JPS6312369B2 - - Google Patents

Info

Publication number
JPS6312369B2
JPS6312369B2 JP56159794A JP15979481A JPS6312369B2 JP S6312369 B2 JPS6312369 B2 JP S6312369B2 JP 56159794 A JP56159794 A JP 56159794A JP 15979481 A JP15979481 A JP 15979481A JP S6312369 B2 JPS6312369 B2 JP S6312369B2
Authority
JP
Japan
Prior art keywords
carbon film
manufacturing
resistor
hydrophilic
film resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159794A
Other languages
Japanese (ja)
Other versions
JPS5860502A (en
Inventor
Hiroshi Hasegawa
Masao Hasegawa
Hiroshi Myake
Hiroto Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56159794A priority Critical patent/JPS5860502A/en
Publication of JPS5860502A publication Critical patent/JPS5860502A/en
Publication of JPS6312369B2 publication Critical patent/JPS6312369B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はチツプ型の炭素皮膜抵抗器の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a chip-type carbon film resistor.

従来絶縁碍子表面に熱分解炭素を沈着させた炭
素皮膜抵抗器は、リード付またはリードレスの形
で多く使用されてきた。近年はリードレス、いわ
ゆるチツプ型抵抗器に関する需要が急増してい
る。
Conventionally, carbon film resistors, in which pyrolytic carbon is deposited on the surface of an insulator, have often been used in a leaded or leadless form. In recent years, demand for leadless, so-called chip resistors has rapidly increased.

このチツプ型の炭素皮膜抵抗器は第1図に示す
ように、碍子1の表面に炭素皮膜2が形成され、
両端に鉄製のキヤツプ3を圧入した構造を有して
いる。このため抵抗体本来の形状に比べ最終製品
の形状が大きくなり、また鉄製のキヤツプ3によ
り重量が増大するという欠点があり、軽量、小形
化が望まれている。
As shown in FIG. 1, this chip-type carbon film resistor has a carbon film 2 formed on the surface of an insulator 1.
It has a structure in which iron caps 3 are press-fitted at both ends. For this reason, the shape of the final product is larger than the original shape of the resistor, and the iron cap 3 increases the weight.Therefore, a reduction in weight and size is desired.

この解決策として電極部分に金属をめつきした
チツプ型抵抗器が考えられているが、高抵抗の皮
膜に対して電気めつきが困難であることおよび無
電解めつきした場合には十分なめつき付着力が得
られないという問題点を有している。
As a solution to this problem, a chip resistor with metal plated on the electrode part has been considered, but it is difficult to electrolytically plate a high-resistance film, and when electroless plating is used, the plating is insufficient. The problem is that adhesive strength cannot be obtained.

本発明の製造方法により得られる炭素皮膜抵抗
器は、絶縁基体の表面に炭素皮膜を形成し、その
両端に電極となる金属めつき層を炭素皮膜上に強
固に付着したものであり、めつき厚が従来のキヤ
ツプの厚みに対して非常に薄く、小形、軽量でし
かも炭素皮膜に全面接触しているため信頼性が高
い。
The carbon film resistor obtained by the manufacturing method of the present invention is one in which a carbon film is formed on the surface of an insulating substrate, and a metal plating layer that becomes an electrode is firmly attached to the carbon film at both ends. It is extremely thin compared to the thickness of conventional caps, is small, lightweight, and has high reliability because it is in full contact with the carbon film.

この本発明の製造方法により得られる炭素皮膜
抵抗器の構成を第2図に示す。図において、4は
絶縁基体である碍子、5はこの碍子4の表面に形
成された炭素皮膜、6は表面に炭素皮膜5が形成
された碍子4の両端に金属めつきにより形成され
た電極である。
FIG. 2 shows the structure of a carbon film resistor obtained by the manufacturing method of the present invention. In the figure, 4 is an insulator which is an insulating base, 5 is a carbon film formed on the surface of this insulator 4, and 6 is an electrode formed by metal plating on both ends of the insulator 4, which has a carbon film 5 formed on its surface. be.

本発明の炭素皮膜抵抗器の製造方法は、炭素皮
膜表面を親水性化する工程と、電極を形成する部
分を除いて炭素皮膜表面を非親水性材料で被覆す
る工程と、この非親水性材料で被覆されていない
炭素皮膜表面に金属をめつきする工程を有し、炭
素皮膜上に電極を形成するもので、本来撥水性で
あり、通常直接無電解めつきを行つても強固な付
着力を有する金属めつき層を設けることが困難な
熱分解炭素表面に、強固な付着力を持つた金属め
つき層を形成することができるものである。
The method for manufacturing a carbon film resistor of the present invention includes a step of making the surface of the carbon film hydrophilic, a step of coating the surface of the carbon film with a non-hydrophilic material except for a portion where an electrode is to be formed, and a step of making the surface of the carbon film hydrophilic. This method involves plating metal onto the surface of a carbon film that is not coated with carbon, and forms electrodes on the carbon film.It is inherently water repellent and has strong adhesion even when directly electroless plating is performed. It is possible to form a metal plating layer with strong adhesion on the surface of pyrolytic carbon, on which it is difficult to provide a metal plating layer having a strong adhesion.

前記炭素皮膜表面を親水性化する方法には、3
つの方法がある。
The method for making the surface of the carbon film hydrophilic includes 3
There are two ways.

第1の方法は炭素皮膜を電解質溶液中で陽極酸
化する方法である。すなわち第3図に示すように
電解質溶液7中に、絶縁基体表面に炭素皮膜を形
成してなる炭素皮膜抵抗体8を浸漬し、この抵抗
体8を陽極として水の電気分解を行うものであ
り、発生期の酸素により炭素皮膜表面を酸化して
親水性化するものである。陰極9の材料としては
カーボン、白金などの貴金属を用いることができ
るが、カーボン電極で十分である。電解質として
は、無機酸、有機酸、アルカリ、これらの塩など
を用いることができる。溶媒は水のみでなく、有
機溶媒を用いても良い。
The first method is to anodize the carbon film in an electrolyte solution. That is, as shown in FIG. 3, a carbon film resistor 8 formed by forming a carbon film on the surface of an insulating substrate is immersed in an electrolyte solution 7, and water is electrolyzed using the resistor 8 as an anode. , the carbon film surface is oxidized by nascent oxygen to make it hydrophilic. Although noble metals such as carbon and platinum can be used as the material for the cathode 9, a carbon electrode is sufficient. As the electrolyte, inorganic acids, organic acids, alkalis, salts thereof, etc. can be used. As the solvent, not only water but also an organic solvent may be used.

第2の方法は加熱空気中で炭素皮膜表面を酸化
させる方法である。処理条件は炭素皮膜の作成条
件により変化するが、一般的に550℃以下の温度
で加熱すれば、過剰酸素による炭素皮膜の消失な
どの障害を防止することができる。
The second method is to oxidize the surface of the carbon film in heated air. Processing conditions vary depending on the conditions for forming the carbon film, but in general heating at a temperature of 550°C or lower can prevent problems such as disappearance of the carbon film due to excess oxygen.

第3の方法は低真空度の気体中で放電させる方
法である。気体としては空気、アルゴン、窒素、
酸素などまたはフツ素化合物、塩素化合物など
10-2torr〜1torrの真空度でガス化する化合物は
すべて使用することができる。放電用電源として
は気体中で放電を開始しうる電圧を発生するもの
であれば良く、直流から極短波までの周波数で任
意に選ぶことができる。放電時の真空度は
10-3torrないし1torrのいわゆるグロー放電を発
生する真空度が好ましいが、高周波電源を用いる
ことにより10-4torr台の真空度での処理も可能で
ある。
The third method is a method of discharging in a gas at a low degree of vacuum. Gases include air, argon, nitrogen,
Oxygen, etc. or fluorine compounds, chlorine compounds, etc.
Any compound that gasifies at a vacuum of 10 -2 torr to 1 torr can be used. The power source for discharging may be any power source as long as it generates a voltage capable of starting a discharge in gas, and any frequency from direct current to extremely short waves can be selected. The degree of vacuum during discharge is
A vacuum level that generates a so-called glow discharge of 10 -3 torr to 1 torr is preferable, but processing at a vacuum level of 10 -4 torr is also possible by using a high frequency power source.

以上の親水性化処理の後、炭素皮膜上の電極を
形成する部分を除いて非親水性材料を被覆する。
この非親水性材料を炭素皮膜上に被覆させるに
は、転写、はけ塗り、スプレーなどの方式を用い
ることができる。このように非親水性材料を被覆
させることにより、次のめつき工程での金属の付
着を防止する。非親水性材料としては、パラフイ
ンワツクスに代表される各種ワツクス類、ポリス
チレンに代表される各種熱可塑性樹脂、フエノー
ル樹脂に代表される各種熱硬化性樹脂などを使用
することができる。
After the above hydrophilic treatment, the carbon film is coated with a non-hydrophilic material except for the portion where the electrode will be formed.
To coat the carbon film with this non-hydrophilic material, methods such as transfer, brushing, spraying, etc. can be used. By coating with a non-hydrophilic material in this manner, metal adhesion in the next plating step is prevented. As the non-hydrophilic material, various waxes such as paraffin wax, various thermoplastic resins such as polystyrene, and various thermosetting resins such as phenolic resin can be used.

これらの非親水性材料を被覆した抵抗体は、次
に金属めつきにより電極が形成される。金属めつ
きの方法としては従来公知の無電解めつき法が用
いられる。また電極の膜厚として厚い膜厚を必要
とする場合は、無電解めつきに引き続き、電気め
つきにより電極膜厚を増す方が短時間で厚い電極
を得ることができるので望ましい。電気めつき法
としては、バレルめつきまたはその改良した方法
により行うことができる。
The resistors coated with these non-hydrophilic materials are then plated with metal to form electrodes. As the metal plating method, a conventionally known electroless plating method is used. Further, when a thick electrode is required, it is preferable to increase the electrode thickness by electroplating followed by electroless plating because a thick electrode can be obtained in a short time. As the electroplating method, barrel plating or an improved method thereof can be used.

以上のようにして電極を形成した抵抗体は、非
親水性材料を被覆したまま、または被覆を剥離し
てのちに抵抗値付けのための溝切りを行い、保護
塗料を塗布して最終製品としての炭素皮膜抵抗器
となる。
The resistor with electrodes formed in the above manner may be made into a final product with the non-hydrophilic material coated, or after the coating is peeled off, grooves are cut for resistance values and a protective coating is applied. carbon film resistor.

以下、本発明の炭素皮膜抵抗器の製造方法の実
施例について説明する。
Examples of the method for manufacturing a carbon film resistor of the present invention will be described below.

実施例 A 直径3mm、長さ11mmのアルミナ棒表面に通常の
方法により炭素皮膜を沈着させ、抵抗体を製造し
た。
Example A A resistor was manufactured by depositing a carbon film on the surface of an alumina rod having a diameter of 3 mm and a length of 11 mm by a conventional method.

次に5%しゆう酸溶液を用い、陰極材料にカー
ボン棒を用いて第3図に示した装置により、前記
抵抗体の表面処理を行つた。処理後の炭素皮膜は
親水性を示した。
Next, the resistor was surface-treated using a 5% oxalic acid solution and a carbon rod as the cathode material using the apparatus shown in FIG. The carbon film after treatment showed hydrophilicity.

この抵抗体の両端より各々2mmの幅を除いた中
央部にレゾール型フエノール樹脂を塗布し、180
℃で10分間硬化させてのち、感受性化処理、活性
化処理を経て通常の方法により無電解ニツケルめ
つきを行い、電極を形成した。
Apply resol type phenol resin to the center part excluding a width of 2 mm from both ends of this resistor, and
After curing at ℃ for 10 minutes, sensitization treatment and activation treatment were performed, and electroless nickel plating was performed using a conventional method to form an electrode.

次に抵抗値付けのための溝切りを行い、通常の
保護塗装を施し、チツプ型の炭素皮膜抵抗器を完
成した。
Next, grooves were cut to determine the resistance value, and the usual protective coating was applied to complete the chip-type carbon film resistor.

このチツプ型の保護皮膜抵抗器の耐熱特性、耐
湿特性、ノイズ特性などの諸特性は、通常のキヤ
ツプ使用の抵抗器に比較して全く差はなく、一
方、重量は約30%軽量化できた。
The characteristics of this chip-type protective film resistor, such as heat resistance, moisture resistance, and noise characteristics, are the same as those of ordinary cap resistors, and on the other hand, it is approximately 30% lighter in weight. .

実施例 B 実施例Aにおいて炭素皮膜の処理に用いる電解
質溶液を1%水酸化ナトリウム水溶液とした場合
にも良好な処理効果が得られ、抵抗器の電極部分
に銅線をはんだ付けして電極の密着強度を測定し
たところ、2.0Kg/mm2の強度であつた。
Example B A good treatment effect was also obtained when the electrolyte solution used to treat the carbon film in Example A was a 1% aqueous sodium hydroxide solution, and a copper wire was soldered to the electrode part of the resistor. When the adhesion strength was measured, it was 2.0 Kg/mm 2 .

実施例 C 実施例Aで用いたものと同じ未処理の炭素皮膜
抵抗体をるつぼに入れ、550℃で3分間加熱して
炭素皮膜の処理を行つた。その後、実施例Aと同
様にして抵抗体の両端部に銅を無電解めつきし、
銅めつき用バレルに投入し、硫酸銅めつき浴にて
電気めつきを行い、表面光沢の良好な電極を形成
した。
Example C The same untreated carbon film resistor used in Example A was placed in a crucible and heated at 550° C. for 3 minutes to treat the carbon film. Thereafter, copper was electrolessly plated on both ends of the resistor in the same manner as in Example A.
It was placed in a copper plating barrel and electroplated in a copper sulfate plating bath to form an electrode with good surface gloss.

実施例 D 実施例Aで用いたものと同じ未処理の炭素皮膜
抵抗体を真空容器中に入れ、5×10-1torrの空気
中で直流スパツタをして表面処理を行つた。次に
両端より各々2mmを残してエポキシ樹脂塗料を塗
布し、150℃で10分間硬化させてのち、実施例C
と同様にして抵抗器を形成した。この抵抗器の電
極付着力は2.5Kg/mm2であつた。
Example D The same untreated carbon film resistor as used in Example A was placed in a vacuum container and subjected to direct current sputtering in air at 5×10 −1 torr to perform surface treatment. Next, apply epoxy resin paint leaving 2 mm from both ends, harden at 150℃ for 10 minutes, and apply Example C.
A resistor was formed in the same manner. The electrode adhesion force of this resistor was 2.5 Kg/mm 2 .

実施例 E 実施例Dにおいて電源に12.7MHzの高周波電源
を用い、5×10-4torrのアルゴン中で炭素皮膜の
処理を行つた場合も、実施例Dと同様の結果が得
られた。
Example E In Example D, a 12.7 MHz high frequency power source was used as the power source, and the carbon film was treated in argon at 5×10 −4 torr, and the same results as in Example D were obtained.

実施例 F 実施例Dにおいて炭素皮膜の処理に空気に代え
て、塩素化フツ素化アルキル〔ダイキン(株)製
商品名ダイフロン〕を用いた場合も空気と同様の
処理効果を示した。
Example F In Example D, when a chlorinated fluorinated alkyl (trade name: DAIFLON, manufactured by Daikin Corporation) was used instead of air to treat the carbon film, the same treatment effect as that of air was obtained.

実施例 G 実施例Dにおいてエポキシ樹脂塗料に代えてポ
リスチレンの10%トルエン溶液を用い、80℃で30
分乾燥してのち、実施例Aと同様にして両端にニ
ツケル電極を有する抵抗器を作成した。
Example G In Example D, a 10% toluene solution of polystyrene was used instead of the epoxy resin paint, and
After drying for a few minutes, a resistor having nickel electrodes at both ends was produced in the same manner as in Example A.

なお前記実施例A〜Gにおいては主としてニツ
ケルおよび銅のめつきについて説明したが、前記
炭素皮膜の処理方法を採用することにより、金、
銀、パラジウム、白金、錫、はんだ、その他の無
電解めつきを適用することもできる。
In Examples A to G, nickel and copper plating was mainly explained, but by adopting the above carbon film treatment method, gold, copper plating, etc.
Electroless plating of silver, palladium, platinum, tin, solder, and others can also be applied.

以上のように本発明の炭素皮膜抵抗器の製造方
法により、本来撥水性で直接無電解めつきを行う
のが困難な熱分解炭素表面に、金属めつき層を容
易に形成することができ、小形、軽量で、電極が
炭素皮膜と全面的に接触している信頼性の高い炭
素皮膜抵抗器を得ることができる。
As described above, by the method for manufacturing a carbon film resistor of the present invention, a metal plating layer can be easily formed on the surface of pyrolytic carbon, which is inherently water repellent and difficult to directly apply electroless plating to. It is possible to obtain a small, lightweight, and highly reliable carbon film resistor in which the electrode is in full contact with the carbon film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の炭素皮膜抵抗器の断面図、第2
図は本発明の製造方法により得られる炭素皮膜抵
抗器の断面図、第3図は本発明方法の一実施例に
おいて用いる陽極酸化装置の模式図である。 4……碍子(絶縁基体)、5……炭素皮膜、6
……電極(金属めつき層)、7……電解質溶液、
8……炭素皮膜抵抗体、9……陰極。
Figure 1 is a cross-sectional view of a conventional carbon film resistor, Figure 2 is a cross-sectional view of a conventional carbon film resistor.
The figure is a sectional view of a carbon film resistor obtained by the manufacturing method of the present invention, and FIG. 3 is a schematic diagram of an anodizing apparatus used in one embodiment of the method of the present invention. 4... Insulator (insulating base), 5... Carbon film, 6
... Electrode (metal plating layer), 7 ... Electrolyte solution,
8... Carbon film resistor, 9... Cathode.

Claims (1)

【特許請求の範囲】 1 絶縁基体表面に形成された炭素皮膜表面を親
水性化する工程と、電極を形成する部分を除いて
前記炭素皮膜表面を非親水性材料で被覆する工程
と、この非親水性材料で被覆されていない炭素皮
膜表面に金属をめつきする工程とにより炭素皮膜
上に電極を形成する炭素皮膜抵抗器の製造方法。 2 電解質溶液中における陽極酸化により炭素皮
膜表面を親水性化する特許請求の範囲第1項記載
の炭素皮膜抵抗器の製造方法。 3 空気中での加熱により炭素皮膜表面を親水性
化する特許請求の範囲第1項記載の炭素皮膜抵抗
器の製造方法。 4 低真空度の気体中での放電により炭素皮膜表
面を親水性化する特許請求の範囲第1項記載の炭
素皮膜抵抗器の製造方法。 5 無電解めつき法により炭素皮膜表面に金属を
めつきする特許請求の範囲第1項記載の炭素皮膜
抵抗器の製造方法。 6 無電解めつき法および続けて電気めつき法に
より炭素皮膜表面に金属をめつきする特許請求の
範囲第1項記載の炭素皮膜抵抗器の製造方法。
[Scope of Claims] 1. A step of making the surface of a carbon film formed on the surface of an insulating substrate hydrophilic, a step of coating the surface of the carbon film except for a portion where an electrode is to be formed with a non-hydrophilic material, and a step of making the surface of the carbon film formed on the surface of an insulating substrate hydrophilic. A method for manufacturing a carbon film resistor, in which electrodes are formed on the carbon film by a step of plating metal on the surface of the carbon film that is not covered with a hydrophilic material. 2. The method of manufacturing a carbon film resistor according to claim 1, wherein the surface of the carbon film is made hydrophilic by anodizing in an electrolyte solution. 3. The method of manufacturing a carbon film resistor according to claim 1, wherein the surface of the carbon film is made hydrophilic by heating in air. 4. The method of manufacturing a carbon film resistor according to claim 1, wherein the surface of the carbon film is made hydrophilic by discharging in a low vacuum gas. 5. A method for manufacturing a carbon film resistor according to claim 1, wherein a metal is plated on the surface of the carbon film by an electroless plating method. 6. The method for manufacturing a carbon film resistor according to claim 1, wherein metal is plated on the surface of the carbon film by an electroless plating method and subsequently by an electroplating method.
JP56159794A 1981-10-06 1981-10-06 Carbon film resistor and method of producing same Granted JPS5860502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159794A JPS5860502A (en) 1981-10-06 1981-10-06 Carbon film resistor and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159794A JPS5860502A (en) 1981-10-06 1981-10-06 Carbon film resistor and method of producing same

Publications (2)

Publication Number Publication Date
JPS5860502A JPS5860502A (en) 1983-04-11
JPS6312369B2 true JPS6312369B2 (en) 1988-03-18

Family

ID=15701405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159794A Granted JPS5860502A (en) 1981-10-06 1981-10-06 Carbon film resistor and method of producing same

Country Status (1)

Country Link
JP (1) JPS5860502A (en)

Also Published As

Publication number Publication date
JPS5860502A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
US4668925A (en) Dielectric resonator and method for making
US5281326A (en) Method for coating a dielectric ceramic piece
US2585752A (en) Production of discontinuous, conducting coatings upon insulating surfaces
US4111763A (en) Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
US4109292A (en) Ceramic capacitor with nickel-solder electrodes
JPS62293608A (en) Manufacture of solid electrolytic capacitor
US4311729A (en) Method for manufacturing a ceramic electronic component by electroless metal plating
US5168434A (en) Fuse-incorporated, chip-type solid electrolytic capacitor
US5560812A (en) Method for producing a metal film resistor
JPS6312369B2 (en)
GB2123616A (en) Circuit boards and method of manufacture thereof
JPS6312368B2 (en)
JP3331566B2 (en) Method for forming terminal electrodes of chip-type electronic components
US3935516A (en) Capacitor with glass metal conductive layer
JPS58110028A (en) Method of producing solid electrolytic condenser
JP4710204B2 (en) Method for forming end face electrode of electronic component
JPH0888104A (en) Chip-shaped electronic component and its manufacture
JP2542201B2 (en) Overload fusing type resistor
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
JP2863710B2 (en) Manufacturing method of metal film resistor
US3486988A (en) Film resistor having nonconductive coat and method of making the same
US2211582A (en) Process of electrolytically coating nonconductive materials
JP3109348B2 (en) Electrode forming method of cylindrical varistor and cylindrical varistor
JP3077494B2 (en) Method of forming electrodes for feedthrough capacitors
JPH0511408B2 (en)