JPS63124237A - Optical memory element - Google Patents

Optical memory element

Info

Publication number
JPS63124237A
JPS63124237A JP61269675A JP26967586A JPS63124237A JP S63124237 A JPS63124237 A JP S63124237A JP 61269675 A JP61269675 A JP 61269675A JP 26967586 A JP26967586 A JP 26967586A JP S63124237 A JPS63124237 A JP S63124237A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
voltage
memory element
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61269675A
Other languages
Japanese (ja)
Inventor
Yuji Miura
裕二 三浦
Noboru Baba
昇 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61269675A priority Critical patent/JPS63124237A/en
Publication of JPS63124237A publication Critical patent/JPS63124237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an optical memory element capable of reproducing signals with high sensitivity without using a laser light source by providing a Schottky varrier type semiconductor element based on junction between a semiconductor and metal with a high resistance layer formed between the semiconductor and the metal. CONSTITUTION:The high resistance layer 2 and a metal electrode layer 3 are successively formed on the surface of a semiconductor substrate 1. When a voltage is impressed to the substrate 1 and the layer 3, voltage destruction of the layer 2 is generated and Schottky junction based on the base 1 and the layer 3 is obtained at the portion. Although said voltage destruction part generates optical electromotive force and rectifying action, the substrate 1 is insulated from the layer 3 through the layer 2 on a portion having no voltage impression and optical electromotive force and rectifying action based on Schottky junction are not generated on the portion. Thus, the memory element for detecting the existence of optical electromotive force by impressing a voltage at the time of recording and radiating light 4 near the layer 3 at the time of reproducing can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光メモリ素子に係り、特に再生感度が優れた光
メモリ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical memory device, and particularly to an optical memory device with excellent reproduction sensitivity.

〔従来の技術〕[Conventional technology]

近年、情報量の急激な増加に伴い、これらの情報を高速
・高密度に処理する技術として、光を用いたメモリ素子
が注目されている。前記光メモリ素子は、現在、主流と
なっている磁気メモリ素子に比べて記録密度が高くしか
も高速に記録・再生ができる特徴を有する。これらの光
メモリ素子には、穴形成型、非晶質−結晶間の相転移型
、磁化反転型がある。穴形成型は、Te、Pb−Te 
−Be等の記録膜にレーザ光により1μm程度の六  
 ゛をあけ、記録とし、その穴の有無を再びレーザ光を
照射して光検出器で検出することで再生する方式をとっ
ている。このため、1度記録した箇所は、消去できない
ことから書き換えが不可能である。
In recent years, with the rapid increase in the amount of information, memory devices using light have been attracting attention as a technology for processing this information at high speed and high density. The optical memory element has a feature that it has a higher recording density and can record and reproduce data at higher speed than the currently mainstream magnetic memory element. These optical memory elements include hole formation type, amorphous-crystalline phase transition type, and magnetization reversal type. The hole forming mold is Te, Pb-Te
- A laser beam is applied to a recording film such as Be, which
The method is to drill a hole, record it, and reproduce it by irradiating the hole with a laser beam and detecting it with a photodetector. For this reason, a location once recorded cannot be erased and therefore cannot be rewritten.

書き換えが可能なものには、相転移型、磁化反転型があ
り、相転移型は、非晶質−結晶間の光学的特性の違いを
利用しており、記録膜となるGe−Te、5e−Te等
の非晶質膜にレーザ光を照射することで熱的に結晶化さ
せて記録する。再生は、レーザ光により非晶質及び結晶
との光学的特性の違いを検出して行い、消去は、高出力
のレーザ光を照射して、結晶化した箇所を溶融し、急冷
により再び非晶質に戻すことで行う、さらに、磁化反転
型は、GdCo、TbFe等の記録膜にレーザ光を照射
することで記録する。そして、その箇所は、熱的に磁性
が変わり、光に対してファラデー効果及びカー効果(透
過光及び反射光の偏光面が回転して楕円偏光になること
)を示すようになる。
There are two types of rewritable devices: phase change type and magnetization reversal type. - An amorphous film such as Te is irradiated with laser light to thermally crystallize and record. Regeneration is performed by detecting the difference in optical properties between amorphous and crystalline materials using a laser beam, and erasure is performed by irradiating a high-power laser beam to melt the crystallized area, and then rapidly cooling it to make it amorphous again. Furthermore, in the magnetization reversal type, recording is performed by irradiating a recording film of GdCo, TbFe, etc. with a laser beam. Then, the magnetism of that location changes thermally, and the light exhibits the Faraday effect and the Kerr effect (the polarization planes of transmitted light and reflected light rotate to become elliptically polarized light).

再正は、前記ファラデー効果及びカー効果の有無をレー
ザ光を用いて検出して、消去は、再びレーザ光を照射し
て、磁性を最初の状態に戻すことで行う。なお、この種
の光メモリ素子に関するものには、例えば、特開昭60
−191449号、同6〇−219654号等が挙げら
れる。
Recalibration is performed by detecting the presence or absence of the Faraday effect and Kerr effect using a laser beam, and erasing is performed by irradiating the laser beam again to return the magnetism to its initial state. Note that regarding this type of optical memory element, for example, Japanese Patent Laid-Open No. 60
-191449, 60-219654, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の光メモリ素子は、信号の記録・再正に半導体
レーザを必要とすることから、レーザ光源及びその焦点
制御係を装着しなければならない。
Since the conventional optical memory device described above requires a semiconductor laser for recording and re-correcting signals, it must be equipped with a laser light source and its focus controller.

また、信号の応答速度(アクセス・タイム)が約数百m
sである。
In addition, the signal response speed (access time) is approximately several hundred meters.
It is s.

本発明の目的は、レーザ光源を用いなくとも。The object of the present invention is to achieve an object without using a laser light source.

高感度に再生ができる光メモリ素子を得ることにある。The object of the present invention is to obtain an optical memory element that can be reproduced with high sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、半導体と金属の接合によるショットキーバ
リア型半導体素子において、半導体と金属の間に高抵抗
層を設けることにより達成される。
The above object is achieved by providing a high-resistance layer between the semiconductor and the metal in a Schottky barrier type semiconductor device using a semiconductor-metal junction.

〔作用〕[Effect]

ショットバリア型半導体素子は、光起電力及び整流作用
が生じる。しかし、前記素子の半導体と金属の間に高抵
抗層を設けることにより、絶縁がなされ光起電力を発生
しなくなる。そして、半導体と金属とに電圧を印加する
と高抵抗層の絶縁破壊が起きて、半導体と金属とが導通
してショットキー接合がなされ、再び光起電力を発生す
る。このような現象を利用することにより、金属層、高
抵抗層、半導体層を順次積層した素子に、高抵抗層の破
壊する電圧を印加することで記録を行い。
A shot barrier type semiconductor element generates photovoltaic force and rectification effect. However, by providing a high resistance layer between the semiconductor and metal of the element, insulation is achieved and no photovoltaic force is generated. Then, when a voltage is applied between the semiconductor and the metal, dielectric breakdown of the high-resistance layer occurs, the semiconductor and the metal become electrically conductive, a Schottky junction is formed, and a photovoltaic force is generated again. By utilizing such a phenomenon, recording can be performed by applying a voltage that destroys the high-resistance layer to an element in which a metal layer, a high-resistance layer, and a semiconductor layer are sequentially laminated.

その箇所に光を照射して光起電力の有無を検出して再正
する。このとき、光の強度は自然光程度で光起電力を発
生するため、高感度再生がなされる。
The location is irradiated with light to detect the presence or absence of photovoltaic force and recalibrate. At this time, the intensity of the light is comparable to that of natural light, and photovoltaic force is generated, so that high-sensitivity reproduction is performed.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は、本発明の光メモリ素子の基本構造を示す断面
図である。半導体基板1の上に、高抵抗層2及び金属電
極層3を順次設けたものである。
FIG. 1 is a sectional view showing the basic structure of the optical memory element of the present invention. A high resistance layer 2 and a metal electrode layer 3 are sequentially provided on a semiconductor substrate 1.

半導体基板1としては、光起電力材料であるSi。The semiconductor substrate 1 is made of Si, which is a photovoltaic material.

Ge、GaAs等が用いられ、高抵抗層2は。Ge, GaAs, etc. are used for the high resistance layer 2.

SiC,5isNa、  5iOz、  Sin、An
zOaeA Q N 、 T i Ox、 T a g
os等を用いる。前記高抵抗層1は、スパッタリング法
、CVD法及びMBE法等で作製する。金属電極層3は
、スパッタリング法、蒸着法、メッキ法等で形成したA
 u HAg、AQ、Cu′、Mo、Ni、Ti、W等
が用いられる。前記構造に作製した素子の半導体基板1
及び金属電極層3とに電圧(例えば、高抵抗層を100
0人のSiCとしたとき2〜4V)を印加すると、高抵
抗層2の電圧破壊が生じ、その箇所は、半導体基板1と
金属電極層3とによるショットキー接合がなされる。前
記ショットキー接合箇所は、光起電力ならびに整流作用
を示すようになるが、電圧を印加しない箇所では、高抵
抗層2により、半導体基板1と金属電極層3との絶縁が
なされているためショットキー接合による光起電力なら
びに整流作用を示さない。このような現象を利用するこ
とにより、記録は電圧印加、再正は金属電極層3の近傍
に光4(自然光゛、ランプ光)を照射し、光起電力の有
無を検出して行う光メモリ素子が得られる。
SiC, 5isNa, 5iOz, Sin, An
zOaeA Q N , T i Ox, T a g
Use os etc. The high-resistance layer 1 is manufactured by a sputtering method, a CVD method, an MBE method, or the like. The metal electrode layer 3 is formed by a sputtering method, a vapor deposition method, a plating method, etc.
u HAg, AQ, Cu', Mo, Ni, Ti, W, etc. are used. Semiconductor substrate 1 of the device manufactured in the above structure
and the metal electrode layer 3 (for example, a high resistance layer of 100
When a voltage of 2 to 4 V (assuming 0 SiC) is applied, voltage breakdown occurs in the high resistance layer 2, and a Schottky junction is formed between the semiconductor substrate 1 and the metal electrode layer 3 at that location. The Schottky junction exhibits a photovoltaic force and a rectifying effect, but at the location where no voltage is applied, the semiconductor substrate 1 and the metal electrode layer 3 are insulated by the high resistance layer 2, so that the Schottky junction does not exhibit photovoltaic force and rectification. Does not exhibit photovoltaic force or rectification effect due to key junction. By utilizing such a phenomenon, an optical memory element is created in which recording is performed by applying a voltage, and re-reading is performed by irradiating light 4 (natural light, lamp light) near the metal electrode layer 3 and detecting the presence or absence of photovoltaic force. is obtained.

第2図は、半導体を′Wl膜で形成した場合の光メモリ
素子の断面図である。基板5の上に金属電極層3.半導
体層6.高抵抗層2.金属電極層3aを順次設けたもの
である。基板5としては、ガラス、プラスチック等が用
いられ、半導体層6は。
FIG. 2 is a sectional view of an optical memory element in which the semiconductor is formed of a Wl film. A metal electrode layer 3 is formed on the substrate 5. Semiconductor layer 6. High resistance layer 2. Metal electrode layers 3a are sequentially provided. As the substrate 5, glass, plastic, etc. are used, and as for the semiconductor layer 6.

スパッタリング法、CVD法及びMBE法で形成される
Si、Ge、GaAs等を用いる。金属電極層3aは、
スパッタリング法、蒸着法、メッキ法で形成したA u
 HA g HA fl p Cu @ M o yN
i、Ti、W等を用いる。前記構造に作製した素子の金
属電極層3及び金属電極層3aに電圧を印加することで
記録とし、金属電極3の近傍に光4を照射して光起電力
の有無を検出することで再正を行う光メモリ素子が得ら
れる。
Si, Ge, GaAs, etc. formed by sputtering, CVD, and MBE are used. The metal electrode layer 3a is
Au formed by sputtering method, vapor deposition method, plating method
HA g HA fl p Cu @ M o yN
i, Ti, W, etc. are used. Recording is performed by applying a voltage to the metal electrode layer 3 and metal electrode layer 3a of the element fabricated in the above structure, and re-correction is performed by irradiating light 4 near the metal electrode 3 and detecting the presence or absence of photovoltaic force. An optical memory element that performs this is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、再正にショットキーバリアによる光起
電力効果を用いることで、自然光程度の光でも高感度に
再正が行える。また、レーザ光源を必要としないため装
置のコストが低減できる等の効果がある。
According to the present invention, by using the photovoltaic effect due to the Schottky barrier for recalibration, recalibration can be performed with high sensitivity even with light comparable to natural light. Further, since a laser light source is not required, the cost of the device can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光メモリ素子の基本構造を
示す断面図、第2図は半導体を薄膜で形成した場合の光
メモリ素子の断面図である。 1・・・半導体基板、2・・・高抵抗層、3・・・金属
電極層、3a・・・金属電極層、4・・・光、5・・・
基板、6・・・半導系 l 凹 2知んJ端 3 金属1層 り光 $27
FIG. 1 is a sectional view showing the basic structure of an optical memory element according to an embodiment of the present invention, and FIG. 2 is a sectional view of an optical memory element in which a semiconductor is formed as a thin film. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... High resistance layer, 3... Metal electrode layer, 3a... Metal electrode layer, 4... Light, 5...
Substrate, 6...Semiconductor type l Concave 2 J end 3 Metal 1 layer Light $27

Claims (1)

【特許請求の範囲】[Claims] 1、再生を光によつて行うメモリ素子において、金属と
半導体とのショットキー接合による光起電力効果を用い
ることを特徴とする光メモリ素子。
1. An optical memory element that uses photovoltaic effect due to a Schottky junction between a metal and a semiconductor in a memory element in which reading is performed using light.
JP61269675A 1986-11-14 1986-11-14 Optical memory element Pending JPS63124237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269675A JPS63124237A (en) 1986-11-14 1986-11-14 Optical memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269675A JPS63124237A (en) 1986-11-14 1986-11-14 Optical memory element

Publications (1)

Publication Number Publication Date
JPS63124237A true JPS63124237A (en) 1988-05-27

Family

ID=17475632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269675A Pending JPS63124237A (en) 1986-11-14 1986-11-14 Optical memory element

Country Status (1)

Country Link
JP (1) JPS63124237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309440A (en) * 2020-10-21 2021-02-02 西北工业大学 Optical storage device based on platinum-two-dimensional indium selenide-few-layer graphite Schottky diode and storage method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112309440A (en) * 2020-10-21 2021-02-02 西北工业大学 Optical storage device based on platinum-two-dimensional indium selenide-few-layer graphite Schottky diode and storage method
CN112309440B (en) * 2020-10-21 2022-04-26 西北工业大学 Optical storage device based on platinum-two-dimensional indium selenide-few-layer graphite Schottky diode and storage method

Similar Documents

Publication Publication Date Title
EP0217067B1 (en) Self biasing thermal magneto-optic medium
US4965784A (en) Method and apparatus for bistable optical information storage for erasable optical disks
JPS6280847A (en) Magnetic memory medium
JP2795567B2 (en) Magneto-optical disk and reproducing method
GB2083677A (en) Magnetooptical recording medium and a magnetooptical recording-and-reproducing device
JP2557942B2 (en) Erasable electro-optical storage disk
JP2994505B2 (en) Information playback device
JP2839498B2 (en) Optical disk media
JPS63124237A (en) Optical memory element
JPS62293541A (en) Magneto-optical recording medium
JP2000348397A (en) Information medium, information reproducing method and information reproducing device
JP2708477B2 (en) Bloch line memory device
JP2661972B2 (en) Bloch line memory device
JPH0231356A (en) Information recording and reproducing device
JPH02187943A (en) Memory element and memory device as well as production and reading-out method thereof
JPS5877047A (en) Magnetooptic head
JP2844773B2 (en) Magneto-optical recording medium
JP3116430B2 (en) Method for manufacturing magneto-optical recording medium
JPH01113936A (en) Member for recording information
JPS6348628A (en) Optical information recording carrier
JPH0256748A (en) Optical memory element
JPH04310646A (en) Perpendicular magnetic recording medium
JPS60125948A (en) Thermomagnetic recording medium
JP2003257097A (en) Optical recording medium, processor and processing method therefor
KR20010011646A (en) Data Storage Device with Ferroelectric Media