JPS6312480B2 - - Google Patents

Info

Publication number
JPS6312480B2
JPS6312480B2 JP56175030A JP17503081A JPS6312480B2 JP S6312480 B2 JPS6312480 B2 JP S6312480B2 JP 56175030 A JP56175030 A JP 56175030A JP 17503081 A JP17503081 A JP 17503081A JP S6312480 B2 JPS6312480 B2 JP S6312480B2
Authority
JP
Japan
Prior art keywords
insulin
reaction
protecting group
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56175030A
Other languages
Japanese (ja)
Other versions
JPS57155997A (en
Inventor
Kazuyuki Morihara
Tatsu Oka
Hiroshige Tsuzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP56175030A priority Critical patent/JPS57155997A/en
Publication of JPS57155997A publication Critical patent/JPS57155997A/en
Priority to JP61266447A priority patent/JPS62116598A/en
Publication of JPS6312480B2 publication Critical patent/JPS6312480B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳现な説明】 本発明はむンシナリン誘導䜓に関するものであ
る。本発明者らはトリプシンたたはカルボニル偎
塩基性アミノ酞残基に特異性を瀺すトリプシン様
酵玠の䜜甚によりデス―B30―むンシナリンに
〜100倍モル量のスレオニン誘導䜓を反応させお、
぀いで埗られる瞮合物から保護基を陀去しおむン
シナリンを埗る方法を発芋した。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to insulin derivatives. The present inventors have demonstrated that des-B30-insulin can be synthesized by the action of trypsin or a trypsin-like enzyme that has specificity for basic amino acid residues on the carbonyl side.
~100 times the molar amount of threonine derivative is reacted,
They then discovered a method to obtain insulin by removing the protecting group from the resulting condensate.

むンシナリンは糖尿病の治療薬ずしお代替品の
ない貎重な薬物であり、珟圚䞻ずしお牛むンシナ
リンおよび豚むンシナリンが治療に甚いられおい
る。しかし、これらのむンシナリンは構成アミノ
酞の䞀郚が人むンシナリンず異な぀おいるため、
䜓内で抗䜓が産生されるこずがあり、抗䜓が産生
されるずそれ以埌のむンシナリンの治療効果が著
しく䜎䞋するなどの問題を生じる。したが぀お、
工業的芏暡で行ないうる人むンシナリンの合成方
法の確立が匷く垌たれおいる。
Insulin is a valuable drug with no substitutes for the treatment of diabetes, and currently bovine insulin and porcine insulin are mainly used for treatment. However, some of the constituent amino acids of these insulins are different from human insulin, so
Antibodies may be produced in the body, and the production of antibodies causes problems such as a marked decrease in the therapeutic effect of insulin. Therefore,
There is a strong desire to establish a method for synthesizing human insulin that can be carried out on an industrial scale.

本発明者らの方法によれば、人むンシナリンず
鎖30䜍のアミノ酞のみが異なる豚むンシナリン
を原料に甚いお人むンシナリンを容易に合成する
こずができる。このようにしお埗られる人むンシ
ナリンが理想的な治療甚むンシナリンであるこず
は論を俟たない。
According to the method of the present inventors, human insulin can be easily synthesized using pig insulin, which differs from human insulin only in the amino acid at position 30 of the B chain, as a raw material. There is no doubt that the human insulin obtained in this way is an ideal therapeutic insulin.

豚デスオクタペプチドむンシナリンず人むンシ
ナリンオクタペプチドから人むンシナリンを埗る
詊みは、゚ム・゚ヌ・ルツテンベルグM.A・
Ruttenbergがサむ゚ンスScience177å·»623
頁1972幎に、およびアヌル・オヌベルマむダ
ヌR.Obermeierらがサむツシナリフト・フナ
ア・ヒゞオロゞツシ゚・ヘミヌZeitschrift fušr
Physiologische Chemie357å·»759頁1976幎
に発衚しおいるように既になされおいるが、䜕れ
も化孊的手段によるものであり、前者においおは
工皋の最埌にアルカリ凊理を含み、これに䌎う副
反応がさけられない。たた埌者の堎合は反応が非
特異的で倚くの副反応で生じるため、粟補が耇雑
か぀困難ずなり収率も著しく䜎い。埓぀お、工業
的芏暡では到底行ない埗ない。
Attempts to obtain human insulin from pig desoctapeptide insulin and human insulin octapeptide were conducted by M.A. Ruthtenberg (M.A.
Ruttenberg) Science vol. 177 623
(1972) and R. Obermeier et al.
Physiologische Chemie) Volume 357, Page 759 (1976)
Both methods are based on chemical means, and the former involves an alkali treatment at the end of the process, and accompanying side reactions are unavoidable. In the latter case, the reaction is non-specific and involves many side reactions, making purification complicated and difficult and resulting in extremely low yields. Therefore, it cannot be carried out on an industrial scale.

䞀方、本発明者らの方法はデス―B30―むンシ
ナリンず―スレオニン誘導䜓ずを酵玠反応によ
り瞮合させおむンシナリンを埗る方法で、公知の
化孊的手段による方法ずは異なり、反応が特異的
で副反応も生ぜず、ラセミ化も起きず、未反応原
料を損なわずに回収できる、等の利点を有する。
On the other hand, the method of the present inventors obtains insulin by condensing des-B30-insulin and an L-threonine derivative through an enzymatic reaction. It has advantages such as no reaction, no racemization, and the ability to recover unreacted raw materials without damaging them.

さらに同方法では、〜100倍モル量の―ス
レオニン誘導䜓を甚いるこずにより、通垞の酵玠
反応では圓然起きる鎖22䜍のアルギニンのカル
ボニル偎切断が防止され、したが぀お通垞の酵玠
反応では必須であるアルギニン偎鎖ぞの保護基導
入が䞍必芁である。
Furthermore, in the same method, by using 1 to 100 times the molar amount of L-threonine derivatives, the carbonyl side cleavage of arginine at position 22 of the B chain, which naturally occurs in normal enzymatic reactions, is prevented; Introduction of a protecting group to the arginine side chain, which is essential, is unnecessary.

同方法は、トリプシンたたはカルボニル偎塩基
性アミノ酞残基に特異性を瀺すトリプシン様酵玠
の存圚䞋に、鎖30䜍のアミノ酞が欠けたデス―
B30―むンシナリン以䞋化合物ず蚘すに
〜100倍モル量の―スレオニン誘導䜓以䞋化
合物ず蚘すを反応させ、぀いで埗られる瞮合
物から保護基を陀去するこずよりなる。化合物
は䞋蚘の䞀般匏で衚わされる。
This method uses trypsin or a trypsin-like enzyme that has specificity for basic amino acid residues on the carbonyl side.
1 for B30-insulin (hereinafter referred to as compound)
It consists of reacting an L-threonine derivative (hereinafter referred to as compound) in a molar amount of ~100 times, and then removing the protecting group from the resulting condensate. The compound is represented by the general formula below.

匏䞭、R1は氎玠たたはヒドロキシ基の保護
基、R2はカルボキシル基の保護基をそれぞれ衚
わす。 䞊蚘の化合物は豚起源のむンシナリンにカル
ボキシペプチダヌれを䜜甚させるこずにより埗
られ、䟋えば、む・ダブリナヌ・シナミツトE.
W.Schmittらがホツペヌセむラヌズ・サむトシ
ナリフト・フナア・ヒゞオロゞツシ゚・ヘミヌ
Hoppe―Seyler′sZeitschrift fušr
Physiologische Chemie359å·»799頁1978幎
に蚘茉しおいる方法により補造できる。たたアク
ロモバクタヌ・リテむカスAchromobacter
lyticusが産生するリゞンに特異性を有し、リ
ゞンのカルボニル偎を切断する酵玠を甚いおも容
易に補造するこずができる。同酵玠の分離および
性状に぀いおは、正朚らがアグリカルチナラル・
アンド・バむオロゞカル・ケミストリヌ
Agricultural and Biological Chemistry42å·»
1443頁1978幎に発衚しおおり、同論文におい
おは䞊蚘性状を有する酵玠をプロテアヌれず称
しおいる。
(In the formula, R 1 represents hydrogen or a hydroxy group-protecting group, and R 2 represents a carboxyl group-protecting group.) The above compound is obtained by treating insulin of pig origin with carboxypeptidase A, and for example, E.D.
Hoppe-Seyler's Zeitschrift fušr
Physiologische Chemie) Volume 359, Page 799 (1978)
It can be manufactured by the method described in . Also, Achromobacter liteicus
lyticus), and can be easily produced using an enzyme that cleaves the carbonyl side of lysine. Regarding the isolation and properties of the enzyme, Masaki et al.
Agricultural and Biological Chemistry Volume 42
1443 (1978), in which the enzyme with the above properties is called protease.

化合物は、その偎鎖官胜基であるヒドロキシ
基が保護されおいなくずも反応に䟛しうるが、保
護基を導入するならば、ペプチド合成反応で通垞
利甚される保護基、䟋えば、―ブチル、ベンゞ
ル、アセチルなどを甚いるずよい。たた、化合物
のカルボキシル基は保護されおいるこずが必芁
で、通垞甚いられるカルボキシル基の保護基を䜿
甚すればよい。䟋えば、―ブチル、ベンゞルな
どのアルキルおよびアラルキル゚ステルの圢で修
食する。
A compound can be subjected to a reaction even if its side chain functional group, hydroxy group, is not protected, but if a protecting group is introduced, a protecting group commonly used in peptide synthesis reactions, such as t-butyl, benzyl , acetyl, etc. may be used. Further, the carboxyl group of the compound needs to be protected, and a commonly used protecting group for carboxyl groups may be used. For example, modification in the form of alkyl and aralkyl esters such as t-butyl, benzyl, etc.

䞊蚘の保護基の遞択においおは、それらの保護
基の導入たたは陀去凊理においお、むンシナリン
を倉性したり倱掻したりしないものを遞択するよ
う考慮すべきである。ペプチド合成に甚いる保護
基に぀いおは、゚ム・ボダンスツキヌM.
Bodanszkyらがペプチド・シンセシス
Peptide Synthesis第版1976幎ゞペ
ン・りむリヌ・アンド・サンズJohn Wiley
Sonsに詳しく蚘茉しおいる。
When selecting the above-mentioned protecting groups, consideration should be given to selecting those that do not denature or deactivate insulin during the introduction or removal treatment of the protecting groups. Regarding protecting groups used in peptide synthesis, M. Bodansudsky (M.
Peptide Synthesis, 2nd edition (1976) (John Wiley & Sons)
Sons)).

なお、保護基の遞択においおは、䞀回の保護基
脱離操䜜により同時に陀去できるものを遞ぶのが
奜たしいこずは論を俟たない。
It goes without saying that when selecting a protecting group, it is preferable to select one that can be simultaneously removed by a single protecting group removal operation.

同方法で䜿甚する酵玠は、トリプシンたたは各
皮動怍物および埮生物起源のカルボキシル偎塩基
性アミノ酞に特異性を瀺すトリプシン様酵玠など
を含む。トリプシン様酵玠ずしおは、䟋えば、ス
トレプトマむセス属菌から抜出分離された酵玠が
ある。同酵玠に぀いおは森原らがアヌキバス・オ
ブ・バむオケミストリヌ・アンド・バむオフむゞ
クスArch.Biochem.Biophys.126å·»971頁
1968幎に、吉田らが゚フむヌビヌ゚ス・レタ
ヌズFEBS Lett.15å·»129頁1971幎に蚘茉
しおいる。䜿甚する酵玠は混圚するキモトリプシ
ンたたはキモトリプシン様の掻性を陀去する目的
でトシル――プニルアラニンクロロメチルケ
トンTPCKなどで凊理するずよい。
Enzymes used in the method include trypsin or trypsin-like enzymes that exhibit specificity for carboxyl-side basic amino acids derived from various animals, plants, and microorganisms. Examples of trypsin-like enzymes include enzymes extracted and separated from Streptomyces bacteria. Regarding the enzyme, Morihara et al. published Arch.Biochem.Biophys., Vol. 126, p. 971 (1968), and Yoshida et al. published FEBS Letters, Vol. 15. It is described on page 129 (1971). The enzyme used may be treated with tosyl-L-phenylalanine chloromethyl ketone (TPCK) or the like for the purpose of removing contaminating chymotrypsin or chymotrypsin-like activity.

化合物ず化合物の瞮合反応は䞊蚘の酵玠の
ペプチド結合圢成反応に適した条件で行なわれ
る。PHは〜、特に〜付近が奜たしく、反
応枩床は〜50℃、ずくに20〜40℃がよい。化合
物ず化合物の濃床は可胜なかぎり高いこずが
のぞたしい。さらに化合物ず化合物は
〜100のモル比で反応させるのがよく、ずく
に20〜100付近がよい。反応液には氎ず
混合しうる適圓な有機溶媒を加える。有機溶媒の
添加は、反応液䞭の氎の濃床を䞋げお、逆反応で
ある加氎分解反応を抑えるだけでなく、化合物
および化合物の溶解性を著しく高める点で効果
がある。有機溶媒ずしおは、䟋えば、メタノヌ
ル、゚タノヌル、ゞメチルホルムアミド、ゞメチ
ルスルホキシド、グリセリンなどを単独でたたは
組合せお甚いる。ずくに〜65、ずくに40〜60
の濃床で甚いるずよい。䞀般に、有機溶媒を甚
いる堎合は、原料の溶解床、酵玠の倉性や加氎分
解反応などを考慮しお氎に察する割合を決定す
る。反応液の緩衝剀ずしおは、トリスヒドロキシ
メチルアミノメタントリスや炭酞塩などが甚
いられる。
The condensation reaction between the compounds is carried out under conditions suitable for the peptide bond forming reaction of the enzyme described above. The pH is preferably 5 to 8, particularly around 6 to 7, and the reaction temperature is preferably 0 to 50°C, particularly 20 to 40°C. It is desirable that the compound and compound concentrations be as high as possible. Furthermore, the ratio of compound to compound is 1:1
It is preferable to carry out the reaction at a molar ratio of ~100:1, particularly around 20:1~100:1. A suitable organic solvent miscible with water is added to the reaction solution. Addition of an organic solvent is effective not only in reducing the concentration of water in the reaction solution and suppressing the hydrolysis reaction, which is a reverse reaction, but also in significantly increasing the solubility of the compound and the compound. As the organic solvent, for example, methanol, ethanol, dimethylformamide, dimethyl sulfoxide, glycerin, etc. are used alone or in combination. Especially 0-65%, especially 40-60
It is recommended to use it at a concentration of %. Generally, when using an organic solvent, the ratio to water is determined by considering the solubility of raw materials, denaturation of enzymes, hydrolysis reaction, etc. As a buffer for the reaction solution, trishydroxymethylaminomethane (Tris), carbonate, or the like is used.

反応液の酵玠濃床は基質濃床や酵玠の掻性で異
な぀おくるが、垂販結晶トリプシンを甚いる堎合
はmgml〜10mgml付近がよい。酵玠はそのた
た甚いおもよいし、適圓な䞍溶性担䜓に結合又は
包含させた固定化酵玠ずしお甚いおもよい。
The enzyme concentration in the reaction solution varies depending on the substrate concentration and enzyme activity, but when using commercially available crystalline trypsin, it is preferably around 1 mg/ml to 10 mg/ml. The enzyme may be used as it is, or may be used as an immobilized enzyme bound to or included in a suitable insoluble carrier.

反応時間は、反応条件により異なるが、通垞は
酵玠反応が平衡に達するに芁する時間をずればよ
く、通垞〜72時間、倚くの堎合〜24時間皋床
である。
Although the reaction time varies depending on the reaction conditions, it is usually sufficient to allow the time required for the enzyme reaction to reach equilibrium, which is usually about 3 to 72 hours, and in most cases about 6 to 24 hours.

反応終了埌はペプチドの分離法ずしお通垞甚い
られる方法を組合せお利甚し、鎖30䜍スレオニ
ンがカルボキシル基に保護基を有しか぀ヒドロキ
シ基に保護基を有しおいおもよい人むンシナリン
を埗、぀いで目的ずする人むンシナリンを埗る。
After the reaction, a combination of methods commonly used for separating peptides was used to obtain human insulin, in which the threonine at position 30 of the B chain has a protecting group on the carboxyl group and may have a protecting group on the hydroxyl group. , then the intended person gets insulin.

䟋えば、反応終了埌反応液をゲル過にかけ、
未反応の化合物および酵玠を単離回収する。回
収した化合物および酵玠はそのたた再䜿甚が可
胜である。残郚を適圓なクロマトグラフむヌに付
し、生成した鎖30䜍スレオニンがカルボキシル
基に保護基を有しか぀ヒドロキシ基に保護基を有
しおいおもよい人むンシナリンず未反応デス―
B30―むンシナリンを分離する。埌者は化合物
ずしお再䜿甚できる。前者は曎に保護基脱離反応
に付し、人むンシナリンずする。
For example, after the reaction is completed, the reaction solution is subjected to gel filtration,
Unreacted compounds and enzymes are isolated and recovered. The recovered compounds and enzymes can be reused as they are. The remainder is subjected to appropriate chromatography, and the generated threonine at position 30 of the B chain has a protecting group on the carboxyl group and human insulin which may have a protecting group on the hydroxyl group and unreacted des-
B30 - Separates insulin. The latter can be reused as a compound. The former is further subjected to a protecting group elimination reaction to produce human insulin.

保護基の脱離方法は甚いる保護基によ぀お異な
るが、通垞の脱離方法に準じお行えばよく、䟋え
ば、ヒドロキシ基やカルボキシル基の保護基ずし
お䜿甚される―ブチル基は、カチオン捕捉剀
䟋えばアニ゜ヌルの存圚䞋トリフルオロ酢酞
で凊理するず脱離する。前蚘のように単䞀の脱離
凊理で陀去できる保護基をスレオニンの偎鎖官胜
基およびカルボキシル基の保護に甚いるず、脱離
凊理が簡単で収率も向䞊する。カルボキシル末端
がその他の゚ステルにな぀おいる堎合も適圓な加
氎分解凊理により保護基を陀去できる。
The method for removing the protecting group differs depending on the protecting group used, but it can be carried out according to the usual method. It is eliminated upon treatment with trifluoroacetic acid in the presence of agents such as anisole. When a protecting group that can be removed by a single elimination treatment as described above is used to protect the side chain functional group and carboxyl group of threonine, the elimination treatment is simple and the yield is improved. Even when the carboxyl terminal is converted to another ester, the protecting group can be removed by appropriate hydrolysis treatment.

本発明の鎖30䜍スレオニンがカルボキシル基
に保護基を有しか぀ヒドロキシ基に保護基を有し
おいおもよい人むンシナリンから埗られるむンシ
ナリンは先に蚘茉したように血糖降䞋䜜甚を有す
る糖尿病治療薬ずしおたたは詊薬ずしお有甚であ
る。本発明者らの方法で豚むンシナリンより合成
した人むンシナリンはマりスに察する血糖降䞋䜜
甚詊隓においお牛むンシナリンず同等の効果を瀺
した。
The insulin obtained from human insulin, in which the threonine at position 30 of the B chain of the present invention has a protective group on the carboxyl group and may have a protective group on the hydroxyl group, has a hypoglycemic effect as described above for the treatment of diabetes. Useful as a medicine or reagent. Human insulin synthesized from pig insulin by the method of the present inventors showed an effect equivalent to that of bovine insulin in a hypoglycemic test on mice.

本発明化合物より合成した人むンシナリンは、
垂販の豚むンシナリンや牛むンシナリンず同様に
補剀化し、人に投䞎される。すなわち、塩化亜鉛
などを加えお亜鉛耇合䜓にしたり、リン酞氎玠ナ
トリりムや酢酞ナトリりム等の緩衝剀を加えたり
等匵液ずするため塩化ナトリりムを加えるなど、
さらに、クレゟヌル、プノヌル、パラオキシ安
息銙酞アルキル゚ステル䟋えば、メチル、゚チ
ル、プロピル、ブチル゚ステルなどなどの防腐
剀を加えるなどの垂販むンシナリン補剀に甚いら
れる調補法を利甚し、泚射剀を補造する。かかる
泚射剀の投䞎量は患者の症状に応じお異なるが、
垂販のむンシナリン補剀の投䞎ず同様に行えばよ
く、成人日玄〜100単䜍を投䞎するようにす
るずよい。
Human insulin synthesized from the compound of the present invention is
It is formulated and administered to humans in the same way as commercially available swine and bovine insulin. That is, adding zinc chloride etc. to make a zinc complex, adding buffers such as sodium hydrogen phosphate or sodium acetate, and adding sodium chloride to make it an isotonic solution.
Furthermore, an injection is manufactured using a preparation method used for commercially available insulin preparations, such as adding a preservative such as cresol, phenol, or alkyl ester of paraoxybenzoic acid (eg, methyl, ethyl, propyl, butyl ester, etc.). The dosage of such injections varies depending on the patient's symptoms, but
It may be administered in the same manner as commercially available insulin preparations, and it is recommended that adults administer about 1 to 100 units per day.

以䞋に実斜䟋においお、本発明化合物の補造䟋
を瀺すが、実斜䟋は本発明を䜕ら限定するもので
ない。
In the Examples below, production examples of the compounds of the present invention are shown, but the Examples are not intended to limit the present invention in any way.

なお、実斜䟋で甚いる略号は䞋蚘の意味を衚わ
す。
In addition, the abbreviations used in the examples represent the following meanings.

Ala アラニン Ile む゜ロむシン Arg アルギニン Leu ロむシン Asn アスパラギン Lys リゞン Asp アスパラギン酞
Phe プニルアラニン CySO3H システむン酞 Pro プロリン Glu グルタミン酞 Ser セリン Gln グルタミン Thr スレオニン Gly グリシン Tyr チロシン His ヒスチゞン Val バリン OBut ―ブチル゚ステル残基 たた、デス―B30―むンシナリンずはむンシナ
リン鎖の30䜍アミノ酞が欠損しおいるむンシナ
リン、䟋えば、豚むンシナリンではアラニンが欠
損しおいるむンシナリンをいう。
Ala Alanine Ile Isoleucine Arg Arginine Leu Leucine Asn Asparagine Lys Lysine Asp Aspartic acid
Phe Phenylalanine CySO 3 H Cysteinic acid Pro Proline Glu Glutamic acid Ser Serine Gln Glutamine Thr Threonine Gly Glycine Tyr Tyrosine His Histidine Val Valine OBu t t-Butyl ester residue Des-B30-insulin is the 30th position of insulin B chain It refers to insulin that is deficient in amino acids, such as porcine insulin, which is deficient in alanine.

実斜䟋  (1) デス―B30―むンシナリン豚型 豚むンシナリン500mgを0.1M炭酞氎玠アンモニ
りムPH8.3100mlに溶解し、結晶カルボキシペ
プチダヌれワヌシングトン瀟補、ゞむ゜プロ
ピルフルオロホスヘヌト凊理、49umgmgを
添加しお宀枩で時間反応させる。アラニンの生
成量が0.77M1Mむンシナリンのずきに反応を
止め、反応物を凍結也燥埌、0.5M酢酞に溶解し
超埮现粒のセフアデツクスG50のカラム3.5×
95cmに吞着させ、0.5M酢酞でフラクシペン
あたり11.5mlで溶出する。フラクシペンの40〜60
番を集め凍結也燥し暙起化合物460mgを埗る。収
率92。
Example 1 (1) Des-B30-insulin (pig type) 500 mg of porcine insulin was dissolved in 100 ml of 0.1 M ammonium bicarbonate (PH8.3), and crystalline carboxypeptidase A (manufactured by Worthington Co., Ltd., treated with diisopropyl fluorophosphate, 49 u /mg) and react at room temperature for 8 hours. The reaction was stopped when the amount of alanine produced was 0.77M/1M insulin, and the reaction product was lyophilized, dissolved in 0.5M acetic acid, and added to a column of ultrafine Sephadex G50 (3.5
95cm) and elute with 0.5M acetic acid at 11.5ml per fraction. 40-60 of fraction
The sample was collected and lyophilized to obtain 460 mg of the labeled compound. Yield 92%.

生成物を酞加氎分解6M塩酞、110℃、24時
間に付しお埗たアミノ酞分析倀は䞋蚘のずおり
である。括匧内の数倀は理論倀を瀺す。以䞋にお
いおも同様。
The amino acid analysis values obtained by subjecting the product to acid hydrolysis (6M hydrochloric acid, 110°C, 24 hours) are as follows. Values in parentheses indicate theoretical values. The same applies to the following.

Lys 1.00(1) His 1.91(2) Arg 0.95(1) Asp 3.21(3) Thr 2.09(2) Ser 2.97(3) Glu 7.35(7) Gly 4.29(4) Ala 1.26(1) CySO3H 5.94(6) Val 3.86(4) Ile 1.55(2) Leu 6.53(6) Tyr 4.08(4) Phe 3.22(3) Pro 1.2(1)。Lys 1.00(1), His 1.91(2), Arg 0.95(1), Asp 3.21(3), Thr 2.09(2), Ser 2.97(3), Glu 7.35(7), Gly 4.29(4), Ala 1.26 (1), CySO 3 H 5.94(6), Val 3.86(4), Ile 1.55(2) Leu 6.53(6), Tyr 4.08(4) Phe 3.22(3), Pro 1.2(1).

(2) 〔B30―Thr―OBut〕―むンシナリン豚
型 (1)の生成物100mg10mMず―スレオニン
――ブチル゚ステル154mg500mMを゚タノ
ヌルゞメチルホルムアミド混液1.05
mlに溶解し、結晶トリプシンワヌシングトン瀟
補、回再結晶mgを含有する0.5M硌酞塩緩
衝液PH6.50.75mlず混合する。なお、この混
合液にはトシル――プニルアラニンクロロメ
チルケトン以䞋TPCKず蚘すが最終濃床
0.01mMで含有されるようにしおおく。同混合液
を37℃で晩保぀。高速液䜓クロマトグラフむヌ
により目的化合物の生成を確認し収率を求めるず
75であ぀た。混合液を氷酢酞で酞性ずしたのち
超埮现粒のセフアデツクスG50のカラム4.2×
130cmでゲル過を行い、トリプシン含有分画、
暙蚘むンシナリン誘導䜓を含有する分画、―ス
レオニン――ブチル゚ステル含有分画に分け
る。酵玠掻性およびニンヒドリン反応を枬定し、
トリプシンおよびスレオニン―ブチル゚ステル
は各々50回収されるこずが確認された。むンシ
ナリン誘導䜓を含有する分画を凍結也燥し、暙蚘
化合物の粗粉末89mgを埗る。
(2) [B30-Thr-OBu t ]-Insulin (pig type) 100 mg (10 mM) of the product from (1) and 154 mg (500 mM) of L-threonine-t-butyl ester were mixed in an ethanol/dimethylformamide mixture (1:1). ) 1.05
ml and mixed with 0.75 ml of 0.5 M borate buffer (PH 6.5) containing 4 mg of crystalline trypsin (Worthington, recrystallized three times). This mixed solution contains tosyl-L-phenylalanine chloromethyl ketone (hereinafter referred to as TPCK) at a final concentration of
Keep it contained at 0.01mM. The mixture was kept at 37°C overnight. After confirming the production of the target compound using high performance liquid chromatography and determining the yield,
It was 75%. After making the mixture acidic with glacial acetic acid, it was added to a column of ultra-fine particle Cephadex G50 (4.2×
Perform gel filtration with 130 cm) to separate the trypsin-containing fraction,
Separate into a fraction containing the title insulin derivative and a fraction containing L-threonine-t-butyl ester. Measure enzyme activity and ninhydrin reaction,
It was confirmed that trypsin and threonine t-butyl ester were each recovered at 50%. The fraction containing the insulin derivative is lyophilized to obtain 89 mg of a crude powder of the title compound.

次いで、0.01Mトリス緩衝液PH7.6ず7Må°¿
玠で緩衝化したDEAE―セフアデツクスA25のカ
ラム1.9×24.5cmに䞊蚘生成物を℃でかけ、
䞊蚘緩衝液を800ml流したのち食塩濃床0.3Mたで
盎線的に濃床募配を぀けた溶出を行い、0.08〜
0.09M濃床付近の分画ず0.13〜0.14濃床付近の
分画を順次埗る。各分画を盎ちに〜日間冷
所で0.01M酢酞アンモニりム溶液に察しお透析し
た埌凍結也燥し、分画より粉末35mgを、分画
より27mgを埗る。高速液䜓クロマトグラフむヌお
よびポリアクリルアミドゲル電気泳動により、前
者が暙蚘化合物であり埌者がデス―B30―むンシ
ナリン豚型ず暙蚘化合物の混合物であるこず
が確認された。
The above product was then applied to a column (1.9 x 24.5 cm) of DEAE-Sephadex A25 buffered with 0.01M Tris buffer (PH7.6) and 7M urea at 4°C.
After flowing 800 ml of the above buffer, elution was performed with a linear concentration gradient up to a salt concentration of 0.3M, and
Fraction A with a concentration around 0.09M and fraction B with a concentration around 0.13 to 0.14 are sequentially obtained. Each fraction was immediately dialyzed against 0.01M ammonium acetate solution in a cold place for 3 to 4 days, and then freeze-dried.35mg of powder was obtained from fraction A and fraction B.
Get more than 27mg. High performance liquid chromatography and polyacrylamide gel electrophoresis confirmed that the former was the title compound and the latter was a mixture of des-B30-insulin (porcine type) and the title compound.

暙蚘化合物の高速液䜓クロマトグラフむヌおよ
びポリアクリルアミドゲル電気泳動による枬定倀
を以䞋に瀺す。
The values measured by high performance liquid chromatography and polyacrylamide gel electrophoresis of the title compound are shown below.

ポリアクリルアミドゲル電気泳動PH10
ゲル18.1mAcm2泳動時間100分移動距離
4.3cm。
Polyacrylamide gel electrophoresis (PH8; 10%
Gel; 18.1mA/cm 2 ; Electrophoresis time 100 minutes): Travel distance
4.3cm.

高速液䜓クロマトグラフむヌヌクレオシル
Nucleosil7C18Macherey―Nagel瀟補
mm×50mmプレカラムおよびmm×250mmメ
むンカラム32アセトニトリル―バツフアヌ
溶液2mMリン酞、5mM・―ブチルスルホン
酞ナトリりム、50mM硫酞ナトリりム、PH3.0
流速毎分ml保持時間13.2分。
High performance liquid chromatography [Nucleosil 7C 18 (Macherey-Nagel); 4
mm x 50 mm (pre-column) and 4 mm x 250 mm (main column); 32% acetonitrile-buffer solution (2mM phosphoric acid, 5mM sodium n-butylsulfonate, 50mM sodium sulfate, PH3.0);
Flow rate: 2 ml per minute]: Retention time 13.2 minutes.

参考䟋 人むンシナリン アニ゜ヌル0.2mlを含むトリフルオロ酢酞ml
を䞊蚘(2)で埗た化合物30mgに加え、宀枩で30分保
぀。窒玠気流䞭でトリフルオロ酢酞を陀き、1N
酢酞mlの存圚䞋、゚ヌテル15mlでアニ゜ヌルを
抜出した埌、酢酞郚を凍結也燥し暙蚘化合物28mg
を埗る。原料の玔床を77ずするず収率43であ
る。
Reference example Human insulin: 2 ml of trifluoroacetic acid containing 0.2 ml of anisole
Add to 30 mg of the compound obtained in (2) above and keep at room temperature for 30 minutes. Remove trifluoroacetic acid and 1N in a nitrogen stream.
After extracting anisole with 15 ml of ether in the presence of 2 ml of acetic acid, the acetic acid portion was lyophilized to yield 28 mg of the title compound.
get. If the purity of the raw material is 77%, the yield is 43%.

本品はアミノ酞分析倀、スラブゲル電気泳動、
高速液䜓クロマトグラムにより暙蚘化合物ず同定
した。
This product has amino acid analysis values, slab gel electrophoresis,
It was identified as the title compound by high performance liquid chromatogram.

(1)ず同様の条件で行぀たアミノ酞分析の結果は
䞋蚘のずおりである。
The results of amino acid analysis conducted under the same conditions as (1) are as follows.

LyS 1.00(1) His 1.89(2) Arg 0.87(1) Asp 3.32(3) Thr 3.16(3) Ser 2.99(3) Glu 7.35(7) Pro 1.29(1) Gly 4.39(4) Ala 1.26(1) CySO3H 4.6(6) Val 3.93(4) Ile 1.61(2) Leu 6.51(6) Tyr 3.68(4) Phe 3.19(3)。LyS 1.00(1), His 1.89(2), Arg 0.87(1), Asp 3.32(3), Thr 3.16(3), Ser 2.99(3), Glu 7.35(7), Pro 1.29(1), Gly 4.39 (4), Ala 1.26(1), CySO 3 H 4.6(6), Val 3.93(4), Ile 1.61(2), Leu 6.51(6), Tyr 3.68(4), Phe 3.19(3).

スラブゲル電気泳動PH10ゲル
18.1mAcm2泳動時間100分移動距離6.0cm。
高速液䜓クロマトグラフむヌ〔ヌクレオシル
Nucleosil7C18Macherey―Nagel瀟補
mm×50mmプレカラムおよびmm×250mmメ
むンカラム32アセトニトリル―バツフアヌ
溶液5mMリン酞、5mM・―ブチルスルホン
酞ナトリりム、50mM硫酞ナトリりム、PH3.0
流速毎分ml〕保持時間4.97分。
Slab gel electrophoresis (PH8; 10% gel;
18.1mA/cm 2 ; migration time 100 minutes): moving distance 6.0cm.
High performance liquid chromatography [Nucleosil 7C 18 (Macherey-Nagel); 4
mm x 50 mm (pre-column) and 4 mm x 250 mm (main column); 32% acetonitrile-buffer solution (5mM phosphoric acid, 5mM sodium n-butylsulfonate, 50mM sodium sulfate, PH3.0);
Flow rate: 2 ml per minute]: Retention time 4.97 minutes.

Claims (1)

【特蚱請求の範囲】  鎖30䜍スレオニンがカルボキシル基に保護
基を有しか぀ヒドロキシ基に保護基を有しおいお
もよい人むンシナリン。  カルボキシル基の保護基がアルキルである特
蚱請求の範囲の人むンシナリン。  ヒドロキシ基に保護基を有さない特蚱請求の
範囲の人むンシナリン。  ヒドロキシ基に保護基を有さない特蚱請求の
範囲の人むンシナリン。
[Scope of Claims] 1. Human insulin in which the threonine at position 30 of the B chain has a protecting group on the carboxyl group and may have a protecting group on the hydroxyl group. 2. The human insulin of claim 1, wherein the carboxyl group protecting group is alkyl. 3. The human insulin according to claim 1, which does not have a protecting group on the hydroxyl group. 4. Human insulin according to claim 2, which does not have a protecting group on the hydroxyl group.
JP56175030A 1981-10-30 1981-10-30 Insulin derivative Granted JPS57155997A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56175030A JPS57155997A (en) 1981-10-30 1981-10-30 Insulin derivative
JP61266447A JPS62116598A (en) 1981-10-30 1986-11-07 Production of insulin derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175030A JPS57155997A (en) 1981-10-30 1981-10-30 Insulin derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4571079A Division JPS55138393A (en) 1979-04-13 1979-04-13 Semisynthesis of insulin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61266447A Division JPS62116598A (en) 1981-10-30 1986-11-07 Production of insulin derivative

Publications (2)

Publication Number Publication Date
JPS57155997A JPS57155997A (en) 1982-09-27
JPS6312480B2 true JPS6312480B2 (en) 1988-03-18

Family

ID=15988985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175030A Granted JPS57155997A (en) 1981-10-30 1981-10-30 Insulin derivative

Country Status (1)

Country Link
JP (1) JPS57155997A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135789A (en) * 1978-04-13 1979-10-22 Nippon Soda Co Ltd Preparation of human insulin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135789A (en) * 1978-04-13 1979-10-22 Nippon Soda Co Ltd Preparation of human insulin

Also Published As

Publication number Publication date
JPS57155997A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
CA2052375C (en) Parathyroid hormone derivatives
US4320196A (en) Semi-synthesis of human insulin
Gregory et al. The primary structure of human urogastrone
JPH052654B2 (en)
EP0561412A1 (en) Parathyroid hormone derivatives
EP0017938B1 (en) Process for preparing a b30-threonine insulin
EP0045187A1 (en) A process for enzymatic replacement of the B-30 amino acid in insulins
US4320197A (en) Semi-synthesis of human insulin
FI79860B (en) FOERFARANDE FOER FRAMSTAELLNING AV HUMANINSULIN DES-PHEB1-HUMANINSULIN ELLER DERIVAT DAERAV UR SVININSULIN, DES-PHEB1-SVININSULIN ELLER DERIVAT DAERAV.
KR101036524B1 (en) Process for producing modified peptide
FI79117B (en) FOERFARANDE FOER FRAMSTAELLNING AV BOVINE-, SVIN- ELLER HUMANINSULIN.
EP0485458B1 (en) Thioacylating reagents and intermediates, thiopeptides, and methods for preparing and using same
Nakaie et al. Inhibition of renin by conformationally restricted analogues of angiotensinogen
JPS6312480B2 (en)
JPH0150719B2 (en)
Bongers et al. Enzymic semisynthesis of a superpotent analog of human growth hormone-releasing factor
JPS6112920B2 (en)
JPS58189149A (en) Semisynthesis of human insulin
JPS6246560B2 (en)
JPH0150718B2 (en)
JP2782232B2 (en) Protease inhibitor
EP0348399B1 (en) Sorbin and peptide derivatives which increase aborption by the mucous membranes
CA2370113A1 (en) Method of removing n-terminal alanine residues from polypeptides with aeromonas aminopeptidase
DK155887B (en) METHOD FOR PREPARING OEB30-THR (R1) (R2) AA - INSULIN
JPH02219589A (en) Production of peptide