JP2839502B2 - Optical information reproducing device - Google Patents
Optical information reproducing deviceInfo
- Publication number
- JP2839502B2 JP2839502B2 JP63144885A JP14488588A JP2839502B2 JP 2839502 B2 JP2839502 B2 JP 2839502B2 JP 63144885 A JP63144885 A JP 63144885A JP 14488588 A JP14488588 A JP 14488588A JP 2839502 B2 JP2839502 B2 JP 2839502B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- light
- information
- track
- photodetector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明はレーザ光で情報を記録再生する光ビデオデ
ィスクなどの光ディスク装置に用いる光情報再生装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to an optical information reproducing apparatus used for an optical disk apparatus such as an optical video disk which records and reproduces information with a laser beam.
(従来の技術) 光ビームを用いて情報円盤から信号を読み出すビデオ
ディスク装置では、情報信号を情報円盤上に幅0.4μ
m、長さ0.5〜1.8μmの凹凸でトラックピッチが1.6μ
mになる様に螺旋状または同心円状に記録している。こ
の情報を読み取るには、レーザビームを対物レンズで約
1μm径の微小スポットに集光し、その反射光を再び対
物レンズを通して受光素子に導き、電気信号として取り
出している。(Prior Art) In a video disk device for reading a signal from an information disk using a light beam, an information signal is placed on the information disk with a width of 0.4 μm.
m, track pitch 1.6μ with irregularities of 0.5-1.8μm length
m is recorded spirally or concentrically. In order to read this information, a laser beam is focused on a minute spot having a diameter of about 1 μm by an objective lens, and the reflected light is guided again to a light receiving element through the objective lens, and is extracted as an electric signal.
最近、この光ビデオディスク装置では、半導体レーザ
の短波長化に伴ってさらに多量の情報を記録することが
試みられている。この際には、情報列方向の凹凸長さを
短かくする他に、トラックピッチを狭くすることで高密
度化が図られる。トラックピッチを狭くする際に問題と
なるのは、情報を読み出す光ビームスポットが有限の大
きさを持ち、例えばエアリパターンとして光強度が分布
しているため、トラックピッチを狭めた場合、隣りのト
ラックにも光ビームが当たり、このトラックの信号も同
時に検出してしまう。これをクロストークと言うが、こ
のクロストークを減少させる方法として、特開昭62−60
731号公報にみられる方法が知られている。これは第3
図に示す様に、隣接した3つのトラック31,32,33に同時
に3つの光ビーム34,35,36を照射し、真中の情報トラッ
ク32の両隣りの情報トラック31,33からの信号に各々ク
ロストーク量を掛けたものを真中の情報トラック32から
の信号より差し引く演算を行うことにより、クロストー
クを減少させる方法である。Recently, in this optical video disk device, an attempt has been made to record much more information as the wavelength of the semiconductor laser is shortened. In this case, in addition to shortening the uneven length in the information column direction, the track pitch is narrowed to achieve high density. The problem when narrowing the track pitch is that the light beam spot from which information is read has a finite size, and the light intensity is distributed, for example, as an airy pattern. , And the signal of this track is detected at the same time. This is called crosstalk. As a method of reducing this crosstalk, Japanese Patent Laid-Open No.
The method disclosed in Japanese Patent Publication No. 731 is known. This is the third
As shown in the figure, three light beams 34, 35, and 36 are simultaneously irradiated on three adjacent tracks 31, 32, and 33, and signals from information tracks 31, 33 on both sides of the middle information track 32 are respectively added to the signals. This is a method of reducing crosstalk by performing an operation of subtracting the product of the crosstalk amount from the signal from the middle information track 32.
しかしこの方法では、第3図から明らかな様に隣接ト
ラック31,32,33に照射する光ビーム34,35,36は情報トラ
ック方向に直角に並ぶ様に照射されており、しかもトラ
ックの中心に照射されている。光ビデオディスクでは、
トラックピッチは1〜1.6μm程度になるため、ビーム
間隔もこの程度の値になるので、トラックピッチが狭く
なるとこれらの光ビームは重なる様になり、この光ビー
ムを分離して検出することは困難になってくる。また、
3つのビームを別々の光検出器で受光するには、受光素
子の作り易さ調整のし易さなどのため、数100μmは離
れるのが一般的であるが、この様にするには光ビームの
検出光学系の倍率を数100倍としなければならない。こ
の様な光学系は光路長がかなり長くなり、ピックアップ
全体として大きく、しかも重くなり、実用的でなくな
る。However, in this method, as is apparent from FIG. 3, the light beams 34, 35, and 36 irradiating the adjacent tracks 31, 32, and 33 are radiated so as to be arranged at right angles to the information track direction. Irradiated. With optical video discs,
Since the track pitch is about 1 to 1.6 μm, the beam interval is also about this value. Therefore, when the track pitch is narrow, these light beams overlap, and it is difficult to separate and detect this light beam. It becomes. Also,
In order to receive the three beams with separate photodetectors, it is common to leave a distance of several hundred μm because of the ease of making the light receiving element and the ease of adjustment, etc. The magnification of the detection optical system must be several hundred times. Such an optical system has a considerably long optical path length, is large and heavy as a whole pickup, and is not practical.
また、両側の光ビーム34,36は両隣りのトラック31,32
の中心に照射する様にしているため、トラックピッチが
狭くなった場合、この光ビーム34,36はさらにその隣り
のトラック37,38の情報をも検出することになり、これ
らと中央ビーム35からの信号との差をとっても中央ビー
ムからみると、1つ置いた隣りのトラック37,38の信号
をクロストークとして拾うことになり、クロストーク減
少の効果がない。Also, the light beams 34, 36 on both sides are adjacent to the tracks 31, 32 on both sides.
When the track pitch becomes narrower, the light beams 34 and 36 also detect the information of the adjacent tracks 37 and 38. When the difference from the signal is taken from the center beam, the signal of the next adjacent track 37, 38 is picked up as crosstalk, and there is no crosstalk reduction effect.
一方、従来凹凸信号の検出は第10図に示すような方法
が用いられていた。つまり(a)において光源71からの
レーザ光をコリメーションレンズ472、ビームスプリッ
タ473を通して対物レンズ474で集光させ情報円盤475に
照射させる。この反射光を集光レンズ476で光検出器477
に集め、増幅器478を通して検出している。この検出で
は、対物レンズで集光されたビームスポットが信号凹凸
で回折されることにより、反射光量の変調を受けたこと
になるので、ビームスポットと凹凸の関数の積をフーリ
エ変換した成分が受光される。従って、対物レンズの開
口数NAと光の波長λで一義的に決まる変調度(MTF)し
か信号として得られない。上述したように半導体レーザ
の短波長化に伴い、凹凸波長やトラックピッチを短かく
して記録再生する高密度化が進んでいるが、上に述べた
従来の方法では対物レンズのNAや光の波長λが決まって
いれば、それによるMTFの限界があるため、より高密度
な記録再生ではNAを大きくするかλを小さくするかしな
ければC/Nの劣化が起ってしまう。On the other hand, conventionally, a method as shown in FIG. 10 has been used for detecting the uneven signal. That is, in (a), the laser beam from the light source 71 is condensed by the objective lens 474 through the collimation lens 472 and the beam splitter 473, and is irradiated on the information disk 475. This reflected light is collected by a condenser lens 476 to a photodetector 477.
And is detected through an amplifier 478. In this detection, the beam spot condensed by the objective lens is diffracted by the signal irregularities, which means that the amount of reflected light has been modulated. Therefore, a component obtained by Fourier transforming the product of the function of the beam spot and the irregularities is received. Is done. Therefore, only a modulation factor (MTF) uniquely determined by the numerical aperture NA of the objective lens and the light wavelength λ can be obtained as a signal. As described above, with the shortening of the wavelength of the semiconductor laser, the density of recording and reproduction is shortened by shortening the uneven wavelength and the track pitch. Is determined, there is a limit on the MTF, and therefore, in higher-density recording / reproduction, C / N degradation occurs unless NA is increased or λ is decreased.
また、(b)に示す様に凹凸信号列方向に2分割した
光検出器479,480で受光し、その差動出力を信号とする
方法も知られている。これは凹凸のエッジ部で回折され
た信号が強調されて得られるため高い周波数の検出は可
能であるが、低い周波数の凹凸(凹凸の長さや間隔が長
い信号)に関しては検出MTFが低下してしまう。従って
低周波成分も含む信号再生には具合が悪いという問題が
あった。There is also known a method in which light is received by photodetectors 479 and 480 divided into two in the direction of an uneven signal row as shown in FIG. This is obtained by emphasizing the signal diffracted at the edge of the irregularities, so high frequency detection is possible, but for low frequency irregularities (signals with long irregularities and long intervals), the detection MTF decreases. I will. Therefore, there is a problem that the reproduction of a signal including a low frequency component is inconvenient.
(発明が解決しようとする課題) 上述した様に、クロストークをなくすために、3つの
情報トラックの垂直方向に相並んだ3つの光ビームスポ
ットをそれぞれのトラック中心に照射するクロストーク
減少方法では、トラックピッチを狭くした場合3つのビ
ームを分離して検出することが困難になり、光学系も大
きくなりすぎ、しかも、1つ置いたさらに隣りのトラッ
クの信号分のクロストークが出てきてしまう。(Problems to be Solved by the Invention) As described above, in order to eliminate crosstalk, in the crosstalk reduction method of irradiating three light beam spots arranged vertically in three information tracks to the center of each track, If the track pitch is reduced, it becomes difficult to separate and detect the three beams, the optical system becomes too large, and crosstalk corresponding to the signal of the next adjacent track appears. .
又さらに、従来の検出方法では対物レンズのNAと光の
波長で決められるMTFで信号変調度が決められてしま
い、凹凸の大きさが小さくなった場合、検出信号のレベ
ルが低下して、C/Nが劣化してしまうので、より高密度
な情報の記録再生が不可能である。Furthermore, in the conventional detection method, the signal modulation degree is determined by the MTF determined by the NA of the objective lens and the wavelength of light, and when the size of the unevenness is reduced, the level of the detection signal is reduced and C Since / N deteriorates, it is impossible to record and reproduce information at higher density.
そこでこの発明は、第1に光ピックアップを大きくす
ることなく、しかもトラッキング動作も容易に行えて、
両隣りのクロストークを減少させ、さらにその外側のト
ラックのクロストークも影響のない様な、高密度光情報
再生装置を提供することを目的とし、又本発明は第2に
同じ対物レンズと光の波長を用いてもより大きな変調度
が得られ、しかもノイズ成分は同じ割合では増大させ
ず、従って再生信号のC/Nを向上させることができ、よ
り高密度の記録再生も可能にすることのできる高解像光
情報記録再生装置を提供することを目的とする。Therefore, according to the present invention, first, the tracking operation can be easily performed without increasing the size of the optical pickup.
It is another object of the present invention to provide a high-density optical information reproducing apparatus in which crosstalk on both sides is reduced and crosstalk of a track outside the crosstalk is not affected. The use of different wavelengths can provide a greater degree of modulation, and the noise component does not increase at the same rate, thus improving the C / N of the reproduced signal and enabling higher density recording and reproduction It is an object of the present invention to provide a high-resolution optical information recording / reproducing apparatus that can perform the above-described operations.
(課題を解決するための手段) この発明は、光ビームを発する光源を備え、この光源
から発せされた光ビームを情報媒体に導き微小スポット
に集光する光学手段と、前記情報媒体からの反射光また
は透過光を受光して電気信号に変換する、情報列方向に
関して2領域に分割された光検出器と、この光検出器に
よる2つの光検出器出力の和をとる第1の加算手段と、
前記2つの光検出器出力の差をとる引算手段と、前記加
算手段及び前記引算手段の出力の位相を合わせる位相調
整手段と、前記加算手段及び前記引算手段の出力の和を
とる第2の加算手段とを備えたことを特徴とする光情報
再生装置に関するものである。(Means for Solving the Problems) The present invention comprises a light source for emitting a light beam, an optical means for guiding the light beam emitted from the light source to an information medium and condensing it on a minute spot, and a reflection from the information medium. A photodetector for receiving light or transmitted light and converting it into an electric signal, divided into two regions in the information column direction, and a first adding means for summing outputs of the two photodetectors by the photodetector; ,
Subtraction means for taking the difference between the outputs of the two photodetectors; phase adjustment means for adjusting the phases of the outputs of the addition means and the subtraction means; and a summation of the outputs of the addition means and the subtraction means. The present invention relates to an optical information reproducing apparatus provided with two adding means.
(作用) 本発明では情報円盤からの反射光を2分割された光検
出器で受光し、その和から得られる対物レンズのNAと光
の波長λとで決まる低周波から高周波へ漸減するMTFを
もつ信号成分と、2分割光検出器の差をとることにより
NAとλとで決まる遮断周波数に至るまでの間にピークを
もつMTFをもつ信号成分を位相を合わせてから加えるこ
とにより、単一光検出器でのMTFより大きな変調度が得
られ、従って信号振幅を大きくすることができる。ま
た、差出力ではノイズ分が逓減させることができ、信号
振幅に対しノイズを小さくすることができるのでC/Nを
向上させることができる。従って、同じNAの対物レンズ
と光の波長を用いてもC/Nを向上させることができ、ま
た、より高密度な記録再生を実現できる。(Operation) In the present invention, an MTF that receives reflected light from an information disk with a photodetector divided into two, and gradually reduces from a low frequency to a high frequency determined by the NA of the objective lens and the wavelength λ of the light, which is obtained from the sum thereof, By taking the difference between the signal component
By adding a signal component having an MTF that has a peak before reaching a cutoff frequency determined by NA and λ after adjusting the phase, a modulation factor larger than that of the MTF with a single photodetector is obtained. The amplitude can be increased. Further, in the difference output, the noise component can be reduced and the noise can be reduced with respect to the signal amplitude, so that the C / N can be improved. Therefore, the C / N ratio can be improved even when the objective lens having the same NA and the light wavelength are used, and higher-density recording and reproduction can be realized.
(実施例) 以下に本発明の第1の発明に係る一実施例について図
面を参照しながら説明する。(Example) Hereinafter, an example according to the first invention of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例の構成を示す図である。半
導体レーザ11から放射されたレーザビーム12はコリメー
ションレンズ13で平行光に変換され、回折格子14を通り
3本のビームに分割される。偏光ビームスプリッタ14、
4分の1波長板16を通過したビームは対物レンズ17で3
つのビームスポットに集光され、情報円盤18に照射され
る。情報円盤18で反射された光はもとの光路を戻り、偏
光ビームスプリッタ15で反射され集束レンズ系19を通っ
て3つの光検出器110,111,112で受光される。それぞれ
の光検出器出力は前置増幅器113,114,115で増幅され、
第1のビーム出力113は2τの遅延時間(τは情報円盤
の回転線速度vと3ビーム間隔lとからτ=l/vで決め
られる)をもつ遅延回路116を通り、利得調整回路117に
至る。第2のビーム出力114はτの遅延時間をもつ遅延
回路118を通る。第3のビーム出力115はそのまま利得調
整回路119を通る。第1のビーム出力と第3のビーム出
力は、その後加算回路120で足し合される。この出力は
第2のビーム出力から引算回路121で引かれる。この出
力が情報信号となる。FIG. 1 is a diagram showing the configuration of one embodiment of the present invention. A laser beam 12 emitted from a semiconductor laser 11 is converted into a parallel beam by a collimation lens 13 and split into three beams through a diffraction grating 14. Polarizing beam splitter 14,
The beam that has passed through the quarter-wave plate 16 is
The light is condensed on two beam spots and irradiated on the information disk 18. The light reflected by the information disk 18 returns to the original optical path, is reflected by the polarization beam splitter 15, passes through the focusing lens system 19, and is received by the three photodetectors 110, 111, 112. Each photodetector output is amplified by preamplifiers 113, 114, 115,
The first beam output 113 passes through a delay circuit 116 having a delay time of 2τ (τ is determined by τ = l / v from the rotational linear velocity v of the information disk and the three beam intervals l), and is passed to the gain adjustment circuit 117. Reach. The second beam output 114 passes through a delay circuit 118 having a delay time of τ. The third beam output 115 passes through the gain adjustment circuit 119 as it is. The first beam output and the third beam output are then added in an adder circuit 120. This output is subtracted by the subtraction circuit 121 from the second beam output. This output is an information signal.
一方第1の光検出器出力110と第3の光検出器出力112
とは、差動増幅器122で差をとるとトラッキング信号が
得られ、これを駆動回路123を通して対物レンズ駆動装
置124に加えると、光ビームをトラックに追従させるこ
とができる。On the other hand, a first photodetector output 110 and a third photodetector output 112
That is, when a difference is obtained by the differential amplifier 122, a tracking signal is obtained. When the tracking signal is added to the objective lens driving device 124 through the driving circuit 123, the light beam can follow the track.
なお、光ピックアップとしては、この他に情報円盤と
対物レンズの距離を一定に保つために焦点サーボ機構が
必要だが、これは非点収差法などのよく知られた方法を
用いればよい。In addition, as the optical pickup, a focus servo mechanism is required to keep the distance between the information disk and the objective lens constant. A well-known method such as an astigmatism method may be used.
第2図は本発明の情報トラックとビームスポットとの
関係を示す図である。(a)に示す様に中央ビーム22を
情報を読み出そうとするトラック25の中心に位置させ、
両側のビーム21,23は両隣りのトラック24,26の中央寄り
の境界にかかる様に配置する。これを実行するには回折
格子14を回転させればよい。この時の光ビーム強度の分
布は(b)で示す様になる。即ち、中央ビーム22はトラ
ック25の中心線上に位置するが、光強度の分布のためそ
の裾野やサイドローブは、隣りのトラック24,26にかか
る様になり、これを検出したものがクロストークにな
る。また、第1のビーム21、第3のビーム23は隣のトラ
ック24,26の境界に位置しているのでそれぞれ第1トラ
ック24、第3トラック26の信号が検出できる。しかし、
サイドローブが第2のトラック25にかかるのでこの中央
トラックの信号もある程度検出される。第2ビーム22か
ら検出される第1トラック24、第3トラック26の成分と
第1ビーム21、第3ビーム23から得られるそのトラック
の信号成分が等しくなる様に、この両側の信号成分の利
得を調整し、中央ビーム22からの信号から差し引くとク
ロストーク成分が相殺される。この時第1ビーム信号、
第3ビーム信号に含まれる中央ビーム成分は極く小さく
なってしまうので中央信号成分はほとんどそのまま保た
れる。FIG. 2 is a diagram showing the relationship between an information track and a beam spot according to the present invention. As shown in (a), the center beam 22 is positioned at the center of the track 25 from which information is to be read,
The beams 21 and 23 on both sides are arranged so as to cover the boundary near the center between the tracks 24 and 26 on both sides. This can be done by rotating the diffraction grating 14. The distribution of the light beam intensity at this time is as shown in FIG. In other words, the center beam 22 is located on the center line of the track 25, but due to the distribution of light intensity, its skirt and side lobes are applied to the adjacent tracks 24 and 26, and the detection thereof causes crosstalk. Become. Further, since the first beam 21 and the third beam 23 are located at the boundary between the adjacent tracks 24 and 26, signals of the first track 24 and the third track 26 can be detected, respectively. But,
Since the side lobes cover the second track 25, the signal of this center track is also detected to some extent. The gain of the signal components on both sides of the first track 24 and the third track 26 detected from the second beam 22 is made equal to the signal component of the track obtained from the first beam 21 and the third beam 23. Is adjusted and subtracted from the signal from the center beam 22 to cancel the crosstalk component. At this time, the first beam signal,
Since the center beam component included in the third beam signal becomes extremely small, the center signal component is almost kept as it is.
また(b)から明らかな様に、第1ビーム21、第3ビ
ーム23は、それぞれトラック中心からトラック幅の半分
だけ中央に寄っているため、さらに外側のトラック27,2
8には裾野やサイドローブのかかり方は減少している。
従って、このトラックからのクロストーク成分は非常に
少ない。Further, as is apparent from (b), since the first beam 21 and the third beam 23 are respectively shifted toward the center by half of the track width from the track center, the outer tracks 27 and 2
8 has less foot and side lobes.
Therefore, the crosstalk component from this track is very small.
ところで、(a)に示す様に3つの光ビームは情報ト
ラック方向に位置が前後している。情報円盤の線速度を
v(m/s)ビーム間隔をl(μm)とすると3ビームか
ら得られる信号はτ=l/v(μs)だけ時間ずれがあ
る。従って、3ビームの和または差をとる場合先行して
いる第1ビーム21の出力は2τ、第2ビーム22の出力は
τだけ遅らせて演算を実行させれば時間ずれをなくすこ
とができる。By the way, as shown in (a), the positions of the three light beams are moved back and forth in the information track direction. Assuming that the linear velocity of the information disk is v (m / s) and the beam interval is 1 (μm), the signals obtained from the three beams have a time shift of τ = 1 / v (μs). Therefore, when calculating the sum or difference of the three beams, the output of the preceding first beam 21 is delayed by 2τ and the output of the second beam 22 is delayed by τ to execute the calculation, thereby eliminating the time lag.
回転数一定の回転の場合には、情報円盤の再生半径位
置によって線速度vが変わるので、遅延時間τも変化す
るが、この場合には半径位置情報を検出して遅延時間を
変化させる可変遅延線を用いればよい。In the case of rotation at a constant rotation speed, the linear velocity v changes according to the reproduction radial position of the information disk, so that the delay time τ also changes. In this case, however, the radial position information is detected to change the delay time. A delay line may be used.
3ビームの生成方法は回折格子ばかりでなく3個の半
導体レーザなどを用いても良い。As a method of generating three beams, not only a diffraction grating but also three semiconductor lasers may be used.
以上この発明によれば光ビーム径に比べてトラックピ
ッチが狭くなっても隣のトラックからのクロストークが
相殺されるので、クロストークのない良好な再生信号が
得られる。さらに、その外側の隣接トラックからのクロ
ストーク分は小さく押えることができるので、より高密
度な記録再生が可能である。As described above, according to the present invention, even if the track pitch becomes narrower than the light beam diameter, crosstalk from an adjacent track is canceled out, so that a good reproduction signal without crosstalk can be obtained. Further, the amount of crosstalk from the outer adjacent track can be kept small, so that higher density recording / reproducing is possible.
以下に本発明の第2の発明に係る一実施例について図
面を参照しながら説明する。An embodiment according to the second invention of the present invention will be described below with reference to the drawings.
第4図は本発明の一実施例の構成を示す図である。半
導体レーザ401から放射されたレーザビームはコリメー
ションレンズ402で平行光に変換され、ビームスプリッ
タ403を通過したビームは対物レンズ404で微小スポット
に集光され、情報円盤405に照射される。情報円盤405に
記録された信号凹凸で回折を受けた反射光はもとの光路
を戻り、ビームスプリッタ403で反射され、集束レンズ
径406を通して2分割光検出器407,408で受光される。こ
の2分割は凹凸列(情報列)と一致する方向に分割され
ている。それぞれの光検出器出力は加算回路(第1の加
算手段)409で加えられると同時に、引算回路(引算手
段)410で差がとられる。この差信号は遅延回路(位相
調整手段)411を通して和信号と同じ位相になる様合せ
られ第2の加算回路(第2の加算手段)412で加え合わ
され、これが情報信号になる。FIG. 4 is a diagram showing the configuration of one embodiment of the present invention. The laser beam emitted from the semiconductor laser 401 is converted into parallel light by the collimation lens 402, and the beam that has passed through the beam splitter 403 is condensed into a minute spot by the objective lens 404, and is irradiated on the information disk 405. The reflected light diffracted by the signal irregularities recorded on the information disk 405 returns to the original optical path, is reflected by the beam splitter 403, and is received by the two-divided photodetectors 407 and 408 through the focusing lens diameter 406. The two divisions are made in a direction that matches the concave / convex row (information row). The outputs of the respective photodetectors are added by an addition circuit (first addition means) 409, and at the same time, a difference is obtained by a subtraction circuit (subtraction means) 410. The difference signal passes through a delay circuit (phase adjusting means) 411 and is adjusted to have the same phase as the sum signal, and is added by a second adding circuit (second adding means) 412 to be an information signal.
ところで、こうした光ピックアップで情報円盤を再生
するには、情報円盤の変動に対して光ビームスポットを
追従させなければならないが、このための焦点合せサー
ボやトラッキングサーボは非点収差法や3ビーム法など
のよく知られている方法を用いればよく、本発明の目的
とは関係しないので省略する。By the way, in order to reproduce an information disk with such an optical pickup, the light beam spot must follow the fluctuation of the information disk. For this purpose, the focusing servo and tracking servo are performed by an astigmatism method or a three-beam method. A well-known method such as that described above may be used, and the description is omitted because it is not related to the object of the present invention.
第5図は本発明の再生原理を示す図である。(a)に
示す様に情報凹凸による光の回折現象を入射ビーム側と
反射ビーム側に分けて考える。波長λの光ビームを開口
数NAの対物レンズ404で集光させて情報凹凸421に照射し
た場合光ビームスポットの振幅分布をw(x)(原理を
簡単に表わすため1次元で取り扱う)とし凹凸分布の位
相変化を(x)とすると、凹凸で回折を受けた光の分
布P(x)はw(x)(x)のフーリエ変換 で表わされる。これを同じ対物レンズ14(レンズ開口半
径をa、焦点距離をfとするとNA=a/fである)で集め
た光強度Qは である。この様にして得られる信号の変調度即ちMTFを
空間周波数軸で表わすと、(b)図の(1)のカーブの
様になる。遮断空間周波数は2NA/λである。FIG. 5 is a diagram showing the reproduction principle of the present invention. As shown in (a), the light diffraction phenomenon due to the information unevenness is considered separately for the incident beam side and the reflected beam side. When a light beam having a wavelength λ is condensed by an objective lens 404 having a numerical aperture NA and is irradiated on the information unevenness 421, the amplitude distribution of the light beam spot is defined as w (x) (handled in one dimension for easy description of the principle). Assuming that the phase change of the distribution is (x), the distribution P (x) of the light diffracted by the unevenness is a Fourier transform of w (x) (x). Is represented by The light intensity Q collected by the same objective lens 14 (NA = a / f where a is the lens aperture radius and f is the focal length) is It is. When the modulation degree of the signal obtained in this way, that is, the MTF is represented on the spatial frequency axis, the curve (1) in FIG. The cut-off spatial frequency is 2NA / λ.
また、2つの光検出器407,408の差をとった場合の光
強度は となる。この時のMTFは(b)図の(2)のカーブとな
る。The light intensity when the difference between the two photodetectors 407 and 408 is obtained is Becomes The MTF at this time is a curve (2) in FIG.
この両者の信号を時間軸で対応させたものを(c)に
示す。(4)は凹凸の形状を表わしている。この凹凸の
へこみの部分では光は大きく回折を受けるので2つの光
検出器407,408の全体に当る受光量は減少するため、和
信号は減り、(5)のような波形になる。また、凹凸の
エッジのところでは凹凸列方向への回折が大きくなるの
で、2つの光検出器407,408のどちらかに多くの光量が
受光されるので、差信号をとるエッジのところで振幅が
大きくなる様な(6)の信号になる。(5)と(6)を
比較すると約90゜の位相ずれがある。従って差信号と和
信号の位相を合せる様に差信号を遅延させて最大振幅を
加え合せると(b)図の(3)に示すカーブの様に高域
で変調度を大きくとることができる。(C) shows a correspondence between the two signals on the time axis. (4) shows the shape of the unevenness. Since the light is greatly diffracted at the concave portion of the unevenness, the amount of light received by the two photodetectors 407 and 408 is reduced, so that the sum signal is reduced and a waveform as shown in (5) is obtained. In addition, since the diffraction in the direction of the uneven row becomes large at the edge of the unevenness, a large amount of light is received by one of the two photodetectors 407 and 408, so that the amplitude becomes large at the edge where the difference signal is obtained. The signal of (6) is obtained. When comparing (5) and (6), there is a phase shift of about 90 °. Therefore, if the difference signal is delayed so that the phases of the difference signal and the sum signal are matched, and the maximum amplitude is added, the degree of modulation can be increased in a high band as shown by the curve (3) in FIG.
これをノイズに着目してみる。第6図は照射される光
ビーム432と凹凸433および光検出器407,408との関係を
示す図である。光ビーム432は凹凸433上をトレースしな
がら信号を再生していくので、光検出器407,408上の検
出ビームは凹凸のエッジ部でのみ2分割光検出器407,40
8の境界431に直角方向に動く。情報円盤上のノイズを考
えてみると、表面の凹凸や凹凸の深さ、幅、長さのゆら
ぎがノイズの原因であるが、これは信号と同じ様にノイ
ズのエッジ部で境界431に直角方向の動きになるので差
をとると信号にこのノイズが同じMTFの形で重畳してく
る。しかしエッジ以外では境界431方向に広がる成分が
大きくなり、この変化は2分割光検出器の両方に同じ変
化となって現われるので差をとるとノイズ分は非常に小
さい。上に述べたエッジ部でのノイズは、再生信号をリ
ミッタを通すなどすれば除去できる。和信号については
ノイズもMTFがかかった形で重なる。また、レーザノイ
ズは光検出器407,408に対しほぼ同相と考れられるので
差をとれば減少させることができる。従って、和信号と
差信号を合計して考えるとC/Nは向上できることにな
る。Let's focus on this noise. FIG. 6 is a diagram showing the relationship between the irradiated light beam 432, the unevenness 433, and the photodetectors 407 and 408. Since the light beam 432 reproduces a signal while tracing on the unevenness 433, the detection beam on the photodetectors 407 and 408 is divided into two light detectors 407 and 40 only at the edge portions of the unevenness.
Move perpendicular to boundary 8 431. Considering the noise on the information disk, irregularities on the surface and fluctuations in the depth, width, and length of the irregularities are the causes of the noise, but this is similar to the signal, and is perpendicular to the boundary 431 at the edge of the noise. If the difference is taken, the noise will be superimposed on the signal in the same MTF form. However, the component spreading in the direction of the boundary 431 becomes large except at the edge, and this change appears as the same change in both the two-segment photodetectors. Therefore, if the difference is taken, the noise component is very small. The noise at the edge described above can be removed by passing the reproduced signal through a limiter or the like. For the sum signal, the noise also overlaps with the MTF applied. In addition, since the laser noise is considered to be almost in phase with the photodetectors 407 and 408, it can be reduced by taking a difference. Therefore, if the sum signal and the difference signal are considered in total, the C / N can be improved.
第7図は別の実施例を示す。第5図(c)より明らか
な様に和信号と差信号は位相が約90゜ずれ、差信号は和
信号を微分した形であるので、差信号を積分回路441を
通すことでも位相を合わせることができる。FIG. 7 shows another embodiment. As apparent from FIG. 5 (c), the phase of the sum signal and the difference signal is shifted by about 90 °, and the difference signal is a form obtained by differentiating the sum signal. be able to.
また、和信号の方を遅延させることで位相を合せても
よい。Also, the phases may be matched by delaying the sum signal.
第8図はまた別の実施例である。凹凸の長さが長く凹
凸波長も長くなる低周波信号分が多く含まれる場合には
(a)に示す様に差動出力(b)は凹凸のエッジ部のみ
がピークをもつパルス状波形になるので、これを遅延し
て加えることはできない。特に低周波領域に対しては和
信号(5)のMTFは大きいので、高周波領域のみ差信号
を加えてもよい。この場合の回路構成を(b)に示す。
2つの光検出器407,408の和出力409の高域成分(検出信
号が略正弦波になる領域)を高域通過フィルタ51で分離
しコンパレータ52で高域信号と低域信号の状態を検出す
る。この信号をもとに高域信号の再生の時のみスイッチ
回路453をオンさせ、遅延させた差信号の和信号と加え
合せる。このようにすれば高域成分のC/Nが向上でき
る。高域通過フィルター51は低域通過フィルタで低域信
号を検出しても同じことである。FIG. 8 shows another embodiment. When a large number of low-frequency signals with a long unevenness and a long unevenness wavelength are included, the differential output (b) has a pulse-like waveform having a peak only at the edge of the unevenness as shown in FIG. So this cannot be added late. In particular, since the MTF of the sum signal (5) is large in the low frequency region, the difference signal may be added only in the high frequency region. The circuit configuration in this case is shown in FIG.
The high-frequency component of the sum output 409 of the two photodetectors 407 and 408 (the area where the detection signal becomes a substantially sine wave) is separated by the high-pass filter 51, and the state of the high-frequency signal and the low-frequency signal is detected by the comparator 52. Based on this signal, the switch circuit 453 is turned on only when the high-frequency signal is reproduced, and is added to the sum signal of the delayed difference signal. By doing so, the C / N of the high frequency component can be improved. The same is true even if the high-pass filter 51 detects a low-pass signal with a low-pass filter.
第9図は低域成分のC/Nも向上できる別の実施例であ
る。凹凸の長さの長い時には(a)に示す様に差信号
(6)はエッジ部で正または負のパルスが出てくるの
で、正方向のパルスが出た時には正の状態を保持し、負
方向のパルスの時には負の状態を保持する様にすれば
(7)に示す様な凹凸の形状に等しい信号が得られる。
この状態を実現する回路例を(b)に示す。差出力410
で正のコンパレータ461,負のコンパレータ462で状態を
検出し状態保持回路463で凹凸周期に等しい波形(7)
を得る。コンパレータ461,462ではパルスの立上りまた
は立下りで比較するので凹凸即ち和信号とは若干の時間
ずれがある。これは遅延回路464で時間合せを行い、和
信号と加え合せると、低域成分も信号加算が実行でき
る。凹凸列では凹凸のエッジ位置が信号として有効なの
でこの様にエッジ位置検出でも良いことになる。FIG. 9 shows another embodiment capable of improving the C / N of the low frequency component. When the length of the unevenness is long, the difference signal (6) has a positive or negative pulse at the edge portion as shown in FIG. If a negative state is maintained in the case of a pulse in the direction, a signal equivalent to the uneven shape as shown in (7) can be obtained.
An example of a circuit for realizing this state is shown in FIG. Difference output 410
The state is detected by the positive comparator 461 and the negative comparator 462, and the waveform equal to the irregular period is obtained by the state holding circuit 463 (7).
Get. Since the comparators 461 and 462 compare at the rising or falling of the pulse, there is a slight time deviation from the unevenness, that is, the sum signal. When the time is adjusted by the delay circuit 464 and the sum is added to the sum signal, the signal addition of the low frequency component can be performed. In the uneven row, the edge position of the unevenness is effective as a signal, so that the edge position may be detected.
以上この発明によると高周波域まで信号振幅を増大さ
せることができ、またノイズ成分は相対的には低く押え
られるので、再生信号のC/Nを向上させることができ
る。このことは従来と同じNAの対物レンズ、レーザの光
波長を用いてもより高密度またはよりC/Nの高い情報記
録再生が実現できることになる。As described above, according to the present invention, the signal amplitude can be increased up to the high frequency range, and the noise component can be kept relatively low, so that the C / N of the reproduced signal can be improved. This means that information recording / reproducing with higher density or higher C / N can be realized even if the same NA objective lens and laser light wavelength are used as before.
また、この発明で述べた方法は凹凸列と直角方向のト
ラッキング方向についても同様の効果が得られるので、
同様の構成でトラッキング信号のC/Nをおさずにトラッ
クピッチを狭くすることができる。Further, since the method described in the present invention can obtain the same effect also in the tracking direction in the direction perpendicular to the concave and convex rows,
With the same configuration, the track pitch can be narrowed without reducing the C / N of the tracking signal.
本発明によれば光ピックアップを大きくすることなく
クロストークによる影響もつよい光情報再生装置を提供
できる。さらに再生信号のC/Nも向上させることができ
るのでより高密度でかつ高解像の光情報再生装置を提供
できる。According to the present invention, it is possible to provide an optical information reproducing apparatus having a good influence of crosstalk without increasing the size of an optical pickup. Furthermore, since the C / N of the reproduction signal can be improved, it is possible to provide an optical information reproducing apparatus with higher density and higher resolution.
第1図は本発明の一実施例を示す図、第2図は本発明の
効果を説明する図、第3図は従来例を示す図、第4図は
本発明の一実施例を示す図、第5図は本発明の再生原理
を示す図、第6図は本発明の光ビームと光検出器の関係
を示す図、第7図、第8図、第9図は本発明の別の実施
例を示す図、第10図は従来例を示す図である。FIG. 1 is a view showing an embodiment of the present invention, FIG. 2 is a view for explaining the effect of the present invention, FIG. 3 is a view showing a conventional example, and FIG. 4 is a view showing an embodiment of the present invention. , FIG. 5 is a view showing the principle of reproduction of the present invention, FIG. 6 is a view showing the relationship between the light beam and the photodetector of the present invention, FIG. 7, FIG. 8 and FIG. FIG. 10 is a view showing an embodiment, and FIG. 10 is a view showing a conventional example.
Claims (3)
ら発せされた光ビームを情報媒体に導き微小スポットに
集光する光学手段と、前記情報媒体からの反射光または
透過光を受光して電気信号に変換する、情報列方向に関
して2領域に分割された光検出器と、この光検出器によ
る2つの光検出器出力の和をとる第1の加算手段と、前
記2つの光検出器出力の差をとる引算手段と、前記加算
手段及び前記引算手段の出力の位相を合わせる位相調整
手段と、前記加算手段及び前記引算手段の出力の和をと
る第2の加算手段とを備えたことを特徴とする光情報再
生装置。A light source for emitting a light beam; an optical unit for guiding the light beam emitted from the light source to an information medium and condensing the light beam on a minute spot; and receiving reflected light or transmitted light from the information medium to receive the light beam. A photodetector for converting into an electric signal, divided into two regions in the information column direction, a first adding means for summing two photodetector outputs by the photodetector, and the two photodetector outputs Subtraction means for taking the difference between the two, a phase adjustment means for adjusting the phases of the outputs of the addition means and the subtraction means, and a second addition means for taking the sum of the outputs of the addition means and the subtraction means. An optical information reproducing apparatus, characterized in that:
を遅延させるものであることを特徴とする請求項1記載
の光情報再生装置。2. The optical information reproducing apparatus according to claim 1, wherein said phase adjusting means delays an output of said subtracting means.
を通す積分回路であることを特徴とする請求項1記載の
光情報再生装置。3. An optical information reproducing apparatus according to claim 1, wherein said phase adjusting means is an integrating circuit for passing an output of said subtracting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63144885A JP2839502B2 (en) | 1988-06-14 | 1988-06-14 | Optical information reproducing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63144885A JP2839502B2 (en) | 1988-06-14 | 1988-06-14 | Optical information reproducing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01315039A JPH01315039A (en) | 1989-12-20 |
JP2839502B2 true JP2839502B2 (en) | 1998-12-16 |
Family
ID=15372629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63144885A Expired - Lifetime JP2839502B2 (en) | 1988-06-14 | 1988-06-14 | Optical information reproducing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2839502B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07192296A (en) * | 1993-12-28 | 1995-07-28 | Nec Corp | Optical head device |
US5586101A (en) * | 1995-03-01 | 1996-12-17 | Eastman Kodak Company | Magneto-optic data storage system with differential detection channels having separate gain control circuit |
US5537383A (en) * | 1995-03-01 | 1996-07-16 | Eastman Kodak Company | Optical data storage system with differential data detection and source noise subtraction for use with magneto-optic, write-once and other optical media |
KR100657250B1 (en) * | 2000-01-06 | 2006-12-14 | 삼성전자주식회사 | Optical pickup apparatus |
KR20010068556A (en) | 2000-01-06 | 2001-07-23 | 윤종용 | Optical pickup apparatus |
KR100657249B1 (en) * | 2000-01-06 | 2006-12-19 | 삼성전자주식회사 | Optical pickup apparatus |
EP1115111B1 (en) | 2000-01-06 | 2004-11-10 | Samsung Electronics Co., Ltd. | Optical pickup |
JP4902337B2 (en) | 2006-12-20 | 2012-03-21 | 株式会社日立メディアエレクトロニクス | Optical pickup and optical information reproducing apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0792924B2 (en) * | 1983-09-24 | 1995-10-09 | 株式会社東芝 | Optical information reader |
JPH0721865B2 (en) * | 1986-08-29 | 1995-03-08 | パイオニア株式会社 | Optical recording information reader |
-
1988
- 1988-06-14 JP JP63144885A patent/JP2839502B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01315039A (en) | 1989-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0554092B1 (en) | An optical information recording and reproducing device | |
JP2839502B2 (en) | Optical information reproducing device | |
JPH0916986A (en) | Optical disk device | |
JP2630151B2 (en) | Optical disk drive | |
JPH0320911Y2 (en) | ||
JPH0370859B2 (en) | ||
JP3103220B2 (en) | Optical signal reproduction device | |
JPS6239493B2 (en) | ||
JP3479047B2 (en) | Apparatus for generating seek direction detection signal for optical pickup | |
JPH1125481A (en) | Method for generating tracking error signal and device therefor | |
JPH0517609B2 (en) | ||
JP2001297450A (en) | Generating device of seek direction detecting signal for optical pickup | |
JP2633420B2 (en) | Optical recording / reproducing device | |
JPH1125461A (en) | Optical disk and its recording and reproducing device | |
JPH07101517B2 (en) | Photo detector | |
JP2594903B2 (en) | Focus error detector | |
US5706263A (en) | Method and apparatus for high-density reproduction | |
KR100234333B1 (en) | Optical pickup apparatus | |
JPH07105052B2 (en) | How to track an optical pickup | |
JPH02198038A (en) | Optical head device | |
JP2561253B2 (en) | Track error detector | |
KR100556692B1 (en) | Reproductive Apparatus For Optical Disc | |
JP2875689B2 (en) | Focus control method for optical disk device | |
JPH0240576Y2 (en) | ||
JPH0817064A (en) | Optical disk device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081016 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081016 Year of fee payment: 10 |