JPS63123827A - シングルモ−ド型光フアイバの製造方法 - Google Patents
シングルモ−ド型光フアイバの製造方法Info
- Publication number
- JPS63123827A JPS63123827A JP26797686A JP26797686A JPS63123827A JP S63123827 A JPS63123827 A JP S63123827A JP 26797686 A JP26797686 A JP 26797686A JP 26797686 A JP26797686 A JP 26797686A JP S63123827 A JPS63123827 A JP S63123827A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- refractive index
- optical fiber
- fluorine
- glass base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000013307 optical fiber Substances 0.000 title abstract description 33
- 239000011521 glass Substances 0.000 claims abstract description 60
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 26
- 239000011737 fluorine Substances 0.000 claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 53
- 230000003287 optical effect Effects 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 16
- 238000009826 distribution Methods 0.000 abstract description 15
- 238000002074 melt spinning Methods 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 238000005299 abrasion Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 23
- 239000007789 gas Substances 0.000 description 19
- 239000010453 quartz Substances 0.000 description 12
- 238000005253 cladding Methods 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 6
- 239000005373 porous glass Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01853—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、例えば長距離通信用光ケーブルなどに好適
に用いられるシングルモード型光ファイバの製造方法に
関する。
に用いられるシングルモード型光ファイバの製造方法に
関する。
「従来の技術」
一般に、海底ケーブル等の長距離通信用光ケーブルなど
には、伝送帯域が広くかつ伝送距離が長くても損失増加
量が少ないタイプの光ファイバを使用することが望まし
い。そして、このようなタイプの光ファイバとしては、
例えばコア径がl〜10μ麓程度でかつコア径のクラツ
ド径に対する比(コア径/クラツド径)が小さいシング
ルモード型光ファイバが好適である。
には、伝送帯域が広くかつ伝送距離が長くても損失増加
量が少ないタイプの光ファイバを使用することが望まし
い。そして、このようなタイプの光ファイバとしては、
例えばコア径がl〜10μ麓程度でかつコア径のクラツ
ド径に対する比(コア径/クラツド径)が小さいシング
ルモード型光ファイバが好適である。
従来、このシングルモード型光ファイバは、例えばVA
D法、外付は法等の軸付は法などにより製造されている
。すなわち、このVAD法では、軸となる石英種棒の端
部にこの石英種棒の屈折率より小さい屈折率を有するガ
ラス物質を上記石英種棒の軸線方向に沿って堆積させ、
また外付は法では、石英種棒の径方向に堆積させること
によって、両方法ともそれぞれ多孔質のガラス母材を得
、次いでこのガラス母材を透明ガラス化したのち、直ち
に溶融紡糸して光ファイバを得るようにしている。
D法、外付は法等の軸付は法などにより製造されている
。すなわち、このVAD法では、軸となる石英種棒の端
部にこの石英種棒の屈折率より小さい屈折率を有するガ
ラス物質を上記石英種棒の軸線方向に沿って堆積させ、
また外付は法では、石英種棒の径方向に堆積させること
によって、両方法ともそれぞれ多孔質のガラス母材を得
、次いでこのガラス母材を透明ガラス化したのち、直ち
に溶融紡糸して光ファイバを得るようにしている。
また、他のシングルモード型光ファイバの製造方法とし
ては、例えばクラッドとなる石英管全体に屈折率を低下
させるフッ素をドープし、次いでこの石英管中に、コア
となる円柱状の石英棒を挿入したのち、これをコラプス
してガラス母材を得、次いでこのガラス母材を溶融紡糸
して光ファイバを得る、いわゆるロッドインチューブ法
なとの方法も提案されている。
ては、例えばクラッドとなる石英管全体に屈折率を低下
させるフッ素をドープし、次いでこの石英管中に、コア
となる円柱状の石英棒を挿入したのち、これをコラプス
してガラス母材を得、次いでこのガラス母材を溶融紡糸
して光ファイバを得る、いわゆるロッドインチューブ法
なとの方法も提案されている。
「発明が解決しようとする問題点」
しかしながら、前者の軸付は法のうちVAD法にあって
は、石英種棒の端部にこの石英種棒の軸線方向に沿って
上記ガラス物質を堆積させるようにしているので、長寸
法の光ファイバを連続的にかつ容易に製造できるものの
、得られる光ファイバの径方向への屈折率分布の制御が
困難で、再現性に乏しい欠点を有している。また、外付
は法にあっては、石英種棒の径方向への屈折率分布を高
い精度で制御できるものの、連続的に長寸法の光ファイ
バを製造できない問題がある。
は、石英種棒の端部にこの石英種棒の軸線方向に沿って
上記ガラス物質を堆積させるようにしているので、長寸
法の光ファイバを連続的にかつ容易に製造できるものの
、得られる光ファイバの径方向への屈折率分布の制御が
困難で、再現性に乏しい欠点を有している。また、外付
は法にあっては、石英種棒の径方向への屈折率分布を高
い精度で制御できるものの、連続的に長寸法の光ファイ
バを製造できない問題がある。
また、後者のロッドインチューブ法にあっては、石英管
内に挿入する石英棒を予め所定の径となるように延伸す
る必要があり、その際に石英棒の表面に空気中の水分が
吸収され易く、そのためこの水分が水酸基となって最終
的に得られる光ファイバの吸収損失増につながる問題が
ある。
内に挿入する石英棒を予め所定の径となるように延伸す
る必要があり、その際に石英棒の表面に空気中の水分が
吸収され易く、そのためこの水分が水酸基となって最終
的に得られる光ファイバの吸収損失増につながる問題が
ある。
「問題点を解決するための手段」
そこて、発明者らは、上記の事情に鑑み鋭意検討を重ね
た結果、屈折率を低下させるフッ素をドープした石英ガ
ラスなどからなる円管状のガラス母材全体を加熱するこ
とにより、そのガラス母材の外表面および内面の表層部
分にドープされていたフッ素が除去され、この部分の屈
折率が他の部分の屈折率より相対的に大きくなることを
利用して、光ファイバの径方向の屈折率分布を制御する
ことを想到するに至った。すなわち、この発明の特徴は
、フッ素をドープした円管状のガラス母材を加熱するこ
とによって上記ガラス母材の中空部分内面からフッ素を
除去し、次いでこのガラス母材をコラプスしたのち溶融
紡糸するようにしたことにある。
た結果、屈折率を低下させるフッ素をドープした石英ガ
ラスなどからなる円管状のガラス母材全体を加熱するこ
とにより、そのガラス母材の外表面および内面の表層部
分にドープされていたフッ素が除去され、この部分の屈
折率が他の部分の屈折率より相対的に大きくなることを
利用して、光ファイバの径方向の屈折率分布を制御する
ことを想到するに至った。すなわち、この発明の特徴は
、フッ素をドープした円管状のガラス母材を加熱するこ
とによって上記ガラス母材の中空部分内面からフッ素を
除去し、次いでこのガラス母材をコラプスしたのち溶融
紡糸するようにしたことにある。
以下、図面を参照してこの発明の詳細な説明する。
まず、第1図に示すように、フッ素をドープした例えば
石英ガラスなどからなる円管状のガラス母材lを用意す
る。このフッ素がドープされたガラス母材」は、例えば
次のような二通りの方法により作製できる。
石英ガラスなどからなる円管状のガラス母材lを用意す
る。このフッ素がドープされたガラス母材」は、例えば
次のような二通りの方法により作製できる。
(1)石英ガラスなどからなる円筒状のガラス管を、C
F、、5F11などのフッ素ガスおよびHeガス、N、
ガス、Arガス等の不活性ガスを含む雰囲気の処理炉内
に収容したのち、上記処理炉内の温度を1400〜14
50℃程度としてガラス管全体にフッ素をドープさせ第
1図に示すような貫通孔2を有するガラス母材lを得る
方法。
F、、5F11などのフッ素ガスおよびHeガス、N、
ガス、Arガス等の不活性ガスを含む雰囲気の処理炉内
に収容したのち、上記処理炉内の温度を1400〜14
50℃程度としてガラス管全体にフッ素をドープさせ第
1図に示すような貫通孔2を有するガラス母材lを得る
方法。
(2)また、例えばVAD法あるいJよ外付は法などの
軸付は法により5iCQ4または5iHCf2−などの
スート(SiOz)を堆積させて多孔質のガラス母材を
作製する。次いで、この多孔質のガラス母材を、温度を
800〜850℃程度とし、かつ上記フッ素ガスおよび
不活性ガス雰囲気とした処理炉中で脱水処理する。次に
、上記処理炉中で温度を1400〜1450℃程度に上
げて上記多孔質のガラス母材を透明ガラス化するととも
に、この透明ガラス化されたガラス分村内にフッ素をド
ープさせる。次に、このようにして得られた透明のガラ
ス母材を1800〜1850℃程度の温度に加熱しなが
ら、上記ガラス母材にこのガラス母材の軸線方向に沿っ
てプランジャーを押し込むことによって貫通孔(中空部
分)2を形成してガラス母材1を得る方法。この場合、
最終的に得られる光ファイバのコアとクラッドとの境界
部分を整えるために、上記貫通孔2の内面に対して機械
的研摩を施してその内面を滑面とする必要がある。
軸付は法により5iCQ4または5iHCf2−などの
スート(SiOz)を堆積させて多孔質のガラス母材を
作製する。次いで、この多孔質のガラス母材を、温度を
800〜850℃程度とし、かつ上記フッ素ガスおよび
不活性ガス雰囲気とした処理炉中で脱水処理する。次に
、上記処理炉中で温度を1400〜1450℃程度に上
げて上記多孔質のガラス母材を透明ガラス化するととも
に、この透明ガラス化されたガラス分村内にフッ素をド
ープさせる。次に、このようにして得られた透明のガラ
ス母材を1800〜1850℃程度の温度に加熱しなが
ら、上記ガラス母材にこのガラス母材の軸線方向に沿っ
てプランジャーを押し込むことによって貫通孔(中空部
分)2を形成してガラス母材1を得る方法。この場合、
最終的に得られる光ファイバのコアとクラッドとの境界
部分を整えるために、上記貫通孔2の内面に対して機械
的研摩を施してその内面を滑面とする必要がある。
次に、上記のような二つの作製方法のうちの一方法によ
り得られたガラス母材lをガラス旋盤などによりその両
端を支持しかつ径方向に回転自在に固定する。次いで、
上記ガラス母材1全体を加熱することによって、ガラス
母材lの貫通孔2の内面からこの面の表層部分にドープ
されていたフッ素を除去する。このガラス母材1は、そ
の径方向への屈折率分布が第2図のグラフに示すように
ガラス母材1の外表面および貫通孔2の内面の屈折率が
他の部分の屈折率に比べて相対的に大きいものとなる。
り得られたガラス母材lをガラス旋盤などによりその両
端を支持しかつ径方向に回転自在に固定する。次いで、
上記ガラス母材1全体を加熱することによって、ガラス
母材lの貫通孔2の内面からこの面の表層部分にドープ
されていたフッ素を除去する。このガラス母材1は、そ
の径方向への屈折率分布が第2図のグラフに示すように
ガラス母材1の外表面および貫通孔2の内面の屈折率が
他の部分の屈折率に比べて相対的に大きいものとなる。
ここで、上記の加熱処理における処理温度は、ガラス母
材1の貫通孔2の内面からこの面の表層部分にドープさ
れているフッ素を効率よく除去できる範囲とされ、通常
1200〜2500℃程度の範囲で決められる。この処
理温度が1200℃未満では、低過ぎてガラス母材1の
各表面からフッ素を効率よく除去できず、また2500
℃を越えると、フッ素の除去効率が頭打ちとなり、不経
済となる。
材1の貫通孔2の内面からこの面の表層部分にドープさ
れているフッ素を効率よく除去できる範囲とされ、通常
1200〜2500℃程度の範囲で決められる。この処
理温度が1200℃未満では、低過ぎてガラス母材1の
各表面からフッ素を効率よく除去できず、また2500
℃を越えると、フッ素の除去効率が頭打ちとなり、不経
済となる。
そして、上記ガラス母材lに対する加熱処理時に、He
ガス、Arガス、N、ガス等の乾燥した不活性ガスをガ
ラス母材1の貫通孔2内に適量流すことによって、貫通
孔2の内面に内圧をかけて貫通孔2の潰れを防止するこ
とができる。また、上記の不活性ガスと共に5OCf2
*ガス、Chガス等の塩素系ガスを流すことによって、
貫通孔2内面に吸着され、かつ最終的に得られる光ファ
イバの吸収損失増につながる水(水酸基)を除去するこ
とができる。さらにまた、上記の塩素系ガスは、下記の
反応式に示すようにフッ素と結合することから、この塩
素系ガスを加熱しながら貫通孔2内に流すことによって
フッ素の除去効率を高めることができる。
ガス、Arガス、N、ガス等の乾燥した不活性ガスをガ
ラス母材1の貫通孔2内に適量流すことによって、貫通
孔2の内面に内圧をかけて貫通孔2の潰れを防止するこ
とができる。また、上記の不活性ガスと共に5OCf2
*ガス、Chガス等の塩素系ガスを流すことによって、
貫通孔2内面に吸着され、かつ最終的に得られる光ファ
イバの吸収損失増につながる水(水酸基)を除去するこ
とができる。さらにまた、上記の塩素系ガスは、下記の
反応式に示すようにフッ素と結合することから、この塩
素系ガスを加熱しながら貫通孔2内に流すことによって
フッ素の除去効率を高めることができる。
(反応式)・・・CQt + 2 S iF s→s
1tci2tF sまた、上記のガラス母材1に対する
加熱処理は、1回に限らず、ガラス母材lの径方向の肉
厚などを考慮して適宜複数回行なうことによって、上記
ガラス母材lの径方向の屈折率分布を高い精度で制御す
ることが可能となる。
1tci2tF sまた、上記のガラス母材1に対する
加熱処理は、1回に限らず、ガラス母材lの径方向の肉
厚などを考慮して適宜複数回行なうことによって、上記
ガラス母材lの径方向の屈折率分布を高い精度で制御す
ることが可能となる。
次に、このようにして径方向の屈折率分布が制御された
ガラス母材1を加熱炉内でコラプスしたのち、直ちに溶
融紡糸して目的のシングルモード型光ファイバを得る。
ガラス母材1を加熱炉内でコラプスしたのち、直ちに溶
融紡糸して目的のシングルモード型光ファイバを得る。
ここで、このコラプス、紡糸工程とこの工程の前工程で
ある屈折率制御工程とは、いずれも清浄でかつ乾燥させ
た例えば不活性ガス雰囲気の密閉装置内で行なうことが
望ましい。この場合、ガラス母材lの外表面等に水分あ
るいは塵埃類などが吸着されることな(、これら吸着物
による光ファイバの損失増加を防止でき、低損失の光フ
ァイバを得ることが可能となる。
ある屈折率制御工程とは、いずれも清浄でかつ乾燥させ
た例えば不活性ガス雰囲気の密閉装置内で行なうことが
望ましい。この場合、ガラス母材lの外表面等に水分あ
るいは塵埃類などが吸着されることな(、これら吸着物
による光ファイバの損失増加を防止でき、低損失の光フ
ァイバを得ることが可能となる。
このような製造方法によれば、屈折率を低下させるフッ
素をドープしたガラス母材lを加熱することによって上
記ガラス母材lの貫通孔2内面からフッ素を除去するよ
うにしたので、フッ素が除去された貫通孔2の内面部分
の屈折率を他の部分の屈折率に比べて相対的に大きくす
ることができる。次いで、このようなガラス母材lをコ
ラプスしたのち溶融紡糸するようにしたので、得られる
光ファイバの径方向への屈折率分布を高い精度で制御で
き、よってコアとなる中心部分での屈折率がクラッドと
なる周辺部分での屈折率に比べて相対的に大きい屈折率
分布を有するシングルモード型光ファイバを得ることが
できる。
素をドープしたガラス母材lを加熱することによって上
記ガラス母材lの貫通孔2内面からフッ素を除去するよ
うにしたので、フッ素が除去された貫通孔2の内面部分
の屈折率を他の部分の屈折率に比べて相対的に大きくす
ることができる。次いで、このようなガラス母材lをコ
ラプスしたのち溶融紡糸するようにしたので、得られる
光ファイバの径方向への屈折率分布を高い精度で制御で
き、よってコアとなる中心部分での屈折率がクラッドと
なる周辺部分での屈折率に比べて相対的に大きい屈折率
分布を有するシングルモード型光ファイバを得ることが
できる。
なお、上記の製造工程において、ガラス母材1の貫通孔
2内にドープされていたフッ素を除去する工程の前処理
として、ガラス母材lの外径および内径寸法を所定の寸
法に設定するための延伸処理を2200〜2250℃程
度の加熱温度で行なうようにしてもよい。この場合、ガ
ラス母材1に対する延伸処理時に、その貫通孔2内にH
eガス、N、ガス、Arガス等の不活性ガスなどの各種
ガスを流すことによって貫通孔2の内面に対して内圧を
かけて貫通孔2の潰れを防止する必要がある。
2内にドープされていたフッ素を除去する工程の前処理
として、ガラス母材lの外径および内径寸法を所定の寸
法に設定するための延伸処理を2200〜2250℃程
度の加熱温度で行なうようにしてもよい。この場合、ガ
ラス母材1に対する延伸処理時に、その貫通孔2内にH
eガス、N、ガス、Arガス等の不活性ガスなどの各種
ガスを流すことによって貫通孔2の内面に対して内圧を
かけて貫通孔2の潰れを防止する必要がある。
「実施例」
外径約40πm、内径約20次肩の円管状のガラス母材
を用意した。このガラス母材は、VAD去によりスー)
(Sift)を堆積させて円柱状に成長させた多孔質ガ
ラス母材を温度が1500〜1800℃程度でかつCF
、ガス雰囲気の加熱炉内で透明ガラス化したものである
。
を用意した。このガラス母材は、VAD去によりスー)
(Sift)を堆積させて円柱状に成長させた多孔質ガ
ラス母材を温度が1500〜1800℃程度でかつCF
、ガス雰囲気の加熱炉内で透明ガラス化したものである
。
次に、上記ガラス母材をその外径寸法が25mmとなる
ように酸水素炎により加熱して延伸した。
ように酸水素炎により加熱して延伸した。
このとき、酸水素炎の酸素流量および水素流量をいずれ
も15(H!/分とした。また、上記ガラス母材の貫通
孔内にSF、ガスを5Q/分の流量で流して貫通孔内面
から損失増加の原因となる不純物を除去した。
も15(H!/分とした。また、上記ガラス母材の貫通
孔内にSF、ガスを5Q/分の流量で流して貫通孔内面
から損失増加の原因となる不純物を除去した。
次いで、所定寸法とされた上記ガラス母材を酸水素炎に
よりコラプスするとともに、溶融紡糸することによって
クラツド径が約125μmの光ファイバを得た。そして
、この光ファイバは第3図に示す上うな屈折率分布を有
しかつコア径のクラ・ソド径に対する比(コア径/クラ
ツド径)が1/l 3であるシングルモード型光ファイ
バであった。そして、この光ファイバの損失を測定した
ところ、波長1.38μ鱈こおいて約3 dB / k
m、波長1゜55μπにおいて0.20dB/kmであ
った。
よりコラプスするとともに、溶融紡糸することによって
クラツド径が約125μmの光ファイバを得た。そして
、この光ファイバは第3図に示す上うな屈折率分布を有
しかつコア径のクラ・ソド径に対する比(コア径/クラ
ツド径)が1/l 3であるシングルモード型光ファイ
バであった。そして、この光ファイバの損失を測定した
ところ、波長1.38μ鱈こおいて約3 dB / k
m、波長1゜55μπにおいて0.20dB/kmであ
った。
「発明の効果」
以上説明したように、この発明によれば、フッ素をドー
プした円管状のガラス母材を加熱することによって上記
ガラス母材の中空部分内面からフッ素を除去するように
したので、フッ素が除去された中空部分内面の屈折率を
他の部分の屈折率に比べて相対的に大きくすることがで
きる。次いで、このようなガラス母材をコラプスしたの
ち溶融紡糸するようにしたので、得られる光ファイバの
径方向への屈折率分布を高い精度で制御でき、よってコ
アとなる中心部分での屈折率が大きくかつクラッドとな
る周辺部分での屈折率が一様に小さい屈折率分布を有す
るシングルモード型光ファイバを得ることができる。
プした円管状のガラス母材を加熱することによって上記
ガラス母材の中空部分内面からフッ素を除去するように
したので、フッ素が除去された中空部分内面の屈折率を
他の部分の屈折率に比べて相対的に大きくすることがで
きる。次いで、このようなガラス母材をコラプスしたの
ち溶融紡糸するようにしたので、得られる光ファイバの
径方向への屈折率分布を高い精度で制御でき、よってコ
アとなる中心部分での屈折率が大きくかつクラッドとな
る周辺部分での屈折率が一様に小さい屈折率分布を有す
るシングルモード型光ファイバを得ることができる。
また、この方法によって得られたシングルモード型光フ
ァイバは、この光ファイバの径方向への屈折率分布が高
い精度で制御されたものであるので、低損失でかつ広帯
域なものとなり、例えば海底ケーブル等の長距離通信用
光ケーブルなどに好適に使用可能なものとなる。
ァイバは、この光ファイバの径方向への屈折率分布が高
い精度で制御されたものであるので、低損失でかつ広帯
域なものとなり、例えば海底ケーブル等の長距離通信用
光ケーブルなどに好適に使用可能なものとなる。
【図面の簡単な説明】
第1図は、この発明のシングルモード型光ファイバの製
造方法におけるガラス母材を示す概略斜視図、第2図は
、第1図の■−■線断面におけるガラス母材の径方向の
屈折率分布を示すグラフ、第3図は、この発明のシング
ルモード型光ファイバの製造方法によって得られたシン
グルモード型光ファイバの径方向の屈折率分布を示すグ
ラフである。 l・・・ガラス母材、2・・・貫通孔(中空部分)。
造方法におけるガラス母材を示す概略斜視図、第2図は
、第1図の■−■線断面におけるガラス母材の径方向の
屈折率分布を示すグラフ、第3図は、この発明のシング
ルモード型光ファイバの製造方法によって得られたシン
グルモード型光ファイバの径方向の屈折率分布を示すグ
ラフである。 l・・・ガラス母材、2・・・貫通孔(中空部分)。
Claims (1)
- フッ素をドープした円管状のガラス母材を加熱すること
によって上記ガラス母材の中空部分内面からフッ素を除
去し、次いでこのガラス母材をコラプスしたのち溶融紡
糸することを特徴とするシングルモード型光ファイバの
製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26797686A JPS63123827A (ja) | 1986-11-11 | 1986-11-11 | シングルモ−ド型光フアイバの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26797686A JPS63123827A (ja) | 1986-11-11 | 1986-11-11 | シングルモ−ド型光フアイバの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63123827A true JPS63123827A (ja) | 1988-05-27 |
Family
ID=17452192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26797686A Pending JPS63123827A (ja) | 1986-11-11 | 1986-11-11 | シングルモ−ド型光フアイバの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63123827A (ja) |
-
1986
- 1986-11-11 JP JP26797686A patent/JPS63123827A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6131415A (en) | Method of making a fiber having low loss at 1385 nm by cladding a VAD preform with a D/d<7.5 | |
US6817213B2 (en) | Method of fabricating optical fiber preform and method of fabricating optical fiber | |
US4453961A (en) | Method of making glass optical fiber | |
CA1271316A (en) | Optical waveguide manufacture | |
KR890001121B1 (ko) | 싱글모우드 파이버용 중간체의 제조방법 | |
US4643751A (en) | Method for manufacturing optical waveguide | |
EP0198510B1 (en) | Method of producing glass preform for optical fiber | |
JPH07223832A (ja) | ガラス物品およびファイバオプティック・カプラの作成方法 | |
EP0966407A1 (en) | Method of producing an optical fiber having depressed index core region | |
US4648891A (en) | Optical fiber | |
KR100426385B1 (ko) | 광파이버와 이것을 제조하는 방법 | |
AU700828B2 (en) | Method of making optical fiber having depressed index core region | |
US4734117A (en) | Optical waveguide manufacture | |
JP2003026438A (ja) | 改善した酸素化学量論比およびジュウテリウム曝露を用いた光ファイバ製造方法および装置 | |
WO2007122630A2 (en) | Single mode optical fiber having reduced macrobending and attenuation loss and method for manufacturing the same | |
EP3307684B1 (en) | Method of manufacturing preforms for optical fibres having low attenuation loss | |
US4784465A (en) | Method of making glass optical fiber | |
JPS591221B2 (ja) | 光伝送繊維用棒状母材の製造方法 | |
JP4463605B2 (ja) | 光ファイバ母材およびその製造方法 | |
KR20030003018A (ko) | 산소 화학량론을 조정하여 광섬유를 제조하는 방법 및 장치 | |
JPS63123827A (ja) | シングルモ−ド型光フアイバの製造方法 | |
JPH0820574B2 (ja) | 分散シフトフアイバ及びその製造方法 | |
JPH01286932A (ja) | 光ファイバ母材の製造方法 | |
US20070157674A1 (en) | Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same | |
CN115010360B (zh) | 一种光纤预制棒的制备方法、光纤预制棒及光纤 |