent/JPS63125647A/en
Publication of JPS647148B2 publication Critical patent/JPS647148B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To develop a Cu-Be alloy having excellent electrical conductivity, strength and workability by subjecting the Cu-Be alloy contg. Co, Ni, etc., to a heat treatment under specific conditions. CONSTITUTION:The ingot of the Cu alloy contg. 0.05-2.0wt% Be, and 0.1-10.0% at least one kind of Co and Ni is subjected to a soln. heat treatment at 800-1,000 deg.C to solutionize the precipitated particles which are coarse and unsolutionized into a matrix. The alloy is then subjected to cold working to permit easy generation of the deposition nuclei and thereafter, the alloy is subjected to annealing at the temp. lower than 750-950 deg.C solutionization temp., more preferably at the temp. at which the difference therebetween is 20-200 deg.C, then to an ordinary age hardening treatment. The Cu-Be alloy in which part of the solute is dispersed in the fine state of <=0.3mum grain size and which has the high electrical conductivity as well as the excellent strength and workability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高導電率と高強度を有し、コネクター、リレ
ー等に用いられるベリリウム銅合金に関し、さらに詳し
くは、未固溶析出粒が微細に分散して存在するために、
強度、加工性に優れるベリリウム銅合金の製法に関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a beryllium copper alloy that has high electrical conductivity and high strength and is used for connectors, relays, etc. Because it exists in finely dispersed form,
The present invention relates to a method for producing beryllium copper alloys that have excellent strength and workability.

(従来の技術) 従来、種々のベリリウム銅合金がその高導電率、高強度
の特性を生かして電子部品の展伸材等として広く使用さ
れている。これらのへリリウム銅合金を製造するにあた
っては、第3図にそのフローチャートを示すように、所
定のCu、 Be、その他の副成分からなる鋳塊を得た
後、例えば750〜950℃で溶体化処理を行なって冷
間加工を施した後、さらに時効硬化処理を実施して所望
のベリリウム銅合金を得ていた。
(Prior Art) Various beryllium-copper alloys have been widely used as wrought materials for electronic parts, etc., due to their high electrical conductivity and high strength properties. In manufacturing these helium copper alloys, as shown in the flowchart in Figure 3, after obtaining an ingot consisting of predetermined Cu, Be, and other subcomponents, it is solution-treated at, for example, 750 to 950°C. After the treatment and cold working, the desired beryllium copper alloy was obtained by further performing an age hardening treatment.

(発明が解決しようとする問題点) しかしながら、上述した従来の合金の製造法においては
、溶体化処理をBeと副添加成分との間で生じる未固溶
の金属間化合物により強度および加工性を改善するため
に実施しているが、この溶体化処理後のベリリウム銅合
金には例えば0.3μm以上の粗大な未固溶析出粒が多
く認められ、強度、加工性を十分に改善できない問題点
があった。
(Problems to be Solved by the Invention) However, in the conventional alloy manufacturing method described above, strength and workability are improved by solution treatment due to undissolved intermetallic compounds generated between Be and sub-additional components. However, after this solution treatment, many coarse undissolved precipitated grains of 0.3 μm or more are observed in the beryllium copper alloy, which is a problem in which the strength and workability cannot be sufficiently improved. was there.

また、このとき単に溶体化温度を上げることにより未固
溶析出物の一部を固溶させて強度を向上させることもで
きるが、同時に基地の粒径の粗大化を招き、加工性に大
きな問題が生じる欠点もあった。
At this time, it is also possible to improve the strength by simply increasing the solution temperature to dissolve some of the undissolved precipitates into solid solution, but at the same time, this leads to coarsening of the grain size of the matrix, which poses a serious problem in workability. There were also some drawbacks.

本発明の目的は上述した不具合を解消して、従来粗大で
あった未固溶析出粒の多くを0.3μm以下に微細化す
るとともに基地中に分散させることにより、均質性を向
上し、高い強度及び加工性を有する合金を得ることがで
きるベリリウム銅合金の製法を提供しようとするもので
ある。
The purpose of the present invention is to eliminate the above-mentioned problems, to improve homogeneity and to improve the homogeneity by refining most of the conventionally coarse undissolved precipitated grains to 0.3 μm or less and dispersing them in the matrix. It is an object of the present invention to provide a method for producing a beryllium-copper alloy that can yield an alloy having strength and workability.

さらに本発明の目的は、均一微細に分散した未固溶析出
粒により焼鈍時の粒成長を抑制して高い強度及び加工性
を達成可能なベリリウム銅合金の製法を提供しようとす
るものである。
A further object of the present invention is to provide a method for producing a beryllium-copper alloy that can achieve high strength and workability by suppressing grain growth during annealing using undissolved precipitated grains that are uniformly and finely dispersed.

(問題点を解決するための手段) 本発明のベリリウム銅合金の製法は、Be 0.05〜
2,0重量%、COおよびNiの少なくとも1種0.1
〜10.0重量%、残部実質的にCuよりなる合金を溶
解して鋳塊を得、この鋳塊に対して800〜1000°
Cの温度で溶体化処理を行い、冷間加工を加えた後時効
硬化処理前に、750〜950℃の範囲内の溶体化温度
よりも低い温度で焼鈍することを特徴とするものである
(Means for Solving the Problems) The method for producing the beryllium copper alloy of the present invention includes Be 0.05 to
2.0% by weight, at least one of CO and Ni 0.1
An alloy consisting of ~10.0% by weight and the remainder substantially Cu is melted to obtain an ingot, and the ingot is heated at 800 to 1000°.
It is characterized by performing solution treatment at a temperature of C, cold working, and then annealing at a temperature lower than the solution temperature within the range of 750 to 950° C. before age hardening treatment.

(作 用) 上述したBeとCOあるいはNiとの金属間化合物の析
出を主な強化機構とする本発明においては、まず800
〜1000℃の従来より高温で溶体化することにより、
大きな析出粒を基地中に固溶させ、冷間加工を加えて析
出核発生を容易にしている。その後、750〜950℃
の溶体化温度より低い温度、好ましくはその差が20〜
200°Cとなる温度で焼鈍することにより、溶質の一
部が析出した結果析出粒が例えば0.3μm以下の粒径
で40%以上が分散した状態の合金を得ている。
(Function) In the present invention whose main strengthening mechanism is the precipitation of the intermetallic compound of Be and CO or Ni described above, first, 800
By solutionizing at a higher temperature than conventional methods of ~1000℃,
Large precipitate grains are dissolved in the matrix, and cold working is added to facilitate the generation of precipitate nuclei. After that, 750-950℃
temperature lower than the solution temperature of , preferably the difference is 20 to
By annealing at a temperature of 200°C, a part of the solute precipitates, resulting in an alloy in which 40% or more of the precipitated grains have a grain size of 0.3 μm or less and are dispersed.

なお、本発明合金において、Beの添加量を0.05〜
2.0重量%と限定した理由は、0.05重量%未満で
は添加効果が得られず2.0重量%を超えると強度向上
の割にコストが高くなるためで、0.1〜0.7重量%
の添加がさらに好ましい。また、COおよびNiの少な
くとも1種0.1〜10.0重量%と限定した理由は、
0.1重量%未満では添加効果が得られず10.0重量
%を超えると加工性が悪くなり特性の向上も望めないた
めで、0.2〜4.0重量%の添加がさらに好ましい。
In addition, in the alloy of the present invention, the amount of Be added is 0.05~
The reason why it is limited to 2.0% by weight is that if it is less than 0.05% by weight, no effect can be obtained, and if it exceeds 2.0% by weight, the cost will be high despite the improvement in strength. 7% by weight
It is more preferable to add. In addition, the reason why at least one of CO and Ni is limited to 0.1 to 10.0% by weight is as follows.
If it is less than 0.1% by weight, no effect can be obtained, and if it exceeds 10.0% by weight, processability deteriorates and no improvement in properties can be expected. Therefore, addition of 0.2 to 4.0% by weight is more preferable.

さらに、溶体化処理温度を800〜1000℃と限定し
た理由は、800℃未満の溶体化温度では析出粒の固溶
が進まず、1000℃を超えると融点に近くあるいは融
点以上となり生産が困難となるためである。また、焼鈍
温度は溶体化温度及び要求される強度、結晶粒径により
異なるが、750℃未満では焼鈍時の析出量が多くなり
時効硬化後の強度が低下するとともに、950℃を超え
ると析出量が少なくなり基地の結晶粒の微細化効果が失
われるため、750〜950°Cと限定した。
Furthermore, the reason why the solution treatment temperature was limited to 800 to 1000°C is that if the solution temperature is less than 800°C, the solid solution of the precipitated grains will not proceed, and if it exceeds 1000°C, the temperature will be close to or above the melting point, making production difficult. This is to become. The annealing temperature varies depending on the solution temperature, required strength, and grain size, but if it is less than 750°C, the amount of precipitation during annealing will increase and the strength after age hardening will decrease, and if it exceeds 950°C, the amount of precipitation will increase. The temperature was limited to 750 to 950°C because the effect of refining the base crystal grains would be lost.

(実施例) 第1図は本発明のベリリウム銅合金の製法の一例を示す
フローチャートである。本実施例において、まずBe 
0.05〜2.0重量%、CoおよびNiの少なくとも
1種0.1〜10.0重量%、残部Cυより成る合金を
鋳造して鋳塊を得る。得られた鋳塊に必要に応じ熱間鍛
造、冷間圧延、焼鈍を繰り返し調質して素材を得た後、
この素材に800〜1000℃の間の所定の温度で溶体
化処理を施す。その後、冷間加工を行ない所定の形状に
した後、750〜950℃の間の溶体化温度よりも好ま
しくは20〜200°C低い温度で好ましくは1〜5分
間焼鈍を行なう。最後に通常の時効硬化処理を実施して
、本発明の緒特性を有するベリリウム銅合金材を得てい
る。
(Example) FIG. 1 is a flowchart showing an example of the method for producing a beryllium copper alloy of the present invention. In this example, first Be
An ingot is obtained by casting an alloy consisting of 0.05 to 2.0% by weight, 0.1 to 10.0% by weight of at least one of Co and Ni, and the balance Cυ. After refining the resulting ingot by repeatedly subjecting it to hot forging, cold rolling, and annealing as necessary, the material is obtained.
This material is subjected to solution treatment at a predetermined temperature between 800 and 1000°C. Thereafter, after performing cold working to form a predetermined shape, annealing is performed for preferably 1 to 5 minutes at a temperature that is preferably 20 to 200°C lower than the solution temperature of 750 to 950°C. Finally, a normal age hardening treatment is performed to obtain a beryllium copper alloy material having the characteristics of the present invention.

以下、実際の例について説明する。An actual example will be explained below.

大旌餌上 第1表に示す種々の組成を有する合金を鋳造後熱間鍛造
を加え、さらに冷間圧延、焼鈍を繰り返した後3等分し
た。その後、それぞれ5分間、1つは本発明の工程に準
じ第1表に示す温度で溶体化処理しくml−9)、1つ
は従来工程に準じ第1表に示す通常の溶体化温度で溶体
化処理しく隘10〜18)、もう1つは溶体化処理のみ
を本発明と同じ第1表に示す温度で実施した(NLX1
9〜27)。
Alloys having various compositions shown in Table 1 were cast, hot forged, cold rolled and annealed repeatedly, and then divided into three equal parts. Thereafter, one solution treatment was carried out for 5 minutes each at the temperature shown in Table 1 according to the process of the present invention (ml-9), and the other was subjected to solution treatment at the usual solution temperature shown in Table 1 according to the conventional process. In the other case, only solution treatment was carried out at the same temperature shown in Table 1 as in the present invention (NLX1).
9-27).

本発明合金(陽1〜9)については、さらに第1表に示
す温度で焼鈍した後、各試料に30%の冷間加工を施し
た。
The alloys of the present invention (positive numbers 1 to 9) were further annealed at the temperatures shown in Table 1, and then each sample was subjected to 30% cold working.

その後、各試料に対して安全曲げ係数として、圧延方向
に対し直角方向においてクランクを生ずることなく90
°曲げを行うことができる最小曲率半径Rを板厚tで割
った値R/lを求めた。
After that, the safe bending factor for each sample was set to 90 without cranking in the direction perpendicular to the rolling direction.
A value R/l was calculated by dividing the minimum radius of curvature R that allows bending by the plate thickness t.

さらに、本発明合金(階1〜9)と従来工程の通常溶体
化材(PJcLlO〜18)については、通常の時効硬
化処理後引張強さと疲労強さく応力60kg/mm2)
をそれぞれ測定した。
Furthermore, for the alloys of the present invention (grades 1 to 9) and conventional solution-treated materials (PJcLlO to 18), the tensile strength and fatigue strength after normal age hardening treatment were 60 kg/mm2).
were measured respectively.

また、本発明における焼鈍温度の影響を調べるため、従
来合金として焼鈍温度が本発明の範囲外の合金について
本発明と同様の第1表に示す温度の処理を行なって(N
a28.29) 、同様に各種緒特性を測定した。結果
を第1表に示す。なお、第1表において、基地の粒径と
0.3μm以下の析出粒のパーセントは、同一倍率の光
学顕微鏡写真から目視により求めた。
In addition, in order to investigate the influence of annealing temperature on the present invention, conventional alloys whose annealing temperatures were outside the range of the present invention were subjected to the same treatment as in the present invention at the temperatures shown in Table 1 (N
a28, 29), the characteristics of each material were measured in the same manner. The results are shown in Table 1. In Table 1, the grain size of the matrix and the percentage of precipitated grains of 0.3 μm or less were determined visually from optical micrographs at the same magnification.

第1表の結果から明らかなように、800〜1000℃
の温度で溶体化処理を行ない、冷間加工を加えた後時効
硬化処理前に750〜950℃の範囲内の溶体化温度よ
りも低い温度で焼鈍した本発明合金(隘1〜9)は、他
の従来合金に比べて基地の粒径が小さいとともに0.3
μm以下の析出粒の割合が40%以上となり、その結果
良好な引張強さ、成形性さらには疲労強さを得られるこ
とがわかった。
As is clear from the results in Table 1, 800-1000℃
The alloys of the present invention (divisions 1 to 9) were subjected to solution treatment at a temperature of , cold worked, and then annealed at a temperature lower than the solution temperature within the range of 750 to 950 °C before age hardening treatment. Compared to other conventional alloys, the grain size of the matrix is smaller and 0.3
It was found that the proportion of precipitated particles of μm or less was 40% or more, and as a result, good tensile strength, formability, and fatigue strength were obtained.

第2図(a) 、 (b)はそれぞれ従来方法および本
発明方法で製造したCu−0,4Be−2,ON+から
なるベリリウム銅合金の金属組織を示す光学顕微鏡写真
である。第2図(a) 、 (b)から明らかなように
、本発明の合金は基地の結晶粒が微細であるとともに金
属間化合物からなる析出粒も微細に分散している。
FIGS. 2(a) and 2(b) are optical micrographs showing the metal structures of beryllium copper alloys made of Cu-0, 4Be-2, ON+ produced by the conventional method and the method of the present invention, respectively. As is clear from FIGS. 2(a) and 2(b), in the alloy of the present invention, the base crystal grains are fine, and the precipitated grains made of intermetallic compounds are also finely dispersed.

(発明の効果) 以上詳細に説明したところから明らかなように、本発明
のへリリウム銅合金の製法によれば、所定組成の合金に
対し800〜1000℃の従来より高い温度で溶体化処
理し、大きな析出粒を基地中に固溶させ冷間加工を加え
て析出核発生を容易にし、その後750〜950℃の溶
体化温度より低い温度、好ましくはその差が20〜20
0℃となる温度で焼鈍することにより、溶質の一部が析
出した結果析出粒が例えば0.3μm以下の粒径で40
%以上が分散した状態の合金を得ることができる。
(Effects of the Invention) As is clear from the detailed explanation above, according to the method for producing a helium copper alloy of the present invention, an alloy of a predetermined composition can be solution-treated at a temperature of 800 to 1000°C, which is higher than the conventional temperature. , large precipitate grains are dissolved in the matrix and subjected to cold working to facilitate the generation of precipitate nuclei, and then heated at a temperature lower than the solution temperature of 750 to 950 °C, preferably with a difference of 20 to 20 °C.
By annealing at a temperature of 0°C, part of the solute precipitates, resulting in precipitated grains with a particle size of, for example, 0.3 μm or less.
It is possible to obtain an alloy in which % or more is dispersed.

その結果、本発明の製法により得られた合金は、引張強
さ、成形性および疲労強度が向上し、高い導電率と強度
を必要とするばね材、コネクタ等の電子部品として好適
なベリリウム銅合金を得ることができる。
As a result, the alloy obtained by the manufacturing method of the present invention has improved tensile strength, formability, and fatigue strength, and is a beryllium copper alloy suitable for electronic parts such as spring materials and connectors that require high conductivity and strength. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のベリリウム銅合金の製法の一例を示す
フローチャート、 第2図(a)、(b)はそれぞれ従来方法および本発明
方法で製造したベリリウム銅合金の金属組織を示す光学
顕微鏡写真、 第3図は従来のへリリウム銅合金の製法の一例を示すフ
ローチャートである。 第1図 第2図 (a) (b)
Figure 1 is a flowchart showing an example of the method for producing beryllium copper alloy of the present invention, and Figures 2 (a) and (b) are optical micrographs showing the metal structures of beryllium copper alloys produced by the conventional method and the method of the present invention, respectively. , FIG. 3 is a flowchart showing an example of a conventional method for producing a helium copper alloy. Figure 1 Figure 2 (a) (b)

Claims (1)

【特許請求の範囲】 1、Be0.05〜2.0重量%、CoおよびNiの少
なくとも1種0.1〜10.0重量%、残部実質的にC
uよりなる合金を溶解して鋳塊を得、この鋳塊に対して
800〜1000℃の温度で溶体化処理を行い、冷間加
工を加えた後時効硬化処理前に、750〜950℃の範
囲内の溶体化温度よりも低い温度で焼鈍することを特徴
とするベリリウム銅合金の製法。 2、前記溶体化温度と焼鈍温度との温度差が20〜20
0℃である特許請求の範囲第1項記載のベリリウム銅合
金の製法。
[Claims] 1. 0.05 to 2.0% by weight of Be, 0.1 to 10.0% by weight of at least one of Co and Ni, the balance being substantially C
An ingot is obtained by melting an alloy consisting of u, and this ingot is subjected to solution treatment at a temperature of 800 to 1000 °C, cold worked, and then treated at a temperature of 750 to 950 °C before age hardening treatment. A process for producing beryllium-copper alloys characterized by annealing at a temperature lower than the solution temperature within a range. 2. The temperature difference between the solution temperature and annealing temperature is 20 to 20
A method for producing a beryllium copper alloy according to claim 1, wherein the temperature is 0°C.
JP61268743A 1986-11-13 1986-11-13 Production of beryllium copper alloy Granted JPS63125647A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61268743A JPS63125647A (en) 1986-11-13 1986-11-13 Production of beryllium copper alloy
EP87309945A EP0271991B1 (en) 1986-11-13 1987-11-11 Production of copper-beryllium alloys
DE8787309945T DE3773470D1 (en) 1986-11-13 1987-11-11 PRODUCTION OF COPPER-BERYLLIUM ALLOYS.
KR1019870012754A KR910009877B1 (en) 1986-11-13 1987-11-12 Production of beryllium-copper alloys and alloys produced therby
US07/120,543 US4792365A (en) 1986-11-13 1987-11-13 Production of beryllium-copper alloys and alloys produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61268743A JPS63125647A (en) 1986-11-13 1986-11-13 Production of beryllium copper alloy

Publications (2)

Publication Number Publication Date
JPS63125647A true JPS63125647A (en) 1988-05-28
JPS647148B2 JPS647148B2 (en) 1989-02-07

Family

ID=17462723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61268743A Granted JPS63125647A (en) 1986-11-13 1986-11-13 Production of beryllium copper alloy

Country Status (1)

Country Link
JP (1) JPS63125647A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243748A (en) * 1989-03-15 1990-09-27 Ngk Insulators Ltd Method for hot forming beryllium-copper alloy and hot formed product
WO2020231674A1 (en) 2019-05-10 2020-11-19 Materion Corporation Copper-beryllium alloy with high strength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243748A (en) * 1989-03-15 1990-09-27 Ngk Insulators Ltd Method for hot forming beryllium-copper alloy and hot formed product
WO2020231674A1 (en) 2019-05-10 2020-11-19 Materion Corporation Copper-beryllium alloy with high strength

Also Published As

Publication number Publication date
JPS647148B2 (en) 1989-02-07

Similar Documents

Publication Publication Date Title
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
US5573608A (en) Superplastic aluminum alloy and process for producing same
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
EP0271991B1 (en) Production of copper-beryllium alloys
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
US4832758A (en) Producing combined high strength and high corrosion resistance in Al-Zn-MG-CU alloys
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP2022511276A (en) High-strength fastener material made of forged titanium alloy and its manufacturing method
CN110885937B (en) Cu-Ti-Ge-Ni-X copper alloy material and preparation method thereof
US4566915A (en) Process for producing an age-hardening copper titanium alloy strip
JPS61143566A (en) Manufacture of high strength and highly conductive copper base alloy
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JPS647149B2 (en)
JPS63125647A (en) Production of beryllium copper alloy
GB1569466A (en) Method of obtaining precipitation hardened copper base alloys
JPH03140444A (en) Manufacture of beryllium copper alloy member
JP2000038647A (en) Method for working copper alloy
JPH09176808A (en) Production of precipitation hardening copper alloy
JPS6058298B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with uniform formability
US2123330A (en) Palladium alloy
JPS62199743A (en) High strength copper alloy and its manufacture
JPH1112675A (en) Production of aluminum alloy for hot forging and hot forged product
JPH0788545B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term