JPS63124018A - Scanner - Google Patents

Scanner

Info

Publication number
JPS63124018A
JPS63124018A JP27125586A JP27125586A JPS63124018A JP S63124018 A JPS63124018 A JP S63124018A JP 27125586 A JP27125586 A JP 27125586A JP 27125586 A JP27125586 A JP 27125586A JP S63124018 A JPS63124018 A JP S63124018A
Authority
JP
Japan
Prior art keywords
scanning direction
polygon mirror
sub
lens
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27125586A
Other languages
Japanese (ja)
Other versions
JPH0746175B2 (en
Inventor
Hiroshi Saito
博 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61271255A priority Critical patent/JPH0746175B2/en
Publication of JPS63124018A publication Critical patent/JPS63124018A/en
Publication of JPH0746175B2 publication Critical patent/JPH0746175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To satisfactorily correct a focal shift in a scanning position in the sub-scanning direction, and to execute a scan of a large screen with high resolution, by placing an optical element whose refractive power is varied continuously in only the sub-scanning direction, between a rotary polygon mirror and the scanning surface. CONSTITUTION:Between a rotary polygon mirror 1 and the surface 3 to be scanned, an optical element 5 which does not have a refractive power in the main scanning direction but has a refractive power in only the sub-scanning direction is placed. As a result, a luminous flux in the main scanning direction, among luminous fluxes from a light source 10 is reflected by the polygon mirror 1 through a cylindrical lens 4 having no refractive power in the main scanning direction, passes through the optical element 5 as it is by a condensing lens (f-theta lens system) and reaches on the surface 3 to be scanned. On the other hand, the luminous flux in the sub-scanning direction is condensed to one point PF of one reflecting surface of the polygon mirror in order to correct a surface inclination of the polygon mirror 1 by the lens 4, and focused again onto the surface to be scanned 3 by a lens 2 and the optical element 5. In this case, since the optical element 5 is constituted so as to have a refractive power varied continuously in accordance with an image curvature quantity in each image height of the lens 2, the image curvature in the sub-scanning direction can be corrected satisfactorily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は走査装置に関し、特にレーザー光源からの光束
を回転多面鏡で反射させた後 集光レンズを介して被走
査面上を走査して情報の表示や記録を行なう1例えばレ
ーザープリンタ、レーザー77クシミリ、レーザーCO
M (Computer 0utput Microf
illl)等に好適な走査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a scanning device, and particularly to a scanning device that reflects a light beam from a laser light source on a rotating polygon mirror and then scans the surface to be scanned via a condensing lens. 1 for displaying and recording information, such as laser printers, laser 77xmillimeter, and laser CO
M (Computer Output Microf
The present invention relates to a scanning device suitable for the following applications.

(従来の技術) 従来よりレーザー光源からの光束を回転多面鏡に導光し
1回転多面鏡からの反射光束を集光レンズであるf−θ
レンズを介して被走査面上に集束させ1回転多面鏡を回
転させることにより被走査面上を走査する方式の走査装
置が種々と提案されている。
(Prior art) Conventionally, the light beam from a laser light source is guided to a rotating polygon mirror, and the reflected light beam from the one-rotation polygon mirror is collected by a condensing lens f-θ.
Various scanning devices have been proposed in which the surface to be scanned is scanned by focusing the light onto the surface to be scanned through a lens and rotating a single-rotation polygon mirror.

例えば第4図、第5図は各々従来の走査装置の光学系の
概略図であり、第4図は回転多面鏡の回転により走査を
行なう主走査方向の断面図、第5図は主走査方向と直交
する方向の副走査方向の一部断面図である。
For example, Figures 4 and 5 are schematic diagrams of the optical systems of conventional scanning devices, respectively. Figure 4 is a cross-sectional view in the main scanning direction in which scanning is performed by rotating a rotating polygon mirror, and Figure 5 is a sectional view in the main scanning direction. FIG.

第4図において光[10からの光束にうち主走査方向の
光束は主走査方向に屈折力を有しないシリンドリカルレ
ンズ4を通過した後1回転多面鏡に入射し2回転多面鏡
1で反射した後f−θレンズ系である集光レンズ2によ
り被走査面3上に集束している。
In FIG. 4, the light beam from the light [10] in the main scanning direction passes through the cylindrical lens 4 which has no refractive power in the main scanning direction, enters the one-rotation polygon mirror, and is reflected by the two-rotation polygon mirror 1. The light is focused onto the surface to be scanned 3 by a condenser lens 2 which is an f-theta lens system.

一方第5図に示す副走査方向の光束はシリンドリカルレ
ンズ4により集束し2回転多面鏡1の反射面の所定位置
PFで結像した後集束レンズ2により被走査面3上に集
束している。
On the other hand, the light beam in the sub-scanning direction shown in FIG. 5 is focused by the cylindrical lens 4, formed into an image at a predetermined position PF on the reflecting surface of the two-rotation polygon mirror 1, and then focused onto the scanned surface 3 by the focusing lens 2.

ここで集束レンズ2はトーリック面を有しており主走査
方向及び副走査方向の結像の共役関係を別々にする事に
より回転多面鏡の面倒れによる誤差を補正している。
Here, the focusing lens 2 has a toric surface and corrects errors due to surface tilt of the rotating polygon mirror by differentiating the conjugate relationships of imaging in the main scanning direction and the sub-scanning direction.

一般に集束レンズは走査幅全域にわたり焦点位置か走査
方向及び副走査方向の走査面と一致する様に構成されて
いることが望ましい。
In general, it is desirable that the focusing lens be constructed so that the focal position coincides with the scanning plane in the scanning direction and the sub-scanning direction over the entire scanning width.

しかしながら実際には集束レンズには諸収差が残存して
いる為に副走査方向において回転多面鏡1上にシリンド
リカルレンズ4で結像させる位置が回転多面鏡の回転角
で変化する為 焦点位置を走査面と完全に一致させるこ
とが大変困難であった。
However, in reality, since various aberrations remain in the focusing lens, the position where the cylindrical lens 4 forms an image on the rotating polygon mirror 1 in the sub-scanning direction changes depending on the rotation angle of the rotating polygon mirror, so the focal position is scanned. It was very difficult to match the surface perfectly.

第6図は第4図、第5図における走査面における焦点位
置のずれを横軸に像面弯曲量、縦軸に走査角度をとり示
したものである。同図において実線は副走査方向の焦点
位置、破線は主走査方向の焦点位置を示す。同図に示す
ように走査面上での走査位置により焦点誤差がある為に
スポット形状がばらつき、この結果光束径を小さくし高
解像度で走査するのに限界があった。
FIG. 6 shows the deviation of the focal position on the scanning plane in FIGS. 4 and 5, with the horizontal axis representing the field curvature and the vertical axis representing the scanning angle. In the figure, the solid line indicates the focal position in the sub-scanning direction, and the broken line indicates the focal position in the main scanning direction. As shown in the figure, the spot shape varies due to focal errors depending on the scanning position on the scanning plane, and as a result, there is a limit to the ability to reduce the beam diameter and scan with high resolution.

これに対して米国特許第4496209号ではシリンド
リカルレンズをベンディングしたものを用いて像面の焦
点位置を補正する方法を提案している。
On the other hand, US Pat. No. 4,496,209 proposes a method of correcting the focal position of the image plane using a bent cylindrical lens.

しかしながらこ方法は走査方向に屈折力を有したりする
為複雑な像面弯曲な走査方向と副走査方向の双方を単独
で補正することが大変困難であった。
However, since this method has a refractive power in the scanning direction, it is very difficult to correct the complex field curvature in both the scanning direction and the sub-scanning direction independently.

(発明が解決しようとする問題点) 本発明は光源からの光束を回転多面鏡で反射させ集光レ
ンズにより被走査面上に集束させて走査する際、主に副
走査方向の走査位置における焦点ずれ、所謂像面弯曲な
良好に補正し、高解像度でしかも大画面の走査が可能な
走査装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention focuses mainly on the focal point at the scanning position in the sub-scanning direction when the light beam from the light source is reflected by a rotating polygon mirror and focused on the surface to be scanned by a condensing lens. It is an object of the present invention to provide a scanning device capable of satisfactorily correcting misalignment, so-called field curvature, and capable of scanning a large screen with high resolution.

(開運点を解決するための手段) 光源からの光束を回転多面鏡に導光し、該回転多面鏡か
らの周期的に偏向した反射光束を集光レンズを介して走
査面上に集束させて走査を行なう走査装置において前記
回転多面鏡と前記走査面との間に主走査方向に屈折力を
有しなく副走査方向にのみ屈折力が連続的に変化する光
学素子を配置したことである。
(Means for solving the problem of unlucky points) A light beam from a light source is guided to a rotating polygon mirror, and a periodically deflected reflected light beam from the rotating polygon mirror is focused on a scanning surface via a condenser lens. In a scanning device that performs scanning, an optical element having no refractive power in the main scanning direction but whose refractive power changes continuously only in the sub-scanning direction is disposed between the rotating polygon mirror and the scanning surface.

(実施例) 第1図、第2図は各々本発明の走査装置の光学系の概略
図であり、第1図は回転多面鏡の回転により走査する方
向の主走査方向の断面図、第2図は主走査方向と直交す
る方向の副走査方向の断面図である。
(Example) FIGS. 1 and 2 are schematic diagrams of the optical system of the scanning device of the present invention, respectively. The figure is a cross-sectional view in the sub-scanning direction, which is perpendicular to the main-scanning direction.

第1図、第2図において1は回転多面鏡であり回転軸1
1を中心に回転している。2は集光レンズでありf−θ
レンズ系より成っている。3は被走査面、4はシリンド
リカルレンズ、10は光源、5は主走査方向には屈折力
を有しなく副走査方向にのみ屈折力を有する光学素子で
あり、第3図(八)にその断面図、第3図(B)に同図
(A)の各位置と直交する位置A、B、C,D、Eでの
断面図を示す。
In Figures 1 and 2, 1 is a rotating polygon mirror, and the rotation axis 1
It rotates around 1. 2 is a condensing lens and f-θ
It consists of a lens system. 3 is a surface to be scanned, 4 is a cylindrical lens, 10 is a light source, and 5 is an optical element that has no refractive power in the main scanning direction but only in the sub-scanning direction. 3(B) shows cross-sectional views at positions A, B, C, D, and E perpendicular to each position in FIG. 3(A).

第1図、第2図に示す本実施例の走査装置と第4図、第
5図に示す従来の走査装置との違いは本実施例では回転
多面鏡1と被走査面3との間に前述の形状の光学素子5
を配置し、集光レンズ2の残存収差による副走査方向の
像面弯曲を補正していることにある。
The difference between the scanning device of this embodiment shown in FIGS. 1 and 2 and the conventional scanning device shown in FIGS. 4 and 5 is that in this embodiment, there is a Optical element 5 having the above-mentioned shape
is arranged to correct field curvature in the sub-scanning direction due to residual aberrations of the condenser lens 2.

即ち本実施例では第1図に示すように光源10からの光
束のうち主走査方向の光束を主走査方向に屈折力を有し
ないシリンドリカルレンズ4を介し回転多面鏡1の一反
射面で反射させた後集光レンズ2により光学素子5を介
して被走査面3上に導光している。
That is, in this embodiment, as shown in FIG. 1, among the light beams from the light source 10, the light beam in the main scanning direction is reflected by one reflecting surface of the rotating polygon mirror 1 through the cylindrical lens 4 which has no refractive power in the main scanning direction. After that, the light is guided onto the scanned surface 3 by the condenser lens 2 via the optical element 5.

光学素子5は第3図(A)に示すように主走査方向には
屈折力を有していない為光束はそのまま通過して被走査
面3上に到達している。
As shown in FIG. 3(A), the optical element 5 does not have refractive power in the main scanning direction, so the light beam passes through the optical element 5 as it is and reaches the surface 3 to be scanned.

一方第2図に示すように副走査方向の光束はシリンドリ
カルレンズ4により回転多面鏡1の面倒れを補正する為
に回転多面鏡1の一反射面の一点PFに集光させている
。そして集光レンズ2と光学素子5により被走査面3上
に再度集束させている。
On the other hand, as shown in FIG. 2, the light beam in the sub-scanning direction is focused by a cylindrical lens 4 onto a point PF on one reflective surface of the rotating polygon mirror 1 in order to correct the surface tilt of the rotating polygon mirror 1. Then, the light is focused again onto the surface to be scanned 3 by the condenser lens 2 and the optical element 5.

そして回転多面鏡1を回転させることにより被走査面3
上を走査している。
Then, by rotating the rotating polygon mirror 1, the surface to be scanned 3 is scanned.
scanning above.

本実施例における結像関係は主走査方向ではシリンドリ
カルレンズ4.集束レンズ2そして光学素子5を介し被
走査面3は無限遠物体と共役関係にある。又副走査方向
では集光レンズ2と光学素子5を介して被走査面3は回
転多面鏡1の反射点PFと共役関係となるように構成さ
れている。
The imaging relationship in this embodiment is that in the main scanning direction, the cylindrical lens 4. The surface to be scanned 3 is in a conjugate relationship with an object at infinity via the focusing lens 2 and the optical element 5. Further, in the sub-scanning direction, the surface to be scanned 3 is configured to be in a conjugate relationship with the reflection point PF of the rotating polygon mirror 1 via the condenser lens 2 and the optical element 5.

一般に集光レンズにおける緒収差のうち主走査方向のメ
リディオナル像面弯曲は第6図の収差図を見ても明らか
のように副走査方向のサジタル像面弯曲に比べて比較的
容易に補正することができる。
In general, among the aberrations in a condenser lens, meridional field curvature in the main scanning direction is relatively easier to correct than sagittal field curvature in the sub-scanning direction, as is clear from the aberration diagram in Figure 6. I can do it.

このため多くの走査装置における集光レンズにおいては
副走査方向のサジタル像面弯曲をいかに良好に補正する
かが重要となっている。しかしながら副走査方向のサジ
タル像面弯曲を集光レンズ内において良好に補正するの
は一般には大変困難である。
For this reason, it is important how well the sagittal field curvature in the sub-scanning direction can be corrected in the condenser lenses of many scanning devices. However, it is generally very difficult to satisfactorily correct the sagittal field curvature in the sub-scanning direction within the condenser lens.

そこで本実施例では副走査方向のサジタル像面弯曲を各
像高毎の弯曲■を勘案し、第3図(A)。
Therefore, in this embodiment, the sagittal field curvature in the sub-scanning direction is calculated by taking into account the curvature (2) for each image height, as shown in FIG. 3(A).

(B)に示すような形状の光学素子を回転多面鏡1と被
走査面3との間に配置することにより良好に補正してい
る。
Good correction is achieved by arranging an optical element having the shape shown in (B) between the rotating polygon mirror 1 and the surface to be scanned 3.

即ち光学素子5を主走査方向には屈折力を有しなく、副
走査方向にのみ屈折力を有する形状で構成し、このとき
光学素子5を集光レンズ2の各像高における像面弯曲量
に応じて連続的に変化した屈折力を有するように構成し
ている。
That is, the optical element 5 is configured to have no refractive power in the main scanning direction but has refractive power only in the sub-scanning direction. The lens is configured to have a refractive power that continuously changes according to the

これにより副走査方向の像面弯曲な良好に補正し、全走
査範囲にわたり被走査面上での光束を小さく集束した状
態で走査することを可能としている。
This makes it possible to satisfactorily correct the curvature of field in the sub-scanning direction, and to scan over the entire scanning range with the light beam on the surface to be scanned being focused to a small extent.

尚本実施例ではトーリック面を有する集光レンズと光学
素子との組合わせによって回転多面鏡の面倒れ補正と副
走査方向の像面弯曲を補正した場合を示したが、集光レ
ンズを球面だけで構成しても良く、又シリンドリカルレ
ンズを有した集光レンズに光学素子の機能を負担させて
も同様に本発明の目的を達成することができる。
In this example, a case is shown in which the surface inclination of the rotating polygon mirror and the field curvature in the sub-scanning direction are corrected by a combination of a condensing lens with a toric surface and an optical element. Alternatively, the object of the present invention can be similarly achieved by having a condensing lens having a cylindrical lens take on the function of an optical element.

又第3図に示した光学素子は副走査方向に正と負の屈折
力を有し、かつ連続的に屈折力を変化させた形状で構成
した場合を示したが、正又は負の屈折力のみを連続的に
変化させた形状で構成しても良い。
Furthermore, the optical element shown in Fig. 3 has a positive and negative refractive power in the sub-scanning direction, and is constructed in a shape in which the refractive power is continuously changed. It is also possible to have a configuration in which only the first part is continuously changed.

(発明の効果) 本発明によれば光源からの光束を回転多面鏡で反射させ
て集光レンズで被走査面上に集束させて走査する際、前
述の形状を有する光学素子を所定位置に配置することに
よって光束の結像位置を走査面と一致させ、高解像度で
走査することができ、しかも集光レンズの像面弯曲を良
好に補正することができる為、広い走査幅にわたり高解
像度で走査することができる走査装置を達成することが
できる。
(Effects of the Invention) According to the present invention, when a light beam from a light source is reflected by a rotating polygon mirror and focused on a surface to be scanned by a condenser lens for scanning, an optical element having the above-mentioned shape is placed at a predetermined position. By doing this, the imaging position of the light beam can be aligned with the scanning plane and scanning can be performed with high resolution. Furthermore, the field curvature of the condenser lens can be well corrected, so it is possible to scan with high resolution over a wide scanning width. A scanning device capable of doing this can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は各々本発明の一実施例の主走査方向と
副走査方向の光学系の概略図、第3図(A) 、 (B
)は本発明に係る光学素子の説明図、第4図、第5図は
各々従来の主走査方向と副走査方向の光学系の概略図、
第6図は第4図に示す走査装置において走査面上におけ
る焦点位置のずれを示す説明図である。 図中1は回転多面鏡、2は集光レンズ、3は被走査面、
4はシリンドリカルレンズ、5は光学素子、10は光源
である。 特許出願人  キャノン株式会社 第1回 第2図 第30(A) 蔓3図(B) AB  CO巳
1 and 2 are schematic diagrams of optical systems in the main scanning direction and sub-scanning direction of an embodiment of the present invention, respectively, and FIGS. 3(A) and 3(B)
) is an explanatory diagram of the optical element according to the present invention, FIGS. 4 and 5 are schematic diagrams of conventional optical systems in the main scanning direction and the sub-scanning direction, respectively.
FIG. 6 is an explanatory diagram showing the shift of the focal point position on the scanning plane in the scanning device shown in FIG. 4. In the figure, 1 is a rotating polygon mirror, 2 is a condenser lens, 3 is a scanned surface,
4 is a cylindrical lens, 5 is an optical element, and 10 is a light source. Patent applicant Canon Co., Ltd. 1st issue Figure 2 Figure 30 (A) Vines Figure 3 (B) AB CO Mi

Claims (1)

【特許請求の範囲】[Claims] 光源からの光束を回転多面鏡に導光し、該回転多面鏡か
らの周期的に偏向した反射光束を集光レンズを介して走
査面上に集束させて走査を行なう走査装置において前記
回転多面鏡と前記走査面との間に主走査方向に屈折力を
有しなく副走査方向にのみ屈折力が連続的に変化する光
学素子を配置したことを特徴とする走査装置。
In a scanning device that conducts scanning by guiding a light beam from a light source to a rotating polygon mirror and converging periodically deflected reflected light beams from the rotating polygon mirror onto a scanning surface via a condenser lens, the rotating polygon mirror and the scanning surface, an optical element having no refractive power in the main scanning direction and whose refractive power changes continuously only in the sub-scanning direction is disposed between the scanning surface and the scanning surface.
JP61271255A 1986-11-14 1986-11-14 Scanning device Expired - Fee Related JPH0746175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61271255A JPH0746175B2 (en) 1986-11-14 1986-11-14 Scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271255A JPH0746175B2 (en) 1986-11-14 1986-11-14 Scanning device

Publications (2)

Publication Number Publication Date
JPS63124018A true JPS63124018A (en) 1988-05-27
JPH0746175B2 JPH0746175B2 (en) 1995-05-17

Family

ID=17497520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271255A Expired - Fee Related JPH0746175B2 (en) 1986-11-14 1986-11-14 Scanning device

Country Status (1)

Country Link
JP (1) JPH0746175B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133416A (en) * 1983-12-22 1985-07-16 Ricoh Co Ltd Cylindrical lens for surface inclination correcting and scanning optical system
JPS61120112A (en) * 1984-11-16 1986-06-07 Konishiroku Photo Ind Co Ltd Scanning optical system
JPS61175607A (en) * 1985-01-31 1986-08-07 Konishiroku Photo Ind Co Ltd Scanning optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133416A (en) * 1983-12-22 1985-07-16 Ricoh Co Ltd Cylindrical lens for surface inclination correcting and scanning optical system
JPS61120112A (en) * 1984-11-16 1986-06-07 Konishiroku Photo Ind Co Ltd Scanning optical system
JPS61175607A (en) * 1985-01-31 1986-08-07 Konishiroku Photo Ind Co Ltd Scanning optical system

Also Published As

Publication number Publication date
JPH0746175B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
JP2969407B2 (en) Post-objective scanning optical system and image forming apparatus
US4123135A (en) Optical system for rotating mirror line scanning apparatus
JPH06265810A (en) Reflection type scanning optical system
JP2734154B2 (en) Post objective type scanning optical system and image forming apparatus using the same
JPH0672981B2 (en) Optical beam scanning optical system
EP0387900B1 (en) Scanning optical system
JP2550153B2 (en) Optical scanning device
JPH0644108B2 (en) A shake correction device that does not cause a bow due to two reflections on one surface
JPH0258015A (en) Optical scanning device
JPS63124018A (en) Scanner
JP2643224B2 (en) Light beam scanning optical system
JP3126137B2 (en) Post objective type scanning optical system and image forming apparatus
JPH1020235A (en) Optical scanner
JP2553882B2 (en) Scanning optical system
JP2626708B2 (en) Scanning optical system
JPS6226733Y2 (en)
JPS628015Y2 (en)
JPH01200220A (en) Light beam scanning optical system
JPS6230007Y2 (en)
JPS6230006Y2 (en)
JPS628016Y2 (en)
JPH06265807A (en) Light beam scanning optical system
JPH1020230A (en) Optical scanner
JPH01300218A (en) Light beam scanning optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees