JPS63123596A - Flux cored wire for welding stainless steel - Google Patents

Flux cored wire for welding stainless steel

Info

Publication number
JPS63123596A
JPS63123596A JP26835086A JP26835086A JPS63123596A JP S63123596 A JPS63123596 A JP S63123596A JP 26835086 A JP26835086 A JP 26835086A JP 26835086 A JP26835086 A JP 26835086A JP S63123596 A JPS63123596 A JP S63123596A
Authority
JP
Japan
Prior art keywords
wire
flux
stainless steel
slag
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26835086A
Other languages
Japanese (ja)
Other versions
JPH0632872B2 (en
Inventor
Shiro Aoki
青木 司郎
Hajime Motosugi
本杉 元
Tatsuo Enomoto
榎本 達夫
Kikuo Ishitsubo
石坪 紀久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61268350A priority Critical patent/JPH0632872B2/en
Publication of JPS63123596A publication Critical patent/JPS63123596A/en
Publication of JPH0632872B2 publication Critical patent/JPH0632872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Abstract

PURPOSE:To provide a welding wire which has good weldability and with which disconnection arises hardly by filling a flux which contains specific ratios of SiO2, ZrO2, etc., and has a specific ratio of the slag content in the flux into a sheath made of a stainless steel contg. specific ratios of Ni and Cr. CONSTITUTION:The austenitic stainless steel is composed of 9.5-15% Ni, 16-27% Cr, and >=50% 3.2XNi%+Cr%. The flux components to be filled into the sheath made of such stainless steel are composed of 1.6-3.7% SiO1, 0.7-2.0% ZrO2, 0.7-4.2% TiO2, 0.1-0.7% metal fluoride and 0.3-2.3% Mn. The slag content in the flux in total is specified to 4.5-9.5 % of the total weight. The flux is filled into a pipe made of the steel strip having the above- mentioned components and the pipe is subjected to a drawing stage, by which the wire is produced. The disconnection of the wire is prevented and the good welding work is executed by the above-mentioned method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステンレス鋼のガスシールドアーク溶接に用
いるフラックス入シワイヤの改良に係り、さらに詳しく
は、100%CO□のシールドガスにおいてもスノッタ
の発生が少なく良好な溶接作業性を示すと共に、ワイヤ
製造時においては、伸線性が良好で、断線発生頻度が極
めて少ないステンレス鋼溶接用スラックス入シワイヤに
関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the improvement of a flux-cored shear wire used for gas-shielded arc welding of stainless steel. The present invention relates to a slack-cored shear wire for stainless steel welding that exhibits good welding workability with little breakage, and also has good wire drawability and extremely low breakage frequency during wire manufacturing.

〔従来の技術〕[Conventional technology]

ステンレス鋼の溶接には従来被覆アーク溶接棒による手
溶接が主に用いられていたが、能率面からガスシールド
アーク溶接による自動、半自動化が進んでいる。
Conventionally, manual welding using a coated arc welding rod has been mainly used for welding stainless steel, but automatic and semi-automated welding using gas-shielded arc welding is progressing in terms of efficiency.

フラックス入)ワイヤを用いるステンレス鋼のガスシー
ルドアーク溶接は、ワイヤに内蔵されたフラックスによ
るスラグシールドとシールドガスによるガスシールドの
両方によって溶接金属を保護するので、ソリッドワイヤ
によるミグ溶接にくらベビード形状が良好で、プローホ
ール、融合不良などの欠陥が発生しにくいという特長が
あるため急速に普及している。
Gas-shielded arc welding of stainless steel using flux-cored wire protects the weld metal by both a slag shield caused by the flux built into the wire and a gas shield caused by the shielding gas. It is rapidly becoming popular because it has good properties and is less prone to defects such as protrusions and poor fusion.

特に近年、姿勢溶接やよシ薄板への適用性から細径ワイ
ヤへの関心が高まシ、1.0隨φあるいはそれ以下のワ
イヤの需要が増大しつつある。
Particularly in recent years, interest in small diameter wires has increased due to their applicability to posture welding and thin plates, and the demand for wires with a diameter of 1.0 mm or less is increasing.

しかしながら、ステンレス鋼溶接用フラックス式シワイ
ヤの場合には、軟鋼用フラックス人シワイヤにくらべ、
外皮として用いるステンレス鋼自体の加工硬化性が大き
い上に、外皮のステンレス鋼成分と、目的とする溶着金
属成分との差を調整し九ル、溶接による合金成分の消耗
を補償したシするための合金元素を7ラツクス中に多量
に含有しなければならず、必然的に7ラツクスの充填率
が高く、外皮の肉厚が薄くなるため、伸線加工性が劣化
し、ワイヤ製造時の伸線工程においてしばしば断線トラ
ブルが生じ、しかもこの傾向は細径となるほど顕著で、
細径ステンレス鋼7ラツクス入シワイヤの生産性は低い
ものとなっていた。
However, in the case of flux type shear wire for stainless steel welding, compared to flux type shear wire for mild steel,
In addition to the fact that the stainless steel itself used as the outer skin has a high work hardenability, it is necessary to adjust the difference between the stainless steel component of the outer skin and the target weld metal component, and to compensate for the wear of the alloy component due to welding. A large amount of alloying elements must be contained in 7Lux, which inevitably leads to a high filling rate of 7Lux and a thin outer skin, which deteriorates wire drawability and reduces wire drawing during wire production. Breakage problems often occur during the process, and this tendency is more pronounced as the diameter becomes smaller.
The productivity of the thin stainless steel 7 lux shear wire was low.

また、溶接時には外皮ステンレス鋼の電気抵抗が大きい
上に、外皮肉厚が薄く電流密度が高くなるためスパッタ
発生量の増加が避けられなかった。
Furthermore, during welding, the electrical resistance of the stainless steel outer skin is high, and the outer skin thickness is thin, resulting in a high current density, so an increase in the amount of spatter is unavoidable.

特にステンレス鋼の溶接においては、腐食の起点となシ
得るので、スパッタの除去が必要であシ、その作業工数
低減の観点からも、スバ。
Particularly when welding stainless steel, it is necessary to remove spatter because it can become a starting point for corrosion, and from the perspective of reducing the number of work hours, it is very important to remove spatter.

夕発生量の低減が各方面よシ強く求められていた。There was a strong demand from all sides to reduce the amount of evening emissions.

この点に関し、本発明者らは先に、7ラツクス人シワイ
ヤによるステンレス鋼のガスシールドアーク溶接におけ
るスパッタ低減を目的に種種検討した結果、スパッタ発
生量はワイヤ中のスラグ成分含有量が少ない程減少する
傾向を見出し、スラグ量が少なくても十分なスラグ被包
性と良好なスラグ剥離性を示すスラグ系として5iOz
 −ZrO□−Tie2系成分組成分範囲すに到シ特願
昭60−206222号として提案した。
Regarding this point, the present inventors previously investigated various types of shear wire for the purpose of reducing spatter in gas-shielded arc welding of stainless steel using a 7 lux shear wire, and found that the amount of spatter generated decreases as the slag content in the wire decreases. We found a tendency to
-ZrO□-Tie2 system component composition range was proposed in Japanese Patent Application No. 1982-206222.

しかし、実生産においては、用いる外皮ステンレス鋼の
チャージによっては伸線中にしばしば断線が発生し、特
にワイヤ径1. Omyx以下の極細径ワイヤの断線頻
度が高いため、極めて生産性が低く、新たに断線防止対
策を講する必要に迫られた。
However, in actual production, wire breakage often occurs during wire drawing depending on the charge of the outer stainless steel used, especially when the wire diameter is 1. Due to the high frequency of wire breaks in ultra-thin diameter wires smaller than Omyx, productivity was extremely low, and we were forced to take new measures to prevent wire breaks.

このような問題点の改善方法として、充填するフラック
スの粒度を細かくし、粗粒原料粒子の外皮内壁へのくい
込みを減少させることによ 〔って断線を防止する技術
が特開昭56−131097号公報あるいは特開昭56
−154300号公報に開示されているが、これらの方
法をステンレス鋼を外皮とするフラックス入シワイヤの
製造に適用した場合、断線回数の若干の減少効果は認め
られるものの、7ラツクス充填率が高い場合や極細径ワ
イヤの断線回数を皆無にするまでに 【は到らないはか
シか、細粒化による原料コストの増加やフラックスの充
填工程におけるフラックスの供給性が劣化し、フラック
スフィーダーやホラA−からの7ラツクスの定常的な排
出ができなくなることによる充填むらの原因ともなる。
As a method to improve these problems, a technique for preventing wire breakage by reducing the particle size of the flux to be filled and reducing the penetration of coarse raw material particles into the inner wall of the outer skin was disclosed in Japanese Patent Laid-Open No. 56-131097. Publication No. or Japanese Patent Application Laid-open No. 1983
-Disclosed in Japanese Patent No. 154300, when these methods are applied to the production of flux-cored shear wire with a stainless steel outer sheath, although a slight reduction in the number of wire breaks is observed, when the 7 lux filling rate is high. It is unlikely that we will be able to completely eliminate the number of breaks in ultra-fine diameter wires, but the increase in raw material costs due to finer particles and the deterioration of flux supply during the flux filling process will cause problems such as flux feeders and It also causes uneven filling due to the inability to steadily discharge 7 lux from -.

また、特開昭59−130698号公報には熱処理を施
すことKよって外皮のビッカース硬度を300以下に維
持して伸線を行う技術が開示されているが、このような
方法は熱処理回数が増し、生産能率が劣シ、コスト高と
ならざるを得ない。
Furthermore, JP-A-59-130698 discloses a technique for wire drawing while maintaining the Vickers hardness of the outer sheath at 300 or less by applying heat treatment, but such a method requires an increase in the number of heat treatments. However, production efficiency is poor and costs are high.

:発明が解決しようとする問題点〕 本発明は、以上のような問題点を解決すべくなされたも
のでありて、その目的とするところは、スパッタ発生量
が少なく溶接作業性が良好で、しかも伸線性にすぐれ、
特に細径ワイヤの伸線時にも断線が極めて発生しにくい
ステンレス鋼溶接用フラックス式)ワイヤの提供にある
:Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the amount of spatter generated and have good welding workability. Moreover, it has excellent wire drawability,
The purpose of the present invention is to provide a flux-type wire for stainless steel welding that is extremely unlikely to break, especially when drawing a small diameter wire.

:問題を解決するための手段〕 本発明者らは、7ラツクス人シワイヤによるステンレス
鋼のガスシールドアーク溶接におけるスパッタ低減を目
的に鋭意検討した結果、スパッタ発生量はワイヤ中に含
まれるスラグ成分量が少ない程減少する傾向が認められ
、少ないスラグ量でも十分なスラグ被包性と良好なスラ
グ剥離性を示すスラグ系としてS10□−ZrOz −
T102系成分範囲を見出すに到りた。
:Means for Solving the Problem] As a result of intensive study by the present inventors with the aim of reducing spatter in gas-shielded arc welding of stainless steel using a 7-lux shear wire, the amount of spatter generated is determined by the amount of slag components contained in the wire. S10□-ZrOz-
We have found the range of T102 components.

一方、ステンレス鋼フ2ツクス入シワイヤの伸線時に発
生する断線の防止には、前述のようなフラックスの細粒
化や熱処理による効果もさるととなから1本質的には、
外皮として用いるステンレス鋼自体の伸線性を改善する
ことが必要で、そのためには外皮ステンレス鋼の合金成
分Ni 、 Crの含有量を従来よシも高くすることが
有効であるとの結論に達した。
On the other hand, in order to prevent wire breakage that occurs during wire drawing of stainless steel flux-cored shear wires, apart from the effects of flux refinement and heat treatment as mentioned above, there are essentially the following:
It is necessary to improve the drawability of the stainless steel itself used as the outer sheath, and we have come to the conclusion that it is effective to increase the content of the alloy components Ni and Cr in the stainless steel sheath than ever before. .

本発明は、上記の知見に基づくものであって、その要旨
とするところは、Ni含有量が9.5〜15チ、Cr含
有量が16〜27%で、かつ3.2XNi(4)+Cr
(!l)が50%以上であるオーステナイト系ステンレ
ス鋼外皮内に、フラックス成分として少なくともワイヤ
全重量に対し1.6〜3.7%のSiO0,7〜2.0
%のZ T02.0.7〜4.2%の2’ T10□、0.1〜0.7%の金属フッ化物、0.3〜
2.3%のMnを含有し、かつフラックス中のスラグ成
分の合計がワイヤ全重量の4.5〜9.5%であること
を特徴とするステンレス鋼溶接用フラククス入シワイヤ
にある。
The present invention is based on the above findings, and its gist is that the Ni content is 9.5 to 15%, the Cr content is 16 to 27%, and 3.2XNi(4)+Cr
(!l) is 50% or more in the austenitic stainless steel sheath, as a flux component at least 1.6 to 3.7% SiO0.7 to 2.0 based on the total weight of the wire.
% Z T02. 0.7~4.2% 2' T10□, 0.1~0.7% metal fluoride, 0.3~
A flux-cored shear wire for stainless steel welding is characterized in that it contains 2.3% Mn and the total slag component in the flux is 4.5 to 9.5% of the total weight of the wire.

以下に本発明を作用と共に詳細に説明する。The present invention will be explained in detail below along with its operation.

〔作用〕[Effect]

まず、本発明の7ラツクス人シワイヤとは第1図(、)
〜(d)にその−例を示すような断面形状のワイヤで、
パイプあるいは帯鋼から成る外皮1によって充填7ラツ
クス2を被包したものを意味する。
First of all, what is the 7 lacs shear wire of the present invention? Fig. 1 (,)
A wire with a cross-sectional shape as shown in ~(d),
This means that a filling 7 lux 2 is enclosed by a shell 1 made of pipe or steel strip.

本発明は以下の実験結果に基づくものである。The present invention is based on the following experimental results.

まず、SUS 304L鋼の帯鋼およびパイプを用いて
、第1図に示すような断面形状のフラックス組成および
充填率の異なるJIS Z 3323YF−308L相
当のワイヤ径1.2nのフラックス木シワイヤを製造し
、SUS 304L鋼平板上にDCRP 200A 3
1 N30 an/―の溶接条件で炭酸ガスアーク溶接
を行ない、その時発生したスパッタを銅製捕集容器内に
集収、秤量することによって、比較し、スパッタ発生量
に影響を及ぼす要因について検討した。との時の充填率
の検討範囲は9〜30%であった。
First, using SUS 304L steel strips and pipes, we manufactured flux wood shear wires with a wire diameter of 1.2n equivalent to JIS Z 3323YF-308L with different cross-sectional shapes, flux compositions, and filling rates as shown in Figure 1. , DCRP 200A 3 on SUS 304L steel plate
Carbon dioxide arc welding was performed under welding conditions of 1 N30 an/-, and the spatter generated at that time was collected in a copper collection container and weighed, compared, and the factors that affect the amount of spatter generated were studied. The studied range of the filling rate was 9 to 30%.

その結果、ワイヤ中のスラグ成分量とスパッタ発生量の
間に明らか壜相関が認められた。
As a result, a clear correlation was found between the amount of slag components in the wire and the amount of spatter generated.

すなわち第2図は、ワイヤ中のスラグ成分含有量とスパ
ッタ発生量との関係を示すものであシ、スノ々ツタの発
生量は、フラックス処方、ワイヤ断面形状、フラックス
充填率にはほとんど関係なく、ワイヤ中のスラグ成分量
の減少と共に減少するととが明らかとなりた。これはワ
イヤ中のスラグ成分含有量の低いワイヤは、フラックス
充填率が低く、外皮肉厚が厚いか、もしくはフラックス
中の金属成分量が多くなってお)、ワイヤ断面における
金属物質の占める割合が多くなる結果、溶接時の電流密
度が実質的に低下したことによるものと考えられる。
In other words, Figure 2 shows the relationship between the content of slag components in the wire and the amount of spatter generated.The amount of slag ivy generated is almost independent of the flux prescription, wire cross-sectional shape, and flux filling rate. It was found that the slag content decreases as the amount of slag components in the wire decreases. This is because a wire with a low slag component content has a low flux filling rate, a thick outer skin thickness, or a high amount of metal components in the flux), and the proportion of metal substances in the wire cross section is low. This is considered to be due to the fact that the current density during welding substantially decreased as a result of the increase.

しかし々から、ガスシールドアーク溶接用72,21人
シワイヤにおけるスラグは、ビード形状を整え、溶接金
属を保護する働きがあわ、一般にその量が不足すれば、
上記の効果が発揮できず、ビード形状、ビード外観が悪
化したシ、スラグがビード表面にこびシついたシするた
め、単純にはスラグ量を低下させることはできない。
However, the slag in 72, 21-man shear wire for gas-shielded arc welding has the function of adjusting the bead shape and protecting the weld metal, and generally, if its amount is insufficient,
The above effects cannot be achieved, the bead shape and bead appearance deteriorate, and the slag is stuck to the bead surface, so it is not possible to simply reduce the amount of slag.

そとで少ないスラグ量でもスラグ被包性やスラグ剥離性
を損なわないスラグ成分系とするためにスラグ融点、流
動性について検討を重ねた結果、後述するような数値範
囲の5102− ZrO2−T102系スラグを見出し
た。
In order to create a slag component system that does not impair slag encapsulation and slag removability even with a small amount of slag, we have repeatedly studied the slag melting point and fluidity, and as a result, we have developed a 5102-ZrO2-T102 system with a numerical range as described below. Found the slag.

次K、ワイヤの伸線性の改善を目的に、伸線性におよぼ
す外皮ステンレス鋼成分の影響を調査するため、第1表
に示すようにNi 、 cr量を変化させた1581類
の帯鋼から外径8B、肉厚1.1順のパイプを作成し、
その中に5IO210%。
Next, in order to investigate the influence of the outer stainless steel components on wire drawability, with the aim of improving the wire drawability, steel strips of type 1581 with varying amounts of Ni and Cr were used as shown in Table 1. Create a pipe with a diameter of 8B and a wall thickness of 1.1,
Among them is 5IO210%.

ZrO26%、 TiO□5 % t FeO2%、 
At20.1%。
ZrO26%, TiO□5% t FeO2%,
At20.1%.

NaF 1%、 Mn 5 % 、 At−Mg 1%
、 Ni 18 % 、 Cr48チから成るフラック
スを充填率が24%となるように充填し、光管伸線、お
よび3回の光輝焼鈍を経て1.6謁φの7ラツクス人シ
ワイヤを得た。
NaF 1%, Mn 5%, At-Mg 1%
The wire was filled with a flux consisting of 18% Ni, 48% Cr so that the filling rate was 24%, and was subjected to light tube wire drawing and three times of bright annealing to obtain a 7 lux shear wire with a diameter of 1.6.

そして、1.6 m+φにおける最終焼鈍の後、1.0
miφの仕上げ径に到るまでの各ワイヤの断線回数を各
ダイス毎に調査した。
And after final annealing at 1.6 m+φ, 1.0
The number of times each wire was broken until it reached the finished diameter of miφ was investigated for each die.

その結果は第2表に示すとおシでNl 、 Crの合金
成分含有量の多い外皮を用いたワイヤ程断線頻度が少な
く、細径まで断線なく伸線が可能な傾向を示した。
The results are shown in Table 2. Wires with outer shells containing higher amounts of Nl and Cr alloy components had a lower frequency of wire breakage and showed a tendency to be able to be drawn to small diameters without breakage.

そこで、さらに詳しくこれらNi 、 Cr含有量の影
響を確認するため横軸に外皮ステンレス鋼中のCr含有
量、縦軸にNi含有量をとシ、伸線性た。
Therefore, in order to confirm the influence of these Ni and Cr contents in more detail, the horizontal axis shows the Cr content in the outer stainless steel, and the vertical axis shows the Ni content, and the wire drawability was plotted.

この図が示すように、外皮ステンレス鋼中のNi 、 
Cr含有量が増加する程断線しにくくなシ、特に3.2
XNi(%)+Cr(%)  の値が50以上になると
ほとんど断線が発生しないことが判った。
As this figure shows, Ni in the outer stainless steel,
As the Cr content increases, wire breakage becomes less likely, especially at 3.2.
It was found that when the value of XNi (%) + Cr (%) was 50 or more, wire breakage hardly occurred.

なお、第3図におけるO印(外皮ムロ、7゜9)は最終
伸線で数回の断線が発生したが、この程度の断線であれ
ば、実生産時のダイススケジュールの若干の調整によっ
て防止可能な範囲と判断した。
Note that the mark O (outer skin unevenness, 7°9) in Figure 3 indicates that wire breakage occurred several times during the final wire drawing, but wire breaks of this magnitude could be prevented by making slight adjustments to the die schedule during actual production. It was judged to be within the possible range.

以上に本発明において規定した、上記以外の各数値の限
定理由について述べる。
The reasons for limiting each numerical value other than the above defined in the present invention will be described above.

まず、ステンレス鋼外皮中のNi含有量を9.5〜15
q6としたのは、9.54未満では溶着金属中のNi量
が少なくなシ、例えばJIS Z 3323に規定され
るようなフラックス人クワイヤの処方設計が困難になる
。またCr含有量が比較的多い場合にはフェライト量が
多くなシ、熱間圧延時に割れが発生し帯鋼やパイプにす
ることができなくなる。
First, the Ni content in the stainless steel outer shell is 9.5 to 15.
The reason for setting q6 is that if it is less than 9.54, the amount of Ni in the weld metal will be small, and it will be difficult to design a prescription for a flux choir as defined in JIS Z 3323, for example. Furthermore, when the Cr content is relatively high, the amount of ferrite is large and cracks occur during hot rolling, making it impossible to make steel bands or pipes.

15チを超えた場合には、溶着金属中のNiが多くなシ
すぎ、フラックス人シワイヤの現行規格からして、15
チを超えたNi量は必要がない。
If the shear wire exceeds 15, the Ni content in the weld metal is too high.
There is no need for an amount of Ni exceeding 1.

ステンレス鋼外皮中のCr含有量を16〜27チとした
のも、16%未満では溶着金属中のCr量が少なくな)
すぎ、ワイヤの処方設計ができなくなることによる。
The reason for setting the Cr content in the stainless steel outer skin to 16-27% is that if it is less than 16%, the amount of Cr in the weld metal will be small.)
This is because it becomes impossible to design the wire prescription.

Cr含有量が27チを超えた場合にはフェライトが多く
なシ、前述のように熱間圧延時に割れが発生する。また
、現行のワイヤ規格からして27%を超えたCr量は必
要がない。
If the Cr content exceeds 27 inches, there will be a large amount of ferrite, and as mentioned above, cracks will occur during hot rolling. Further, according to the current wire standards, there is no need for a Cr content exceeding 27%.

次に、フラックス成分については、 8102は被包性
の良いスラグを形成するに必要な成分であるが、1.6
チ未満ではその効果が発揮できず、スラグ被包性が劣化
し、3.7%を超えるとスラグの焼付きを生じ剥離性が
劣化する。5102原材料としてはケイ砂、ケイ石、お
よびケイ灰石。
Next, regarding the flux component, 8102 is a necessary component to form a slag with good encapsulation, but 1.6
If it is less than 3.7%, the effect cannot be exhibited and the slag encapsulation property deteriorates, and if it exceeds 3.7%, the slag seizes and the releasability deteriorates. 5102 Raw materials include silica sand, silica stone, and wollastonite.

ジルコンサンド、カリ長石等の原料の副成分を利用でき
る。
Sub-components of raw materials such as zircon sand and potassium feldspar can be used.

Z ro 2は、スラグに流動性を与え、スラグ量低減
に有効な成分であシ、0.7%未満ではその効果が不十
分であシ、逆に2.0%を超えた場合にはフラックスが
溶けにくくなシ、ワイヤ外皮と内部フラックスとの溶融
時間°差が拡がシアーク状態が劣化する。原材料として
は酸化ジルコニウム、ジルコンフラワー、ジルコンサン
ド等を用い得る。
Z ro 2 is an effective ingredient for imparting fluidity to slag and reducing the amount of slag; if it is less than 0.7%, its effect is insufficient; on the other hand, if it exceeds 2.0%, If the flux is difficult to melt, the difference in melting time between the wire outer sheath and the internal flux increases and the shear arc condition deteriorates. As raw materials, zirconium oxide, zircon flour, zircon sand, etc. can be used.

TlO2は、ち密で剥離性の良いスラグを形成するが0
.7チ未満ではその効果が発揮されず、4.2%を超え
るとスラグの流動性が劣化し、スラグ被包性を確保する
ために必要なスラグ量が増大し、スノ4 yりが発生し
やすくなる。原材料としては、ルチール、チタン白、チ
タンスラグ。
TlO2 forms a dense slag with good peelability, but 0
.. If it is less than 7%, the effect will not be exhibited, and if it exceeds 4.2%, the fluidity of the slag will deteriorate, the amount of slag required to ensure slag envelopment will increase, and slag will occur. It becomes easier. Raw materials include rutile, titanium white, and titanium slag.

イルミナイト、さらにはチタン酸カリ、チタン酸ソーダ
、チタン酸カルシウム等のチタン酸塩が単独、あるいは
複合で用いられる。
Illuminite, and titanates such as potassium titanate, sodium titanate, and calcium titanate are used alone or in combination.

金属フッ化物はスラグの融点調整や耐ピツト性改善のた
めに添加され、0.1 q6未満では耐ピツト性が確保
できず、逆に0.7 %を超えるとスラグ融点が低くな
シ過ぎ、ビード形状が劣化すると共に、フッ素ガス発生
によってスノ臂ツタ量が増す。金属フッ化物としてはC
aF2 、 NaF 。
Metal fluoride is added to adjust the melting point of slag and improve pitting resistance. If it is less than 0.1 q6, pitting resistance cannot be ensured, and if it exceeds 0.7%, the slag melting point is too low. As the bead shape deteriorates, the amount of snow ivy increases due to the generation of fluorine gas. C as a metal fluoride
aF2, NaF.

AtIP、 MgF2. LiF等を単独又は複合で用
いるが、上記範囲内であれば、その効果はどの7゜化物
も特に差違は認められなかった。
AtIP, MgF2. Although LiF and the like are used alone or in combination, within the above range, no particular difference was observed in the effect of any of the 7° compounds.

本発明においてスラグ成分とは、酸化物、フッ化物等の
非金属成分を意味するものであシ、先に述べた酸化物、
7ツ化物の他には、スラグ塩基度の調整やスラグの融点
、流動性の微調整に用いるAt203 g F*Oe 
MgO* CaOe MnOtBaO、合金歩留シの調
整に用いるCr2O3,Nip。
In the present invention, the slag component refers to non-metallic components such as oxides and fluorides;
In addition to heptadide, At203 g F*Oe is used to adjust the basicity of slag and finely adjust the melting point and fluidity of slag.
MgO* CaOe MnOtBaO, Cr2O3, Nip used for adjusting alloy yield.

アーク状態の調整に用いるNa2O、K2O、Li2O
3。
Na2O, K2O, Li2O used for arc condition adjustment
3.

さらにはスラグ剥離性の改善に用いるpbo 。Furthermore, pbo is used to improve slag removability.

B1□03等さらには、これら原料の不純物とじてのp
、s等も含まれる。
B1□03 etc. Furthermore, p as an impurity of these raw materials
, s, etc. are also included.

本発明では、これらをも含めた全スラグ成分がワイヤ全
重量に対し4.5〜9.5%の範囲とすることがひとつ
のポイントであるが、これはスラグ成分量が9,5%を
超えた場合には前述のようにスノ母ツタ発生量が急激に
多くなるばかシでなく、ワイヤの伸線性も劣化する。
In the present invention, one point is that the total slag component including these is in the range of 4.5 to 9.5% of the total weight of the wire, but this means that the slag component amount is 9.5% or less. If it exceeds the limit, not only will the amount of ivy increase rapidly as described above, but also the drawability of the wire will deteriorate.

4.5%未満では、いかに被包性の良いスラグ系といえ
どもスラグ量が不足しスラグがビード表面を覆うことが
不可能となることによる。
If it is less than 4.5%, no matter how good the slag type is, the amount of slag will be insufficient and it will be impossible for the slag to cover the bead surface.

なお、Na2O、K2O等のアルカリ金属酸化物は過多
となるとスノぐツタ増加の原因となるので合計0.6チ
以内が、Bi2O,、PbO等低融点化合物は、ビード
形状の劣化や靭性の低下をもたらすので総:fi 0.
2 %以下がそれぞれ望ましい。
Excessive amounts of alkali metal oxides such as Na2O and K2O will cause an increase in ivy, so the total amount should be within 0.6 cm, while low melting point compounds such as Bi2O and PbO will cause deterioration of the bead shape and decrease in toughness. Therefore, the total: fi 0.
2% or less is desirable for each.

また、フラックスは原材料粒度、フラックス成分、充填
方法等に応じて、固着剤によって造粒して用いることも
あるが、その場合には固着剤からもたらされる成分1例
えば水ガラスの場合では8102 、 Na2O、K2
O等が増加するととをあらかじめ考慮して原料配合を行
うことが必要である。
In addition, depending on the raw material particle size, flux components, filling method, etc., flux may be used after being granulated with a binding agent. , K2
It is necessary to mix the raw materials by taking into consideration the possibility that O, etc. will increase.

次に、Mnは脱酸剤として添加するものであシ、耐割れ
性を改善しアークの安定化の効果もあるが、0.3チ未
満ではその効果が発揮できず、2.3%を超えるとスラ
グの流動性、スラグ剥離性を損う。
Next, Mn is added as a deoxidizing agent, and has the effect of improving cracking resistance and stabilizing the arc, but if it is less than 0.3%, the effect cannot be exhibited, and if 2.3% Exceeding this will impair slag fluidity and slag removability.

なお、ことで言うMnは、金属マンガンあるいはフェロ
マンガンを用いるものであ夛、鉄粉やステンレス鋼粉か
らもたらされるMnは含まないものとする。
Note that the term Mn refers to metal manganese or ferromanganese, and does not include Mn derived from iron powder or stainless steel powder.

これは鉄粉やステンレス鋼粉中に含まれるたかだか2チ
程度のMnでは脱酸剤としての効果が期待できないこと
による。
This is because Mn, which is contained in iron powder or stainless steel powder in an amount of about 2 tres at most, cannot be expected to be effective as a deoxidizing agent.

さて次に、ワイヤ断面形状について言及するならば、最
初に述べたように本発明では特にワイヤ断面形状にはと
られれない。しかしながら第1図(a)〜(c)のよう
な単純円型断面のワイヤにおいては、溶接電流がワイヤ
の外皮のみに流れ、芯部のフラックスの溶融が遅れる結
果、アークが乱れた)、アークの集中性が悪くなって、
スラグ巻込みが発生したシする傾向が認められるが、こ
のような場合には7ラツクス中の金属成分量を多く(例
えば65チ以上)にすることが望ましい。これはスラグ
主成分を形成する810  * TiOe ZrO2な
ど高融点酸化物の間に比較的低融点の金属粉が多量に入
シこむことにより℃、金属自体がアークの発生点になっ
たシ、アーク発生点にならなくても高融点酸化物よシ先
に゛溶融されるため7ラツクス全体が極めて溶融されや
すくなる結果、外皮との溶融のタイミングのずれがなく
なることによるものと考えられる。
Now, referring to the cross-sectional shape of the wire, as stated at the beginning, the present invention does not specifically adopt a wire cross-sectional shape. However, in wires with a simple circular cross section as shown in Figures 1(a) to (c), the welding current flows only to the outer skin of the wire, which delays the melting of the flux in the core, resulting in a disordered arc). Concentration becomes worse,
Although there is a tendency for slag entrainment to occur, in such cases it is desirable to increase the amount of metal components in the 7 lacs (for example, 65 lacs or more). This is because a large amount of metal powder with a relatively low melting point infiltrates between the high melting point oxides such as 810 * TiOe and ZrO2 that form the main component of slag, causing the metal itself to become the point of arc generation. This is thought to be due to the fact that the high melting point oxide is melted first even if it does not become a generation point, so the entire 7 lux is extremely easily melted, and as a result, there is no difference in the timing of melting with the outer skin.

それには、用いる外皮成分、目的とする溶着金属成分に
よって、用いる合金剤の合金成分濃度やフラックス充填
率を決定する必要がある。
For this purpose, it is necessary to determine the alloying component concentration of the alloying agent used and the flux filling rate depending on the outer skin component to be used and the target weld metal component.

以下に実施例によシ本発明の効果をさらに具体的に示す
The effects of the present invention will be illustrated in more detail by examples below.

〔実施例〕〔Example〕

第3表に示す組成のステンレス鋼の/4イブおよび帯鋼
を用いて、第4表に示す組成のJISZ 3323相当
の各種ワイヤを製造した。すなわち、外皮として・ぐイ
ブを用いたものは第1図(&)に示すシームレスタイプ
とし、ワイヤ径1.1゜nで最終焼鈍した後0.8 f
f1lφまで線引きし仕上げ径とした。さらに断線なく
仕上ったワイヤについては、DCRP 130A 27
 V 20 cm/5kcl溶接条件でSUS 304
L鋼板上に平板溶接を行い溶接作業性を調査した。
Various wires corresponding to JISZ 3323 with the compositions shown in Table 4 were manufactured using stainless steel /4 tubes and steel strips with the compositions shown in Table 3. That is, the one using guibe as the outer skin is the seamless type shown in Fig. 1 (&), and after final annealing with a wire diameter of 1.1°n,
The finished diameter was drawn to f1lφ. Furthermore, for wires finished without disconnection, DCRP 130A 27
SUS 304 under V 20 cm/5kcl welding conditions
Flat plate welding was performed on L steel plate and welding workability was investigated.

また外皮として帯鋼を用いたものは第1図(d)に示す
断面形状とし、2. Otsxφで成型した後、1.2
flφの仕上げ径まで線引きした。さらに断線なく仕上
ったワイヤについては、DCRP 200A31V30
cIn/−の溶接条件で上記同様の平板溶接を行ない溶
接作業性を比較した。
In addition, the cross-sectional shape shown in FIG. 1(d) is used for the outer skin made of steel band, and 2. After molding with Otsxφ, 1.2
The wire was drawn to a finished diameter of flφ. Furthermore, for wires finished without disconnection, DCRP 200A31V30
Flat plate welding was performed in the same manner as above under the welding conditions of cIn/-, and the welding workability was compared.

その結果は第4表に合わせて示すとおシで、Ni含有量
や3.2 X Ni(4)+Cr(イ)値が低いステン
レス鋼の帯鋼やツクイブを外皮として用いたワイヤ憲1
,2,3,4,5,6,7,20.48では、いずれも
伸線性が劣シ、伸線工程でワイヤの断線が発生した。
The results are shown in Table 4. Wire cables using stainless steel strips or Tsukuib with low Ni content and low 3.2 x Ni(4) + Cr(A) values as the outer sheath
, 2, 3, 4, 5, 6, 7, and 20.48 all had poor wire drawability, and wire breakage occurred during the wire drawing process.

また、sio□、 ZrO□、金属フッ化物含有量の少
ないワイヤ扁12,15,17,26,30゜31.3
8,41,42.スラグ成分量の少ないワイヤA 12
 、23 、 Tie2含有量の多いワイヤA43では
スラグの被包性が不十分であった。
In addition, sio□, ZrO□, wire flattened with low metal fluoride content 12, 15, 17, 26, 30° 31.3
8, 41, 42. Wire A with low slag content 12
, 23, Wire A43 with a high Tie2 content had insufficient slag encapsulation.

さらに、5102あるいはMn含有量の多いワイヤ扁1
9 、24 、37 、 Tie2含有量の少ないワイ
ヤ423,25.41ではスラグの剥離性が劣ったO Z rO2含有量の多いワイヤ憲16,25.およびM
n含有量の低いワイヤ410ではアーク状態が劣りた。
Furthermore, 5102 or wire flat 1 with high Mn content
9, 24, 37, Wire 423, 25.41 with low Tie2 content had poor slag releasability; Wire 16, 25.41 with high OZ rO2 content. and M
Wire 410 with a low n content had poor arc condition.

また、金属フッ化物あるいはワイヤ中のスラグ成分量の
多いワイヤ憲18,38,11,36゜53の場合には
いずれもスパッタ発生量が増加する結果となった。
Further, in the case of wire wires 18, 38, 11, and 36°53, which have a large amount of metal fluoride or slag components in the wire, the amount of spatter generated increased.

特にスラグ成分量が多く、しかも7ラツクス充填率の高
いワイヤl627の場合には、外皮ステンレス鋼の伸線
性は良好であるにもかかわらず断線が発生した。
In particular, in the case of wire 1627, which had a large amount of slag component and a high 7 lux filling rate, wire breakage occurred despite the good wire drawability of the stainless steel sheath.

これらに対し、外皮ステンレス鋼のNl 、 Cr含有
量が高くしかも3.2 X Nl (%)+ Cr(4
)の値が50以上の帯鋼、パイプを用い、フラックス成
分範囲、スラグ成分量が適正な本発明7ラツクス人シワ
イヤの場合は、いずれも断線の発生がなく、アーク状態
が良好で、スパッタ発生量が少なく、スラグ被包性、ス
ラグ剥離性にも問題はなく、極めて良好な溶接作業性を
示した。
On the other hand, the Nl and Cr contents of the outer stainless steel are high, and 3.2 × Nl (%) + Cr (4
) value of 50 or more, and the flux component range and slag component amount are appropriate.In the case of the present invention's 7-lux shear wire, there is no occurrence of wire breakage, good arc condition, and no spatter generation. The amount was small, there were no problems with slag envelopment and slag removability, and extremely good welding workability was exhibited.

なお、第4表における溶接作業性の評価は。In addition, the evaluation of welding workability in Table 4 is as follows.

◎:極めて良好、O:良好、Δ:やや不良、×:不良を
示すものである。
◎: Very good, O: Good, Δ: Slightly poor, ×: Poor.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、外皮として用いるステンレス鋼
合金成分量を特定し、かつ、内包される7ラツクス成分
、スラグ成分量を特定することによシ、伸線工程におけ
るワイヤ断線を防止し、溶接作業性の良好なステンレス
鋼溶接用フラックス入シワイヤの生産性を高めたもので
あシ、特に極細径ワイヤの生産において効果が大きい。
As described above, the present invention prevents wire breakage in the wire drawing process by specifying the amount of the stainless steel alloy component used as the outer sheath, as well as the amount of the 7 lux component and slag component contained therein. This is a flux-cored shear wire for welding stainless steel with good welding workability and improved productivity, and is particularly effective in producing ultra-thin diameter wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) # (b) t (e) # (d)は
各種フラックス人シワイヤの断面形状を示す模式図、第
2図はワイヤ中のスラグ成分含有量とスパッタ発生量の
関係を示す図、第3図は外皮ステンレス鋼の伸線におよ
ほすNiおよびCr含有量の影響を示す図である。 1・・・外皮      2・・・充填フラックス3・
・・継目。 第1図 第2図
Figure 1 (a) # (b) t (e) # (d) is a schematic diagram showing the cross-sectional shape of various flux shear wires, and Figure 2 shows the relationship between the slag component content in the wire and the amount of spatter generated. Figures 3 and 3 are diagrams showing the influence of Ni and Cr contents on the wire drawing of outer stainless steel. 1... Outer skin 2... Filling flux 3.
... seam. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] Ni含有量が9.5〜15%、Cr含有量が16〜27
%で、かつ3.2×Ni(%)+Cr(%)が50%以
上であるオーステナイト系ステンレス鋼外皮内に、フラ
ックス成分として少なくともワイヤ全重量に対し1.6
〜3.7%のSiO_2、0.7〜2.0%のZrO_
2、0.7〜4.2%のTiO_2、0.1〜0.7%
の金属フッ化物、0.3〜2.3%のMnを含有し、か
つフラックス中のスラグ成分の合計がワイヤ全重量の4
.5〜9.5%であることを特徴とするステンレス鋼溶
接用フラックス入りワイヤ。
Ni content is 9.5-15%, Cr content is 16-27
% and 3.2×Ni (%) + Cr (%) is 50% or more in the austenitic stainless steel outer skin, as a flux component at least 1.6% based on the total weight of the wire.
~3.7% SiO_2, 0.7-2.0% ZrO_
2, 0.7-4.2% TiO_2, 0.1-0.7%
metal fluoride, 0.3 to 2.3% Mn, and the total slag component in the flux is 4% of the total weight of the wire.
.. A flux-cored wire for stainless steel welding, characterized in that the flux is 5 to 9.5%.
JP61268350A 1986-11-11 1986-11-11 Wire with flux for welding stainless steel Expired - Lifetime JPH0632872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61268350A JPH0632872B2 (en) 1986-11-11 1986-11-11 Wire with flux for welding stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61268350A JPH0632872B2 (en) 1986-11-11 1986-11-11 Wire with flux for welding stainless steel

Publications (2)

Publication Number Publication Date
JPS63123596A true JPS63123596A (en) 1988-05-27
JPH0632872B2 JPH0632872B2 (en) 1994-05-02

Family

ID=17457313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61268350A Expired - Lifetime JPH0632872B2 (en) 1986-11-11 1986-11-11 Wire with flux for welding stainless steel

Country Status (1)

Country Link
JP (1) JPH0632872B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307189A (en) * 2001-04-10 2002-10-22 Nippon Steel Corp High toughness and low temperature transformation flux-cored wire
JP2009172679A (en) * 2007-12-27 2009-08-06 Nippon Steel Corp Flux-cored welding stainless steel wire for welding galvanized steel plate, and arc welding method of galvanized steel plate using the same
WO2010073763A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Stainless steel flux-cored welding wire for the welding of galvanized steel sheets and process for arc welding of galvanized steel sheets with the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495069A (en) * 1967-04-24 1970-02-10 Chemetron Corp Welding electrode
US3585352A (en) * 1969-11-24 1971-06-15 Stoody Co Arc welding process and electrode for stainless steel
JPS5639193A (en) * 1979-09-04 1981-04-14 Kobe Steel Ltd Wire including flux for gas shield arc welding
JPS5686699A (en) * 1979-12-17 1981-07-14 Nippon Steel Corp Production of wire incorporating stainless steel flux for gas shield arc welding
JPS57137094A (en) * 1981-02-17 1982-08-24 Kawasaki Steel Corp High speed submerged arc welding method of single layer on both sides
JPS5816796A (en) * 1981-06-05 1983-01-31 Kobe Steel Ltd Flux cored wire for gas shielded arc welding
JPS59212192A (en) * 1983-05-16 1984-12-01 Nippon Steel Corp Flux cored stainless steel wire
JPS60191693A (en) * 1984-03-12 1985-09-30 Nippon Steel Corp Flux cored stainless steel wire
JPS61176492A (en) * 1985-01-29 1986-08-08 Nippon Steel Corp Flux-cored wire for welding stainless steel
JPS6336996A (en) * 1986-07-30 1988-02-17 Kobe Steel Ltd Flux cored wire for welding stainless steel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495069A (en) * 1967-04-24 1970-02-10 Chemetron Corp Welding electrode
US3585352A (en) * 1969-11-24 1971-06-15 Stoody Co Arc welding process and electrode for stainless steel
JPS5639193A (en) * 1979-09-04 1981-04-14 Kobe Steel Ltd Wire including flux for gas shield arc welding
JPS5686699A (en) * 1979-12-17 1981-07-14 Nippon Steel Corp Production of wire incorporating stainless steel flux for gas shield arc welding
JPS57137094A (en) * 1981-02-17 1982-08-24 Kawasaki Steel Corp High speed submerged arc welding method of single layer on both sides
JPS5816796A (en) * 1981-06-05 1983-01-31 Kobe Steel Ltd Flux cored wire for gas shielded arc welding
JPS59212192A (en) * 1983-05-16 1984-12-01 Nippon Steel Corp Flux cored stainless steel wire
JPS60191693A (en) * 1984-03-12 1985-09-30 Nippon Steel Corp Flux cored stainless steel wire
JPS61176492A (en) * 1985-01-29 1986-08-08 Nippon Steel Corp Flux-cored wire for welding stainless steel
JPS6336996A (en) * 1986-07-30 1988-02-17 Kobe Steel Ltd Flux cored wire for welding stainless steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307189A (en) * 2001-04-10 2002-10-22 Nippon Steel Corp High toughness and low temperature transformation flux-cored wire
JP4516702B2 (en) * 2001-04-10 2010-08-04 新日本製鐵株式会社 High toughness low temperature transformation flux cored wire
JP2009172679A (en) * 2007-12-27 2009-08-06 Nippon Steel Corp Flux-cored welding stainless steel wire for welding galvanized steel plate, and arc welding method of galvanized steel plate using the same
US8748778B2 (en) 2007-12-27 2014-06-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel flux-cored welding wire for welding of zinc-coated steel sheet and arc welding method of zinc-coated steel sheet using same
WO2010073763A1 (en) * 2008-12-26 2010-07-01 新日本製鐵株式会社 Stainless steel flux-cored welding wire for the welding of galvanized steel sheets and process for arc welding of galvanized steel sheets with the same

Also Published As

Publication number Publication date
JPH0632872B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US6339209B1 (en) Electrode and flux for arc welding stainless steel
US8158907B2 (en) Weld wire with enhanced slag removal
JPS5915756B2 (en) Flux-cored wire for gas shield arc welding
JP2019093428A (en) Flux-cored wire for gas shield arc welding, and welding method
JP5912969B2 (en) Fused flux used for submerged arc welding and welding method using the same
JPS63123596A (en) Flux cored wire for welding stainless steel
JPH0159079B2 (en)
EP4056312A1 (en) Fluxed core wire and method for manufacturing weld joint
JPH08257791A (en) Low hydrogen covered electrode
JPH09262693A (en) Flux cored wire for arc welding
KR101370403B1 (en) Filler for cored wire and flux cored wire for overlay welding with low dilution rate
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JPH10296486A (en) Flux cored wire for welding 9% nickel steel
JPS6234697A (en) Flux cored wide for welding
JP3540894B2 (en) Flux-cored wire for stainless steel welding
JP7448433B2 (en) Flux for submerged arc welding, submerged arc welding method, and method for producing flux for submerged arc welding
JPS61176492A (en) Flux-cored wire for welding stainless steel
JP3481146B2 (en) Flux-cored wire for stainless steel welding
JPH0829431B2 (en) Low-hydrogen coated arc welding rod
JPH03264194A (en) Flux cored wire for welding high corrosion resistance stainless steel
JPS5841694A (en) Calcined flux for submerged arc welding
JPH07276085A (en) Stainless steel flux cored wire for high temperature use
JPS63199093A (en) Arc welding electrode coated on stainless core wire
JPH02200381A (en) Submerged arc welding method at high speed for spiral steel pipe
JPH0292497A (en) Flux for high-speed submerged arc welding of spiral steel pipe