JPS6312524B2 - - Google Patents

Info

Publication number
JPS6312524B2
JPS6312524B2 JP4451082A JP4451082A JPS6312524B2 JP S6312524 B2 JPS6312524 B2 JP S6312524B2 JP 4451082 A JP4451082 A JP 4451082A JP 4451082 A JP4451082 A JP 4451082A JP S6312524 B2 JPS6312524 B2 JP S6312524B2
Authority
JP
Japan
Prior art keywords
light
photodetector
pit
light beam
order diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4451082A
Other languages
Japanese (ja)
Other versions
JPS58162806A (en
Inventor
Takashi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4451082A priority Critical patent/JPS58162806A/en
Publication of JPS58162806A publication Critical patent/JPS58162806A/en
Publication of JPS6312524B2 publication Critical patent/JPS6312524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は光学式ビデオデイスク等の凹凸形状で
情報が記録されている情報記録担体の凹凸形状測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an apparatus for measuring the uneven shape of an information recording carrier, such as an optical video disk, on which information is recorded in an uneven shape.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体レーザ等の光ビームを用いて情報記録担
体(以下、光デイスクと称す。)から信号を読み
出す、いわゆる光学式のビデオデイスク装置やデ
ジタルオーデイオデイスク装置では、再生される
情報は、光デイスク上に凹凸の形状で記録されて
いる。この凹凸はピツトと呼ばれ、幅0.5μm、長
さ0.5〜3μm程度の大きさを有し、光デイスク上
に螺線状あるいは同心円状に形成されている。
In so-called optical video disk devices and digital audio disk devices that read signals from an information recording carrier (hereinafter referred to as an optical disk) using a light beam such as a semiconductor laser, the information to be reproduced is read out on the optical disk. It is recorded as an uneven shape. These irregularities are called pits, and have a width of about 0.5 μm and a length of about 0.5 to 3 μm, and are formed in a spiral or concentric shape on the optical disk.

このピツト信号を読み出すには、通常光ビーム
を対物レンズによつて微小スポツトに集光し、こ
れを光デイスクに照射し、ピツトをトレースす
る。このとき、デイスクによる光ビームの反射光
又は透過光は、ピツトにより回折される。従つて
この反射もしくは透過回折光を光検出器により検
知することで、ピツトの凹凸形状に応じた、すな
わち記録された情報に応じた再生信号を得ること
ができる。
To read out this pit signal, a normal light beam is focused on a minute spot by an objective lens, and the optical disk is irradiated with this to trace the pit. At this time, the reflected or transmitted light of the light beam by the disk is diffracted by the pits. Therefore, by detecting this reflected or transmitted diffracted light with a photodetector, it is possible to obtain a reproduced signal corresponding to the uneven shape of the pit, that is, according to the recorded information.

上述したように、情報の再生は、ピツトによる
回折現象を利用するため、ピツトの幅、長さおよ
び深さ等、その形状を最適なものにする必要があ
る。特に、再生信号の変調度はピツトの深さに依
存しており、深さがλ/4n(λ;照射ビーム光の
波長、n;光デイスクの屈折率)のとき変調度は
最大となる。したがつて、良好な再生を行わせる
ためには、ピツトの深さを前記のλ/4nの値に
設定することが望まれる。よつて、光デイスクを
製造する際には、ピツトの深さを測定し、前記の
値と一致しているか否かの確認が必要となる。
As mentioned above, since information reproduction utilizes the diffraction phenomenon caused by pits, it is necessary to optimize the shape of the pits, such as the width, length, and depth. In particular, the degree of modulation of the reproduced signal depends on the depth of the pit, and the degree of modulation is maximum when the depth is λ/4n (λ: wavelength of the irradiation beam, n: refractive index of the optical disk). Therefore, in order to perform good reproduction, it is desirable to set the depth of the pit to the value of λ/4n. Therefore, when manufacturing an optical disk, it is necessary to measure the depth of the pit and confirm whether it matches the above-mentioned value.

従来、凹凸形状の測定方法として、レーザビー
ムを光デイスクの原盤や原盤より複製された光デ
イスクに照射し、その反射もしくは透過回折光の
0次回折光と1次回折光の比をとる方法がある。
Conventionally, as a method for measuring the uneven shape, there is a method of irradiating a laser beam onto an optical disc master or an optical disc copied from the master disc, and taking the ratio of the 0th-order diffracted light and the 1st-order diffracted light of the reflected or transmitted diffracted light.

第1図は、この測定方法を説明するための原理
図であり、透過の場合を示している。照射される
光ビーム21の直径は、通常0.1mm〜1mm程度で
あり光ビーム21は光デイスク20上の多数のピ
ツト22により回折される。その結果、トラツク
列方向(x方向)には、IT1、―IT1で表わされる
1次回折光が、また信号列方向(y方向)には
Is1、―Is1で表わされる1次回折光が現われる。
なお、I0は0次回折光であり、屈折していない透
過回折光を表わす。
FIG. 1 is a principle diagram for explaining this measurement method, and shows the case of transmission. The diameter of the irradiated light beam 21 is usually about 0.1 mm to 1 mm, and the light beam 21 is diffracted by a large number of pits 22 on the optical disk 20. As a result, there are first-order diffracted lights represented by I T1 and -I T1 in the track row direction (x direction) and in the signal row direction (y direction).
First-order diffracted light expressed as Is 1 and -Is 1 appears.
Note that I 0 is the 0th order diffracted light, and represents transmitted diffracted light that is not refracted.

ここで、ピツトの波長をp、トラツク間隔を
g、ピツトの長さをβ、ピツトの幅をγとする
と、1次回折光IT1,Is1の回折角θ,φは gsinθ=m1λ psinφ=m2λ の間係を満たしている。ただし、m1,m2は回折
の次数であり、この場合、m1=m2=1である。
上式より信号列方向の1次回折光Is1の回折角φ
は、光ビームの波長λとピツトの波長pに依存し
ており、一般にピツト波長pは記録信号により変
化するため、かなり広がつて分布する。したがつ
て、ピツト形状の測定は、トラツク列方向の1次
回折光であるIT1の検知により、行われる。IT1
強度It1は、回折理論より It1=|A(ei―1)β/p・γ/g・sin(
πγ/q)/πγ/q|2 =2A2(1―cos)(β/P)2(γ/
q)2{sin(πγ/q)/πγ/q}2……(i) で表わされる。ここでA2は光ビーム21の強度
に一致する定数である。また、第1図bに示すよ
うに、ピツト22を境界として、光ビーム21の
入射側の屈折率をn1、透過側のそれをn2とし、ピ
ツトの深さをdとすると、(i)式中のの値は、 =2π|n1―n2|d/λ ……(ii) と表わされる。さらに0次回折光I0の強度Iは、 I=A2{1+2(1−cos)β/p・γ/q(β/
p・γ/q−1)}……(iii) と表わされる。
Here, if the wavelength of the pit is p, the track interval is g, the length of the pit is β, and the width of the pit is γ, the diffraction angles θ and φ of the first-order diffracted lights I T1 and Is 1 are gsinθ=m 1 λ psinφ = m 2 λ. However, m 1 and m 2 are the orders of diffraction, and in this case, m 1 =m 2 =1.
From the above formula, the diffraction angle φ of the first-order diffracted light Is 1 in the signal train direction is
depends on the wavelength λ of the light beam and the wavelength p of the pit, and since the pit wavelength p generally changes depending on the recording signal, it is distributed over a fairly wide range. Therefore, the pit shape is measured by detecting IT1 , which is the first-order diffracted light in the track row direction. The intensity It 1 of I T1 is calculated from diffraction theory as It 1 = |A(e i -1)β/p・γ/g・sin(
πγ/q)/πγ/q| 2 = 2A 2 (1-cos) (β/P) 2 (γ/
q) 2 {sin(πγ/q)/πγ/q} 2 ...(i) Here A 2 is a constant corresponding to the intensity of the light beam 21. Further, as shown in FIG. 1b, with the pit 22 as a boundary, the refractive index on the incident side of the light beam 21 is n 1 , that on the transmission side is n 2 , and the depth of the pit is d. ) in the formula is expressed as =2π|n 1 −n 2 |d/λ (ii). Furthermore, the intensity I of the 0th order diffracted light I 0 is I=A 2 {1+2(1-cos)β/p・γ/q(β/
p・γ/q−1)}...(iii)

従来、凹凸形状の測定は、トラツク列方向の1
次回折光であるIT1と0次回折光であるI0の強度を
検知し、それらの比を求め行われていた。1次回
折光IT1の強度It1と0次回折光I0の強度Iとの比
は、(i)および(iii)式より It1/I=2(1−cos)(β/p)2・(γ/q)2
{sin(πγ/q)/πγ/q}2/1+2(1−cos
)β/p・γ/q(β/p・γ/q−1)……(iv) と求められる。(iv)式より、It1/Iは変数として、ピ ツトの深さd((ii)式参照)、ピツトのデユーテイ比
(β/p)、トラツク間隔qとピツト幅γの比の3変 数を有している。したがつて、It1/Iの値から、凹 凸形状の値、例えばピツトの深さdを求めるには
他のふたつの変数β/pおよびγ/qの値を他の測定方 法により決定しなくてはならない。しかしなが
ら、q/p,γ/qの値をそれぞれ精度良く決定するこ とは難しく、この従来の方法ではピツト深さdの
値を厳密に求めることは不可能であつた。ピツト
の深さdの値を知る方法としては、干渉顕微鏡に
より直接測定することも考えられるが、分解能が
良くなく、この方法によつてもdの値を決定する
ことは不可能であつた。
Conventionally, the measurement of unevenness has been carried out at one point in the track row direction.
This was done by detecting the intensities of I T1 , which is the order diffracted light, and I0 , which is the zeroth order diffracted light, and finding their ratio. The ratio between the intensity It 1 of the 1st-order diffracted light I T1 and the intensity I of the 0th-order diffracted light I 0 is calculated from equations (i) and (iii) as follows: It 1 /I=2(1-cos)(β/p) 2・(γ/q) 2
{sin(πγ/q)/πγ/q} 2 /1+2(1-cos
)β/p・γ/q(β/p・γ/q−1)……(iv) From equation (iv), It 1 /I has three variables: pit depth d (see equation (ii)), pit duty ratio (β/p), and the ratio of track interval q to pit width γ. have. Therefore, in order to determine the value of the uneven shape, for example the depth d of a pit, from the value of It 1 /I, it is necessary to determine the values of the other two variables β/p and γ/q by other measurement methods. must not. However, it is difficult to accurately determine the values of q/p and γ/q, and it is impossible to accurately determine the value of pit depth d using this conventional method. One possible method of determining the value of the depth d of the pit is to directly measure it using an interference microscope, but the resolution is not good and it has been impossible to determine the value of d even with this method.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来の凹凸形状測定装置で
は果せなかつた、ピツト深さdの値を決定するこ
とのできる凹凸形状測定装置を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an uneven shape measuring device that can determine the value of the pit depth d, which was not possible with the above-mentioned conventional uneven shape measuring device.

〔発明の概要〕[Summary of the invention]

本発明は、波長の異なるふたつの光ビームを光
デイスクの原盤もしくは原盤より複製された光デ
イスク上の同一箇所に照射し、それぞれの光ビー
ムの1次回折光を受光検知し得られる1次回折光
の強度の比をとり、この値をもとにピツトの深さ
dを測定する凹凸形状測定装置を提供する。
The present invention irradiates two light beams with different wavelengths onto the same spot on an optical disk master or an optical disk copied from the master, and receives and detects the first-order diffracted light of each light beam. Provided is an unevenness shape measuring device that calculates the ratio of intensities and measures the depth d of a pit based on this value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光デイスクの再生特性を左右
するため是非とも知つておかねばならないピツト
の深さdの値を、トラツク間隔qとピツトの幅γ
の比およびピツトのデユーテイ比β/pの値を知る ことを要せず、一義的に決定することができる。
According to the present invention, the value of the pit depth d, which must be known because it affects the playback characteristics of an optical disc, can be determined by the track spacing q and the pit width γ.
It is not necessary to know the values of the ratio of .beta./p and the pit duty ratio .beta./p, and they can be uniquely determined.

〔本発明の実施例〕[Example of the present invention]

まず、本発明の凹凸形状測定装置の測定原理に
ついて説明する。
First, the measurement principle of the uneven shape measuring device of the present invention will be explained.

いま、波長の異なるふたつの光ビームをIL1
IL2とし、それぞれの波長をλ1,λ2(λ1≠λ2)とす
る。また、ビーム光IL1,IL2のそれぞれの光強度
をIl1,Il2とし、両ビームを光デイスクの同一箇
所に照射した場合の、トラツク列方向の1次回折
光の強度をそれぞれI1,I2とする。
Now, two light beams with different wavelengths are I L1 ,
I L2 and the respective wavelengths are λ 1 and λ 21 ≠ λ 2 ). Furthermore, the light intensities of the beams I L1 and I L2 are respectively Il 1 and Il 2 , and when both beams are irradiated onto the same spot on the optical disk, the intensities of the first-order diffracted light in the track row direction are I 1 and Il 2 , respectively. Let it be I 2 .

本発明では、光ビームIL1,IL2のそれぞれの1
次回折光を検知し、その光強度の比I1/I2を検出す るのであるが、このI1/I2の値は前記(i)式より、 I1/I2=A1 2(1−cos1)/A2 2(1−cos2)……
(v) となる。ここでA1 2,A2 2はそれぞれ照射される
ふたつの光ビームの強度Il1,Il2と等しく、 A1 2=Il1,A2 2=Il2 である。また、12は(ii)式より、 〓1=2π|n1−n2|d/λ1 2=2π|n1−n2|d/λ2 ……(vi) と表わされる。したがつてI1/I2は、 I1/I2=Il1/Il2・1―cos(2π|n1−n2|/λ1d)
/1―cos(2π|n1−n2|/λ2d)…(vii) となる。(vii)式を変形すると、 I1/I2×Il2/Il1=1−cos(2π|n1−n2|/λ1d)
/1−cos(2π|n1−n2|/λd)…(viii) が求まる。(viii)式の右辺は、変数として屈折率n1
n2、光ビームの波長λ1,λ2、さらにピツトの深さ
dを含んでいるが、屈折率n1,n2および波長λ1
λ2は正確な値を容易に知ることができ定数として
扱うことができる。したがつて、(viii)式で表わされ
るI1/I2×Il2/Il1はピツトの深さdのみの関数となる
In the present invention, each of the light beams I L1 and I L2 is
The next order diffraction light is detected and the ratio of the light intensity I 1 /I 2 is detected. From the above equation (i), the value of I 1 /I 2 is calculated as I 1 /I 2 = A 1 2 (1 −cos 1 )/A 2 2 (1−cos 2 )……
(v) becomes. Here, A 1 2 and A 2 2 are equal to the intensities Il 1 and Il 2 of the two irradiated light beams, respectively, and A 1 2 = Il 1 and A 2 2 = Il 2 . Further, 1 and 2 are expressed as 〓 1 =2π|n 1 −n 2 |d/λ 1 2 =2π|n 1 −n 2 |d/λ 2 (vi) from equation (ii). Therefore, I 1 /I 2 is I 1 /I 2 = Il 1 /Il 2・1−cos(2π|n 1 −n 2 |/λ 1 d)
/1−cos(2π|n 1 −n 2 |/λ 2 d)…(vii). Transforming equation (vii), I 1 /I 2 ×Il 2 /Il 1 =1−cos(2π|n 1 −n 2 |/λ 1 d)
/1−cos(2π|n 1 −n 2 |/λd)...(viii) is found. The right side of equation (viii) has the refractive index n 1 ,
n 2 , the wavelengths λ 1 , λ 2 of the light beam, and the depth d of the pit, but the refractive index n 1 , n 2 and the wavelength λ 1 ,
The exact value of λ 2 can be easily known and can be treated as a constant. Therefore, I 1 /I 2 ×Il 2 /Il 1 expressed by equation (viii) is a function only of the pit depth d.

よつて、ふたつの光ビームの1次回折強度の比
I1/I2を求め、さらに光ビームIL1,IL2自体の光強度 の比Il2/Il1を検出し、両者を掛け合せその値を知る ことにより、ピツトの深さdを一義的に測定する
ことが可能となる。
Therefore, the ratio of the first-order diffraction intensities of the two light beams is
By finding I 1 /I 2 , detecting the ratio of the light intensities of the light beams I L1 and I L2 themselves, Il 2 /Il 1 , and knowing the value by multiplying the two, the depth d of the pit can be uniquely determined. It becomes possible to measure.

第2図は、上述した新規な測定原理に基づく、
本発明の凹凸形状測定装置の一実施例を示すブロ
ツク図である。第1のレーザ光源11は波長λ1
光ビームIL1を発し、第2のレーザ光源12は波
長λ2の光ビームIL2を発する。両光ビームIL1,IL2
はそれぞれ同一の透過率を有するハーフミラー1
10,112を通過後、ダイクロイツクミラー1
3により重ね合され、光デイスク14上の同一箇
所に照射される。光デイスク14に照射された光
ビームIL1,IL2は回折され、透過回折光I′L1,I′L2
が発生する。光ビームIL1,IL2は波長が異なるた
め、回折角も異なり、透過回折光IL1,IL2は異方
向に直進する。それぞれの直進方向には光検出器
15,16が設けられており、光検出器15は回
折光IL1を、また光検出器16は回折光IL2を各々
受光する。光検出器15および16は受光する
IL1,IL2の光強度I1,I2に応じた電気信号を発す
る。それらは、それぞれ増幅器17,18を通過
することにより所定の値に増幅された後、共に除
算器19に導かれる。除算器19は供給される信
号間の除算を行い、透過回折光強度I1,I2の比I1/I2 を算出する。
FIG. 2 shows the method based on the new measurement principle described above.
FIG. 1 is a block diagram showing an embodiment of the unevenness shape measuring device of the present invention. The first laser light source 11 emits a light beam I L1 with a wavelength λ 1 and the second laser light source 12 emits a light beam I L2 with a wavelength λ 2 . Both light beams I L1 , I L2
are half mirrors 1 each having the same transmittance.
After passing 10 and 112, dichroic mirror 1
3, and the same location on the optical disk 14 is irradiated. The light beams I L1 and I L2 irradiated onto the optical disk 14 are diffracted and transmitted diffracted lights I' L1 and I' L2
occurs. Since the light beams I L1 and I L2 have different wavelengths, their diffraction angles also differ, and the transmitted diffracted lights I L1 and I L2 travel straight in different directions. Photodetectors 15 and 16 are provided in each straight direction, and the photodetector 15 receives the diffracted light I L ' 1 , and the photodetector 16 receives the diffracted light I L' 2, respectively. Photodetectors 15 and 16 receive light
Electric signals corresponding to the light intensities I 1 and I 2 of I L1 and I L ′ 2 are emitted. They are amplified to predetermined values by passing through amplifiers 17 and 18, respectively, and then guided together to a divider 19. The divider 19 performs division between the supplied signals and calculates the ratio I 1 /I 2 of the transmitted diffraction light intensities I 1 and I 2 .

さて、光ビームIL1,IL2はそれぞれハーフミラ
ー110,112を通過する際に、一部が反射さ
れる。光ビームIL1の反射光は光検知器111に
より、また光ビームIL2の反射光は光検出器11
3により各々受光される。光検知器111は、光
ビームIL1の強度Il1に応じた電気信号を発生し、
光検知器113は光ビームIL2の強度Il2に応じた
電気信号を発生し、これらはそれぞれ増幅器11
4,115を経た後、除算器116に導かれる。
除算器116は、先に説明した除算器19と同様
の働きをし、供給される信号間の除算を行い、光
強度Il1,Il2の比Il2/Il1を算出する。除算器19の出 力であるI1/I2の値と除算器116の出力であるIl2/I
l1 の値は双方とも乗算器117に導かれる。乗算器
117は供給されるI1/I2,Il2/Il1間の掛け算を行い
、 I1/I2×Il2/Il1を算出し端子118に出力する。こう
し て端子118からは(viii)式で表わされるI1/I2×Il2
/Il1の 値が得られ、この値よりピツトの深さdの値を知
ることができる。
Now, when the light beams I L1 and I L2 pass through the half mirrors 110 and 112, respectively, a portion is reflected. The reflected light of the light beam I L1 is transmitted to the photodetector 111, and the reflected light of the light beam I L2 is transmitted to the photodetector 11.
3, the light is received by each of them. The photodetector 111 generates an electrical signal according to the intensity Il 1 of the light beam I L1 ,
The photodetector 113 generates electrical signals depending on the intensity Il 2 of the light beam I L2 , and these are respectively connected to the amplifier 11.
After passing through 4,115, it is directed to a divider 116.
The divider 116 functions similarly to the divider 19 described above, performs division between the supplied signals, and calculates the ratio Il 2 /Il 1 of the light intensities Il 1 and Il 2 . The value of I 1 /I 2 which is the output of the divider 19 and the value of Il 2 /I which is the output of the divider 116
Both l 1 values are directed to multiplier 117. The multiplier 117 multiplies the supplied I 1 /I 2 and Il 2 /Il 1 to calculate I 1 /I 2 ×Il 2 /Il 1 and outputs it to the terminal 118. In this way, from the terminal 118, I 1 /I 2 ×Il 2 expressed by equation (viii)
/Il 1 is obtained, and from this value the value of the depth d of the pit can be known.

〔発明の他の実施例〕[Other embodiments of the invention]

上記の実施例では、光検知器15,16で受光
される回折光として透過回折光を例としたが、反
射回折光を検知することによつても同様の測定が
行える。このときには、(ii)式に示したの値を =4πn1d/λ として取り扱えばよい。
In the above embodiment, transmitted diffracted light was used as an example of the diffracted light received by the photodetectors 15 and 16, but similar measurements can be made by detecting reflected diffracted light. In this case, the value shown in equation (ii) can be treated as =4πn 1 d/λ.

また、異なる波長のビームを得るためにレーザ
光源をふたつ用意する場合を説明してきたが、レ
ーザ光源としては、Arレーザ装置のように単一
のレーザ装置で波長の異なる光を発するものを用
いてもよい。この場合には、単一のレーザ光源か
ら発せられる光ビーム自体を受光する光検知器は
ひとつ用意すればよく、その前段にあるハーフミ
ラーもひとつだけ設ければよい。ただし、光強度
Il1,Il2の比を求めなくてはならないのは同様で
あるため、単一の光検知器で検知される光強度
Il1,Il2の一方の値を保持する手段、例えば記憶
回路もしくは遅延回路等を除算器116の前段に
設け、光強度Il1,Il2を並列して除算器116に
導くことが必要とされる。
Also, we have explained the case where two laser light sources are prepared to obtain beams of different wavelengths, but as a laser light source, it is better to use a single laser device that emits light of different wavelengths, such as an Ar laser device. Good too. In this case, it is sufficient to provide one photodetector that receives the light beam itself emitted from a single laser light source, and it is sufficient to provide only one half mirror in front of the photodetector. However, the light intensity
Similarly, the ratio of Il 1 and Il 2 must be calculated, so the light intensity detected by a single photodetector
It is necessary to provide a means for holding one of the values of Il 1 and Il 2 , such as a storage circuit or a delay circuit, in a stage before the divider 116, and to guide the light intensities Il 1 and Il 2 in parallel to the divider 116. be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、凹凸形状の測定方法の原理を説明す
るための原理図であり、第2図は本発明の凹凸形
状測定装置の一実施例を示すブロツク図である。 11,12……レーザ光源、14……光デイス
ク、15,16,111,113……光検出器、
19,116……除算器、117……乗算器、
IL1,IL2……光ビーム、IL1,IL2……1次回折光。
FIG. 1 is a principle diagram for explaining the principle of the unevenness measuring method, and FIG. 2 is a block diagram showing an embodiment of the unevenness measuring apparatus of the present invention. 11, 12... Laser light source, 14... Optical disk, 15, 16, 111, 113... Photo detector,
19,116...divider, 117...multiplier,
I L1 , I L2 ... light beam, I L1 , I L2 ... first-order diffracted light.

Claims (1)

【特許請求の範囲】 1 凹凸形状で情報が記録されている情報記録担
体の前記凹凸形状の大きさを測定する凹凸形状測
定装置において、 前記情報記録担体に第1の光線を照射して得ら
れる1次回折光を検知する第1の光検出器と、前
記第1の光線とは異なる波長を有する第2の光線
を前記情報記録担体に照射して得られる1次回折
光を検知する第2の光検出器と、前記第1、第2
の光検出器より得られる前記1次回折光の強度に
比例した電気信号の比をとる第1の除算器と、前
記第1の光線を受光する第3の光検出器と、前記
第2の光線を受光する第4の光検出器と、前記第
3、第4の光検出器より得られる前記第1、第2
の光線の強度に比例した電気信号の比をとる第2
の除算器と、前記第1および第2の除算器の出力
同士の乗算を行う乗算器とを備え、前記乗算器の
乗算結果より前記凹凸形状の深さを検知すること
を特徴とする凹凸形状測定装置。
[Scope of Claims] 1. In an uneven shape measuring device for measuring the size of the uneven shape of an information recording carrier on which information is recorded in an uneven shape, the information recording carrier is obtained by irradiating the information recording carrier with a first light beam. a first photodetector for detecting first-order diffracted light; and a second light detector for detecting first-order diffracted light obtained by irradiating the information recording carrier with a second light beam having a different wavelength from the first light beam. a detector, the first and second
a first divider that takes a ratio of electrical signals proportional to the intensity of the first-order diffracted light obtained from the photodetector; a third photodetector that receives the first light beam; and a third photodetector that receives the first light beam; a fourth photodetector that receives light; and the first and second photodetectors obtained from the third and fourth photodetectors.
The second takes the ratio of the electrical signal proportional to the intensity of the ray of light.
and a multiplier that multiplies the outputs of the first and second dividers, and the depth of the uneven shape is detected from the multiplication result of the multiplier. measuring device.
JP4451082A 1982-03-23 1982-03-23 Device for measuring rugged shape Granted JPS58162806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4451082A JPS58162806A (en) 1982-03-23 1982-03-23 Device for measuring rugged shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4451082A JPS58162806A (en) 1982-03-23 1982-03-23 Device for measuring rugged shape

Publications (2)

Publication Number Publication Date
JPS58162806A JPS58162806A (en) 1983-09-27
JPS6312524B2 true JPS6312524B2 (en) 1988-03-19

Family

ID=12693544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4451082A Granted JPS58162806A (en) 1982-03-23 1982-03-23 Device for measuring rugged shape

Country Status (1)

Country Link
JP (1) JPS58162806A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237308A (en) * 1984-05-11 1985-11-26 Toshiba Corp Depth measuring apparatus
WO2008156053A1 (en) * 2007-06-20 2008-12-24 Nikon Corporation Apparatus and method for measuring pattern pitch and apparatus and method for inspecting surface

Also Published As

Publication number Publication date
JPS58162806A (en) 1983-09-27

Similar Documents

Publication Publication Date Title
JPH0353700B2 (en)
JPS58147823A (en) Detector of track shift
JP2839502B2 (en) Optical information reproducing device
JPS6312524B2 (en)
JPH0320911Y2 (en)
JP3103220B2 (en) Optical signal reproduction device
JPS6239493B2 (en)
JP2588161B2 (en) Optical information detector
JPS58147824A (en) Inspecting device of disk
JPH07101517B2 (en) Photo detector
JPS61198436A (en) Detector of position of objective lens
JP2837329B2 (en) Photodetector for optical disk
JPH0650568B2 (en) Optical recording / reproducing device
JP2653105B2 (en) How to measure a wobbling truck
KR100556692B1 (en) Reproductive Apparatus For Optical Disc
JPS58158048A (en) Detector of subspot
JPH07105052B2 (en) How to track an optical pickup
JPS6116042A (en) Optical information recorder
KR0144193B1 (en) Optical recording medium and reproducing apparatus using grating lens
KR20010034464A (en) Magnetic memory drive and optical device
JPH054731B2 (en)
JP2634221B2 (en) Optical recording / reproducing device
JPS6124029A (en) Optical information recording and reproducing device
JPS60219644A (en) Measuring device of center deflection of optical disc
JPS62173637A (en) Optical disk device