JPS58162806A - Device for measuring rugged shape - Google Patents

Device for measuring rugged shape

Info

Publication number
JPS58162806A
JPS58162806A JP4451082A JP4451082A JPS58162806A JP S58162806 A JPS58162806 A JP S58162806A JP 4451082 A JP4451082 A JP 4451082A JP 4451082 A JP4451082 A JP 4451082A JP S58162806 A JPS58162806 A JP S58162806A
Authority
JP
Japan
Prior art keywords
beams
light
light beam
photodetector
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4451082A
Other languages
Japanese (ja)
Other versions
JPS6312524B2 (en
Inventor
Takashi Yamaguchi
隆 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP4451082A priority Critical patent/JPS58162806A/en
Publication of JPS58162806A publication Critical patent/JPS58162806A/en
Publication of JPS6312524B2 publication Critical patent/JPS6312524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To determine the depth of pits from the intensity ratios of diffracted beams of the 1st order in a device for measuring ruggedness provided on an optical disc or the like by irradiating two light beams of different wavelengths to the optical disc. CONSTITUTION:The beams of different wavelengths are irradiated from laser light sources 11, 12 through half-mirrors 111, 112 to a disc 14 to be measured. The beams reflected by the half mirrors are detected and amplified and are inputted to a divider 116 in order to determine the ratio between the light intensity signals. The respective diffracted beams IL1', IL2' of the 1st order of the incident beams of the disc are detected and amplified and are inputted to a divider 19 in order to determine the ratio of the intensities of the diffracted beams. If the product of the ratio of the intensities of the incident beams and the ratios of the intensities of the diffracted beams is determined, the values of the equations including the refractive indices for the respective beams, the wavelengths lambda1, lambda2 of the respective beams, and the depth (d) of the pits are obtained, and the unknown (d) is obtained by substituting the other known parameters into the equation.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本宛E!Aは光学式ビデオディスク等の凹凸形状で情報
が記録されている情報記録担体の凹凸形状測定装置に関
する。
[Detailed description of the invention] [Technical field to which the invention pertains] To E! A relates to an apparatus for measuring the uneven shape of an information recording carrier, such as an optical video disc, on which information is recorded in an uneven shape.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体レーザ等の光ビームを用いて情報記録担体(以下
、光ディスクと称す。)から信号を読み出す、いわゆる
光学式のビデオディスク装置やデジタルオーディオディ
スク装置では、再生される情報は、光ディスクkK凹凸
の形状で記録されている。この凹凸はビットと呼ばれ、
幅0.5μm1長さ0.5〜3μmstの大きさを有し
、光ディスクとに螺線状あるいは同心円状に形成されて
いる。
In so-called optical video disk devices and digital audio disk devices that read signals from an information recording carrier (hereinafter referred to as an optical disk) using a light beam such as a semiconductor laser, the information to be reproduced is based on the shape of the unevenness of the optical disk kK. It is recorded in This unevenness is called a bit,
It has a width of 0.5 .mu.m and a length of 0.5 to 3 .mu.m, and is formed in a spiral or concentric shape with the optical disk.

このビット信号を読み出すには、通常光ビームを対物レ
ンズによって微小スポットに集光し、これを光ディスク
に照射し、ビットをトレースする。
To read this bit signal, a normal light beam is focused on a minute spot by an objective lens, and the optical disk is irradiated with this to trace the bit.

このとき、ディスクによる光ビームの反射光又は透過光
は、ビットによp回折される。従ってこの反射もしくは
透過回折光を光検出器により検知することで、ピットの
凹凸形状に応じた、すなわち記録され九情報に応じた再
生信号を得ることができる。
At this time, the reflected or transmitted light of the light beam by the disk is p-diffracted by the bit. Therefore, by detecting this reflected or transmitted diffracted light with a photodetector, it is possible to obtain a reproduced signal corresponding to the uneven shape of the pit, that is, according to the recorded information.

と述し九ように、情報の再生は、ピットによる回折現象
を利用するため、ビットの幅、長さおよび深さ等、その
形状を最適なものにする必要がある。特に、再生信号の
変調度はビットの深さに依存してお夛、深さがλ/4n
(λ;照射ビーム光の波長、n *光ディスクの屈折率
)のとき変調度は最大となる。したがって、良好な再生
を行わせるためには、ピットの深さを前記のλ/4 n
の値に設定することが望まれる。よって、光ディスクを
製造する際には、ビットの深さ金測定し、前記の値と一
致しているか否かの確認が必要となる。
As mentioned above, information reproduction utilizes the diffraction phenomenon caused by pits, so it is necessary to optimize the shape of the bits, such as the width, length, and depth. In particular, the modulation degree of the reproduced signal depends on the bit depth, and the depth is λ/4n.
The degree of modulation is maximum when (λ: wavelength of irradiation beam light, n * refractive index of optical disk). Therefore, in order to perform good reproduction, the pit depth must be set to the above-mentioned λ/4 n
It is desirable to set the value to . Therefore, when manufacturing an optical disk, it is necessary to measure the depth of the bit and check whether it matches the above value.

従来、凹凸形状の測定方法として、レーザビームを光デ
ィスクの原盤や原盤よ)複製された光ディスクに照射し
、その反射もしくは透過回折光000次回折光1次回折
光の比をとる方法がおる。
Conventionally, as a method for measuring the uneven shape, there is a method of irradiating a laser beam onto an optical disc master or a copy of the master disc, and taking the ratio of the reflected or transmitted diffracted light to the 000th-order diffracted light and the 1st-order diffracted light.

111図社、との観定方法【説明するための原運図であ
p1透過の場合を示している。照射される光ビーム(財
)のm1tt、通常0.I M% 1 ml度であ)光
ビーA(2)は光ディスク曽土の多数のピット(2)に
よシ回折される。その結果、トラック列方向(X方向)
には、Ill 、 −Illで表わされる1次回折光が
、また信号列方向(y方向)には11、−Iatで表わ
される1次回折光が現われる。なお、Ioは0次回折元
で69.屈折していない透過回折光を表わす。
111 Zusha, observation method [This is an original luck chart for explanation and shows the case of p1 transmission. m1tt of the irradiated light beam (goods), usually 0. The light beam A (2) is diffracted by a large number of pits (2) in the optical disk. As a result, the track row direction (X direction)
, first-order diffracted lights expressed by Ill and -Ill appear, and first-order diffracted lights expressed by 11 and -Iat appear in the signal train direction (y direction). Note that Io is the 0th order diffraction source and is 69. Represents transmitted diffracted light that is not refracted.

ここで、ピットの波長を9s  Fクック間隔’fct
1ビットの兼さをβ、ビットの−t−rとすると、1択
−新党ItK、Iss Ou折角θ、φはO関係を満た
している。ただし、ml、mfi  は回折の次数であ
シ、この場合、ml = ml = 1である。
Here, the wavelength of the pit is 9s Fcook spacing 'fct
If the duality of one bit is β and the bit -tr, then the one-choice-new party ItK, Iss O and the angles θ and φ satisfy the O relationship. However, ml and mfi are the orders of diffraction, and in this case, ml = ml = 1.

k式より信号列方向の1次回新党I11の回新角φは、
光ビームの波長λとビットの波長pに依存しており 一
般にピット波長pは記録信号により変化するため、かな
シムがって分布する。したがって、ピット形状の測定は
、トラック列方向O1次回折光で参るItsの検知によ
)、行われる。Ivxの強II Illは、回折理論よ
〉 で表わされる。ここでA3は光ビーム12pの強度に一
致する定数である。また、第1図(b)K示すように、
ピット(2)を境界として、光ビーム(21)の入射側
Off折率tns、透過側のそれを町とし、ピットのf
ly@tdとすると、(:)式中のψの値は、Itt 
 n鵞1ci 9 g= 2π□  ・・・(1) λ と表わされる。さらKO次回折新党。の強度工は、I−
ム” (1+2 (1−coat)’−!−(’−!−
1)) ・・・@p   tpt と表わされる。
From the k formula, the renewal angle φ of the first new party I11 in the signal train direction is:
It depends on the wavelength λ of the light beam and the wavelength p of the bit, and generally the pit wavelength p varies depending on the recording signal, so it is distributed in a slightly shimmy manner. Therefore, the measurement of the pit shape is performed by detecting its (its) coming from the first-order diffracted light in the track row direction. The strong II Ill of Ivx is expressed by the diffraction theory. Here, A3 is a constant that corresponds to the intensity of the light beam 12p. Moreover, as shown in FIG. 1(b)K,
With the pit (2) as the boundary, the Off refractive index tns on the incident side of the light beam (21) and that on the transmission side are defined as f of the pit.
If ly@td, the value of ψ in the equation (:) is Itt
It is expressed as n goose 1ci 9 g= 2π□...(1) λ. Sara KO next rebirth new party. The strength of I-
(1+2 (1-coat)'-!-('-!-
1)) ...@p tpt.

従来、凹凸形状の測定は、トラック列方向の1次幡新党
で6る1?1とO次回新党であるI、の強度を検知し、
それらの比を求め行われていた01次關折新党ttの強
度It1と0次回新党I・の強度工との地線、(−)お
よび(一式より と求められる。一式よシ、−X−!−!−は変数として
、ビットの深さd ((17式参照)、ピットのデ具−
テイtl 数會有している。したがって、Tの値から、凹凸形状の
値、例えばビットの深さdを求めるには他のふたつの変
数りおよびr o gを他の測定方法p       
t により決定しなくて社ならない。しかしながら、上、−
!一つ値をそれぞれ精度曳く決定す2ことは難t しく、この従来の方法ではビット深さdO値を厳書に求
″めることは不可能で套つ九。ポットの深さdの倣【知
る方法としては、干渉顕微鏡によ)直接測定することも
考えられるが、分解能が嵐(なく、この方法によっても
dの値を決定することは不可能で6つ九〇 〔発明の目的〕 本発明は、丘記した従来の凹凸形状測定f&置では釆せ
なかつ九、ピット深さdO値を決定することのできる凹
凸形状測定装置を提供することを目的とする。
Conventionally, the unevenness shape is measured by detecting the strength of 6 1 - 1 in the first direction of the track row direction and I, which is the O-th direction.
The ground line between the strength It1 of the 01st new party tt and the strength of the 0th new party I, whose ratio was calculated, is (-) and (calculated from one set. One set, -X- !-!- is the bit depth d ((see formula 17), pit depth d) as a variable.
I have had several meetings. Therefore, in order to obtain the value of the uneven shape, for example, the depth d of the bit, from the value of T, two other variables are required, and r o g is determined using another measurement method p.
There is no company without making a decision based on t. However, above, −
! It is difficult to determine each value with accuracy, and with this conventional method, it is impossible to precisely determine the bit depth dO value. [One way to know this is to directly measure it using an interference microscope, but the resolution is low and it is impossible to determine the value of d even with this method.[Objective of the invention] SUMMARY OF THE INVENTION An object of the present invention is to provide an unevenness shape measuring device that can determine the pit depth dO value, which cannot be determined by the conventional unevenness shape measuring f& position.

〔発明の概要〕[Summary of the invention]

本発明は、波長の異なるふたつの光ビーム七光ディスク
の原盤もしくは原盤より複製された光ディスクho同一
箇所に照射し、それぞれの光ビームの1次回折光を受光
検知し得られる1次回折光の強度の比をとり、この値を
もとにピットの深さdt1ml定する凹凸形状測定装置
を提供する。
The present invention aims to apply two light beams of different wavelengths to the same location on a master disc of an optical disc or an optical disc ho reproduced from the master disc, and to receive and detect the first-order diffracted light of each light beam, and to obtain a ratio of the intensities of the first-order diffracted lights. Provided is an unevenness shape measuring device that determines the pit depth dt1ml based on this value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光ディスクの再生時性を左右するため
是非とも知っておかねばならないピットの深さdの値を
、トラック間隔tとピットの@rの比およびピットのデ
ス−ティ比lの値を知ることt畏せず、一義的に決定す
ることができる。
According to the present invention, the value of the pit depth d, which must be known because it affects the playback performance of an optical disc, is determined by the ratio of the track interval t to the pit @r and the pit desty ratio l. Knowing the value allows you to determine it uniquely without fear.

〔本発明の実施例〕[Example of the present invention]

まず、本発明の凹凸形状測定装置の測定原理について1
!明する。
First, 1 about the measurement principle of the uneven shape measuring device of the present invention.
! I will clarify.

いま、波長の異なるふたつの光ビーム1iILs。Now, there are two light beams 1iILs with different wavelengths.

Iいとし、それぞれの波長をλ!、λ宜(λ1←λりと
する。また、ビーム光重い、I■のそれぞれの光強ft
l2t、Ij*とし、両ビームを光ディスクの同一箇所
に照射した場合の1 トラック列方向の1次回折光の強
度をそれぞれIhI、とする。
I, and each wavelength is λ! ,λyi(λ1←λri).In addition, each light intensity ft of the beam light heavy, I■
Let IhI be the intensity of the first-order diffracted light in the direction of one track row when both beams are irradiated onto the same location on the optical disk.

本発明では、光ビームIL1.l11mのそれぞれの1
となる。ここでAX″、A−はそれぞれ照射されるふた
つの光ビームの強度1jl、I)8と等しく、人、”=
Iz、、ムー=IJ2 である。また、fs t fsは(―)式よplとなゐ
。一式t−変形すると、 が求まる。(Vl)式の右辺は、変数として屈折率n1
゜−1光ビームの波長λ1.λ1、さら(ピットのs1
扱うことができる。したがって、(糟)式で表わ畜れh
+×)Pはピットの澤さdのみの関数と鳶るOよって、
ふ九つの光ビームのl*−新党強度の比とによシ、ピッ
トの深さdを一義的に測定することが可能となる。
In the present invention, the light beam IL1. 1 of each of l11m
becomes. Here, AX'', A- are respectively equal to the intensity of the two irradiated light beams 1jl, I)8, and the person, ''=
Iz, Mu=IJ2. Also, fs t fs is pl according to the equation (-). When the set is t-transformed, the following can be found. The right side of equation (Vl) is the refractive index n1 as a variable.
゜−1 Wavelength λ1 of the light beam. λ1, further (s1 of pit
can be handled. Therefore, it is expressed in the formula (糟).
+×) Since P is a function of only the depth of the pit d and O,
The depth d of the pit can be uniquely measured by the ratio of l*-new intensity of the nine light beams.

92図は、と述した新規な測定原理に基づく、本発明の
凹凸形状測定装置の一実施例を示すブロック図である。
FIG. 92 is a block diagram showing an embodiment of the unevenness shape measuring device of the present invention based on the novel measurement principle described above.

第1のレーザ光源αυは波長λ、の光ビーム■L1を発
し、#!2のレーザ光源a邊は波長λ2の光ビームエL
!を発する。両光ビームILI、IL2はそれぞれ同一
の透過率を有するハーフミラ−(110)(112)を
通過後、グイクロイックミラーa四によシ重ね合され、
光ディスクa4Lの同一箇所に照射される。光ディスク
α尋に照射された光ビームIL1 、l111は回折さ
れ、透過回折光ILI、Iいが発生する。光ビーム’L
t、TLzは波長が異なる丸め、回折角も異なシ、透過
回折光JL’l、IL’2は異方向に直進する。
The first laser light source αυ emits a light beam ■L1 with a wavelength λ, and #! The second laser light source a has a light beam L with wavelength λ2.
! emits. Both light beams ILI and IL2 pass through half mirrors (110) and (112) having the same transmittance, respectively, and then are superimposed on a guichroic mirror a4,
The same location on the optical disc a4L is irradiated. The light beams IL1 and I111 irradiated onto the optical disc α are diffracted, and transmitted diffracted lights ILI and II are generated. light beam 'L
t and TLz have different wavelengths and different diffraction angles, and the transmitted diffracted lights JL'l and IL'2 travel straight in different directions.

それぞれのi進方向II?:は光検出器aω、αeが設
けられておシ、光検出器(15)は回折光ILIを、を
次光検出器(LQは回折光11;’2 t−各々受光す
る。光検#A器霞およびaSは受光するIzt、ILm
の光強度IhI、に応じた電気信号を発する。それらは
、それぞれ増幅器αη、asを通過することによ)所定
の値に増幅された後、共に除算器alK導かれる。除算
器a優は供給される信号間の除算を行い、透過回折光強
度I。
Each i-adic direction II? : is provided with photodetectors aω and αe, the photodetector (15) receives the diffracted light ILI, and the next photodetector (LQ receives the diffracted light 11; '2 t-, respectively. A device haze and aS are Izt and ILm that receive light.
It emits an electrical signal according to the light intensity IhI. After being amplified to a predetermined value (by passing through amplifiers αη, as, respectively), they are led together to a divider alK. The divider a performs division between the supplied signals to obtain the transmitted diffracted light intensity I.

■ 11の北上を算出する。■ Calculate the northward direction of 11.

さて、光ビームILI、l1llはそれぞれバー、7建
ラ−(110)、(112) t−通過する際に、一部
が反射される。光ビームIいの反射光は光検知器(11
1)により、また光ビームIhsの反射光は光検出器(
113)によシ各々受光される。光検知器(111)は
、光ビームILIの強度It、に応じた電気信号を発生
し、光検知器(113)は光ビームILIの強度It、
に応じた電気信号を発生し、これらはそれぞれ増幅器(
114)、(115) t−経た後、除算器(o6)に
導かれる。
Now, when the light beams ILI and 111 pass through the bar and the 7-bar (110) and (112) t, respectively, a portion is reflected. The reflected light from the light beam is detected by a photodetector (11
1), the reflected light of the light beam Ihs is detected by a photodetector (
113) respectively. The photodetector (111) generates an electrical signal according to the intensity It of the light beam ILI, and the photodetector (113) generates an electric signal depending on the intensity It of the light beam ILI.
It generates electrical signals according to the
114), (115) After t-, it is led to the divider (o6).

除算器(116)は、先に説明した除算器(IIと同様
の働きtL、供給される信号間の除算を行い、光強値は
双方とも乗算器(117)に導かれる。乗算量  IJ
I (117)は供給される寸、97間の掛は算を行い、値
を知ることができる。
The divider (116) has the same function as the previously described divider (II), and performs division between the supplied signals, and both light intensity values are guided to the multiplier (117). Multiplication amount IJ
I (117) is the supplied dimension, and the value can be found by multiplying by 97.

〔発゛明の他の実施例〕[Other embodiments of the invention]

を記の実施例では、光検知器Q5 、αQで受光される
回折光として透過回折光を例としたが、反射回折光を検
知することによっても同様の測定が行える。このときに
は、(―)式に示したψの値をψ二4π為す として取り扱えによい。
In the embodiment described above, transmitted diffracted light was used as an example of the diffracted light received by the photodetectors Q5 and αQ, but similar measurements can also be made by detecting reflected diffracted light. In this case, the value of ψ shown in equation (-) can be treated as ψ24π.

また、異なる波長の光ビームを得るためにレーザ光源を
ふたつ用意する場合を説明してきたが、レーザ光源とし
7ては、Arレーザ装置のように単一のレーザ装置で波
長の異なる光を発するものを用いてもよい1.この場合
には、単一のレーザ光源から発せられる光ビーム自体を
受光する光検知器はひとつ用意すればよく、その前段に
あるハーフミラ−もひとつだけ設けれはよい。ただし、
光強度111、Ijmの比を求めなくてはならないのは
同様であるため、単一の光検知器で検知される光強度1
11、It、の一方の値を保持する手段、例えば記憶回
路もしくは遅延回路等會除算器(116)の前段に設け
、光強度xi1.rt1t−並列して除算1) (11
6)に導くことが必要とされる。
In addition, although we have explained the case where two laser light sources are prepared to obtain light beams of different wavelengths, the laser light source 7 can be a single laser device that emits light of different wavelengths, such as an Ar laser device. You may use 1. In this case, it is sufficient to provide one photodetector that receives the light beam itself emitted from a single laser light source, and it is sufficient to provide only one half mirror in front of the photodetector. however,
Similarly, it is necessary to find the ratio of light intensity 111 and Ijm, so the light intensity 1 detected by a single photodetector is
A means for holding one of the values of light intensity xi1. rt1t-parallel divide 1) (11
6).

【図面の簡単な説明】[Brief explanation of drawings]

a11図は、凹凸形状の測定方法の原理を説明す4丸め
の原場図であシ、第2図は本発明の凹凸形状画定装置の
一実施例を示すブロック図である。 Ql) 、 a、1・・・レーザ光源、a◆・・・光グ
イスフ、aS 、α* t (111)、(113) 
・・・光検出器、αI s (tts) −、。 除算器、(117)・・・乗算器、Izt、Izト・・
光ビーム、Iit、IN、s・・・1次1gl新党。 代理人 弁塩士 則 近 憲 佑(ほか1名)第  1
 因 第  2 図
Figure a11 is a 4-round field diagram illustrating the principle of the method for measuring the uneven shape, and FIG. 2 is a block diagram showing an embodiment of the uneven shape defining device of the present invention. Ql), a, 1... Laser light source, a◆... Optical guide, aS, α* t (111), (113)
...photodetector, αI s (tts) −,. Divider, (117)... Multiplier, Izt, Izt...
Light beam, Iit, IN, s...1st 1gl new party. Agent: Kensuke Noriyoshi Chika (and 1 other person) No. 1
Figure 2

Claims (1)

【特許請求の範囲】 凹凸形状で情報が記録されている情報記録担体の前記凹
凸形状の大きさを測定する凹凸形状測定値[(おいて、 前記情報記録担体に#!1の光線を照射して得られる1
次回折光を検知する第1の光検出器と、前記J[lの光
線とは異なる波長を有する第2の光線を前配情報記嫌担
体に照射して得られる1次回折光を検知する第2の光検
出器と、前記第1、第2の光検出器よシ得られる前記1
次回折光の強度に比例し九電虱傷号の比をとる第1の除
算器と、前記第1の光Imを受光するJi3の光検出器
と、前記ls2の光線を受光する第4の光検出器と、前
記第3% #I4の光検出器よル得られる前記第1  
$12の光線の強度に比例した電気信号の比をとる第2
の除算器と、前記第1および第2の除算器の出力同士の
乗算を行う乗算器とを備え、前記乗算器の乗算結果より
前記凹凸形状の深さを検知することを特徴とする凹凸形
状測定装置。
[Claims] An uneven shape measurement value for measuring the size of the uneven shape of an information recording carrier on which information is recorded in an uneven shape [(wherein the information recording carrier is irradiated with a light beam of #!1). 1 obtained by
a first photodetector for detecting the second-order diffracted light; and a second photodetector for detecting the first-order diffracted light obtained by irradiating the predistribution information recording carrier with a second light beam having a different wavelength from the light beam of J[l. and the first and second photodetectors obtained from the first and second photodetectors.
a first divider that is proportional to the intensity of the next-order diffracted light and takes a ratio of the nine-dimensional light beam; a Ji3 photodetector that receives the first light Im; and a fourth light beam that receives the ls2 light beam. a detector and said first photodetector obtained by said third percent #I4 photodetector;
The second takes the ratio of the electrical signal proportional to the intensity of the light beam of $12.
and a multiplier that multiplies the outputs of the first and second dividers, and the depth of the uneven shape is detected from the multiplication result of the multiplier. measuring device.
JP4451082A 1982-03-23 1982-03-23 Device for measuring rugged shape Granted JPS58162806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4451082A JPS58162806A (en) 1982-03-23 1982-03-23 Device for measuring rugged shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4451082A JPS58162806A (en) 1982-03-23 1982-03-23 Device for measuring rugged shape

Publications (2)

Publication Number Publication Date
JPS58162806A true JPS58162806A (en) 1983-09-27
JPS6312524B2 JPS6312524B2 (en) 1988-03-19

Family

ID=12693544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4451082A Granted JPS58162806A (en) 1982-03-23 1982-03-23 Device for measuring rugged shape

Country Status (1)

Country Link
JP (1) JPS58162806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237308A (en) * 1984-05-11 1985-11-26 Toshiba Corp Depth measuring apparatus
WO2008156053A1 (en) * 2007-06-20 2008-12-24 Nikon Corporation Apparatus and method for measuring pattern pitch and apparatus and method for inspecting surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237308A (en) * 1984-05-11 1985-11-26 Toshiba Corp Depth measuring apparatus
WO2008156053A1 (en) * 2007-06-20 2008-12-24 Nikon Corporation Apparatus and method for measuring pattern pitch and apparatus and method for inspecting surface

Also Published As

Publication number Publication date
JPS6312524B2 (en) 1988-03-19

Similar Documents

Publication Publication Date Title
JPH07192297A (en) Super-high resolution optical head device
CN104347090A (en) Reproducing apparatus and reproducing method
US20090103409A1 (en) Compensating gain of an optical recording apparatus
JPS58162806A (en) Device for measuring rugged shape
JP2003045051A (en) Information recording and reproducing device
JPS6076028A (en) Optical information recording and reproducing device
JPH04129040A (en) Optical head and information recording and reproducing device using the same
US5784348A (en) Phase detected direct read during write
JPS58147824A (en) Inspecting device of disk
JP2796592B2 (en) Tracking error signal generation circuit
JP3059802B2 (en) Reproduction method of optical recording medium
HUT60561A (en) Magnetooptic recording and/or reproducing apparatus
JP4779694B2 (en) Hologram recording medium evaluation apparatus and hologram recording medium evaluation method
JPH0391125A (en) Optical pickup device using wavelength multiplex recording system
KR100354749B1 (en) Optical pickup apparatus capable of suppresing cross talk from adjacent tracks
JP2629319B2 (en) Film thickness monitor
JPS60214429A (en) Tracking error detector
US5212674A (en) Optical high density data reproducing apparatus using interference techniques
JP2653105B2 (en) How to measure a wobbling truck
KR100556692B1 (en) Reproductive Apparatus For Optical Disc
JPH0298846A (en) Measuring method for track pitch irregularity
JPS639034A (en) Optical information recording and reproducing device
KR100516725B1 (en) Method of producing tracking error signals in optical pickup and apparatus thereof
JPS62177732A (en) Method and device for optical information recording and reproducing
JPH05342612A (en) Optical disk player