JP3481146B2 - Flux-cored wire for stainless steel welding - Google Patents
Flux-cored wire for stainless steel weldingInfo
- Publication number
- JP3481146B2 JP3481146B2 JP27956398A JP27956398A JP3481146B2 JP 3481146 B2 JP3481146 B2 JP 3481146B2 JP 27956398 A JP27956398 A JP 27956398A JP 27956398 A JP27956398 A JP 27956398A JP 3481146 B2 JP3481146 B2 JP 3481146B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- flux
- wire
- welding
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、溶接金属の耐食性
及び耐隙間腐食性に優れた窒素含有量の高いオーステナ
イト系ステンレス鋼及び二相ステンレス鋼の溶接に使用
され、ブローホール等の溶接欠陥の発生が無く、優れた
溶接作業性を有するステンレス鋼溶接用フラックス入り
ワイヤに関する。
【0002】
【従来の技術】SUS304N2、SUS304LN、
SUS316LN、SUS317LNSUS329J3
L、SUS329J4Lのような窒素含有量の高いオー
ステナイト系ステンレス鋼や二相ステンレス鋼は、優れ
た耐食性及び強度特性を持つステンレス鋼である。耐孔
食性、耐隙間腐食性が要求される化学プラント機器や油
井、ガス井等の耐食材料として、また、強度も高いこと
から、建築や車両等の構造材としても用いられている。
これらの溶接に使用される材料には、母材と同等の溶接
金属性能と良好な溶接作業性が求められる。溶接材料の
中でも高能率に溶接できるフラックス入りワイヤが多く
使用されるようになり特にその要求が高い。しかし、窒
素含有量の高いステンレス鋼を従来のオーステナイト系
ステンレス鋼溶接用フラックス入りワイヤを用いて溶接
した場合、溶接直後にスラグが飛散したり、一部が溶接
ビードに焼き付いて残るという問題がある。これは溶接
作業能率を著しく低下させるばかりでなく、スラグが飛
散するため安全面においても問題であった。
【0003】この課題を解決する高窒素ステンレス鋼の
溶接を対象とした特開平8−118071号公報や特開
平9−239586号公報に記載のフラックス入りワイ
ヤがあるが、アーク安定性、スパッタ発生量、ビード形
状、スラグの被包性及び剥離性、スラグの耐飛散性等の
溶接作業性は十分ではなく、窒素による溶接金属中のブ
ローホール等の溶接欠陥に対しても完全に解決されてい
なかった。そこで、これらの問題を解決するステンレス
鋼溶接用フラックス入りワイヤの開発が強く要望されて
いた。
【0004】
【発明が解決しようとする課題】本発明は、窒素含有量
の高いステンレス鋼の溶接において溶接欠陥の発生が無
く、アーク安定性、スパッタ発生量、ビード形状、スラ
グの被包性及び剥離性、スラグの耐飛散性等の優れた溶
接作業性を有するステンレス鋼溶接用フラックス入りワ
イヤを提供することを目的とする。
【0005】
【課題を解決するための手段】本発明者らは、上記課題
を解決するために、ワイヤ外皮のN量と充填フラックス
のスラグ剤成分とスラグ剤量を調整することに着目し
て、スラグ剤成分の組成とスラグ剤量について種々検討
した。その結果、窒素含有量の高いステンレス鋼の溶接
において、アーク安定性、スパッタ発生量、ビード形
状、スラグの被包性及び剥離性、スラグの耐飛散性等の
溶接作業性が優れ、窒素による溶接金属中のブローホー
ル等の溶接欠陥のないステンレス鋼溶接用フラックス入
りワイヤを見いだした。
【0006】すなわち、本発明の要旨は、ステンレス鋼
製外皮内にフラックスを充填してなるステンレス鋼溶接
用フラックス入りワイヤにおいて、ワイヤ外皮のN含有
量が0.19重量%以下で、充填フラックスはワイヤ全
重量に対して重量%でTiO 2 :3.2〜7.5%、S
iO 2 :1.0〜4.0%、Al 2 O 3 :0.1〜1.6
%、MgO:0.15〜1.0%、金属弗化物(F換算
値):0.3〜1.17%、K化合物(K換算値):
0.3〜0.73%、N化合物(N換算値):0.11
%以下を含有し、不可避不純物としてのZrO 2 :0.
08%以下(0%を含む)、かつスラグ剤成分の合計
が、5.3〜12.5重量%、さらにワイヤ全重量に対
してワイヤ外皮に含有するNとフラックスに含まれるN
化合物(N換算値)の合計が0.07〜0.24重量%
であることを特徴とするステンレス鋼溶接用フラックス
入りワイヤにある。
【0007】
【発明の実施の形態】以下に本発明のステンレス鋼溶接
用フラックス入りワイヤの各成分の限定理由について説
明する。
【0008】充填フラックス中のTiO 2 は、アークを
安定にし、被包性及び剥離性の良いスラグを形成し、さ
らには耐飛散性の良いスラグを形成するが、3.2%未
満ではその効果は発揮されず、7.5%を超えるとスラ
グの流動性が劣化し、ビード形状が不良となる。また、
スパッタが発生しやすくなるばかりか、スラグ巻き込み
欠陥が発生しやすくなる。TiO 2 としては、ルチー
ル、チタンスラグ、イルミナイト、チタン酸カリ、チタ
ン酸ソーダ等が使用できる。
【0009】SiO 2 は、スラグの流動性調整に必要な
成分で、ビード形状を良化させる成分であるが、1.0
%未満ではスラグの流動性が悪くビード形状が不良とな
り、4.0%を超えると、スラグが流れやすくなり、ス
ラグ剥離性及びビード形状が不良となる。さらに、スラ
グの耐飛散性が劣化する。SiO 2 としては、硅砂、硅
石の他、カリ長石等が使用できる。
【0010】Al 2 O 3 はスラグの流動性を調整してビー
ド形状を良好とする成分であるが、0.1%未満ではス
ラグが流れやすいためスラグの被包性が悪く、スラグの
剥離性が低下すると共にビード形状が不良となる。1.
6%を超えると、スラグの粘性が低下し、スラグの被包
性が悪くビード形状が不良となる。Al 2 O 3 としては、
アルミナ、カリ長石等が使用できる。
【0011】MgOはスラグの流動性及びスラグの凝固
温度調整に必要な成分であり、ビード形状を良好とする
成分である。MgOが0.15%未満ではスラグの流動
性が悪くビード形状が不良となる。1.0%を超えると
スラグが流れやすくなり溶接ビード表面に均一に被包せ
ず、スラグの被包性及び剥離性が劣化すると共に、スパ
ッタ発生量も増加し、溶接作業性を劣化させる。また、
スラグ巻き込みが発生しやすくなる。
【0012】金属弗化物は、耐ピット性を向上させ、ス
ラグの融点を調整しスラグの被包性及び剥離性を向上さ
せるが、F換算値で0.3%未満ではピットが発生した
り、スラグの被包性及び剥離性が劣化し、1.17%を
超えるとスラグの融点が著しく低下し、スラグの被包性
が劣化する。また、弗素ガス発生に伴いヒュームが多量
に発生する。金属弗化物はLiF、MgF 2 、AlF 2 、
K 2 Zr 2 F 6 等が使用でき、いずれの金属弗化物を使用
しても同様な効果が得られる。
【0013】K化合物は、アークを安定にするために添
加する。特に本発明においてはTiO 2 の比率が高く、
溶滴が大きくなりスパッタ発生量が増加するのを抑制す
る。また、スラグの流動性を調整してビード形状を良好
にする成分であるが、K換算値で0.3%未満ではアー
クが不安定となりスパッタ発生量は増加し、0.73%
を超えるとアークの吹き付け力が強くなりすぎてスパッ
タ発生量が増加し、また、スラグが流れやすくなりスラ
グの被包性が劣化してスラグ剥離性が不良となる。K化
合物は酸化カリウム、フッ化ジルコンカリ、ケイフッ化
カリウム等が使用できる。
【0014】Nは強度を高めるとともに、強力なオース
テナイト生成元素であり、Cr、Ni、Moと共存の形
で高い耐食性を得るのに効果的である。ワイヤ全重量に
対してワイヤ外皮に含有するNとフラックスに含まれる
N化合物(N換算値)の合計が0.07%未満ではその
効果は発揮されず、0.24%を超えると強度、耐食性
を向上させる効果は飽和するばかりか、ブローホールが
発生する。この場合、フラックスに含まれるN化合物
(N換算値)が0.11%を超えると溶接金属中にブロ
ーホールが発生し、さらにスパッタ発生量が増加し、溶
接作業性を著しく劣化させる。ワイヤ外皮のN含有量が
0.19%を超えると外皮が硬くなりワイヤの伸線性が
著しく劣化し製造工程において焼鈍回数の増加や、ワイ
ヤ断線が多発して生産性が著しく低下する。
【0015】ワイヤ外皮のN含有量が少ないと、フラッ
クスからN化合物を多量添加しなければならないが、フ
ラックスから多量にN化合物を添加するとスパッタ発生
量の増加を招き、溶接金属にブローホールが発生する。
また、溶接金属中へのNの歩留まりが不安定となり、安
定した溶接金属を得られない場合がある。従って、ワイ
ヤ外皮のN含有量は0.02%以上とすることが望まし
い。フラックス中のN化合物は、窒化金属マンガン、窒
化フェロマンガン、窒化クロム等が使用できる。
【0016】ZrO 2 はNと化合物を生成しビード表面
にスラグが噛み込みスラグの剥離性を著しく劣化する。
従って、本発明はZrO 2 は極力含有させないようにす
ることがポイントの一つであり、ZrO 2 含有量は0%
を含む、0.08%以下とする。
【0017】また、充填フラックスは溶接する鋼板によ
って合金成分を調整する。調整剤としてNi、Cr、M
n、Mo、Si、Nb、Fe、Ti、Al、ステンレス
粉等を用いる。さらに原材料粒度、フラックス成分、充
填方法等に応じて固着剤によって造粒して用いることも
あるが、その場合には固着剤からもたらされる成分、例
えば水ガラスの場合では、SiO 2 、Na 2 O、K 2 O等
が増加することをあらかじめ考慮してスラグ剤量が5.
0〜12.5%になるように原料配合を行うことが必要
である。
【0018】本発明におけるスラグ剤成分とは、酸化
物、弗化物等の非金属成分、不純物としてのP、S等を
意味するものであるが、合金成分を調整する調整剤等を
も含むこともある。スラグ剤合計がワイヤ全重量に対し
て5.3%未満であると、スラグ量が不足し、ビード全
体を覆うことができず、スラグの被包性が劣化し、ビー
ド形状、スラグ剥離性が悪くなる。さらに、スラグの耐
飛散性が劣化する。12.5%を超えるとスラグ量が過
剰となりスパッタ発生量が増加する。さらに、スラグ巻
き込みなどの溶接欠陥が発生しやすくなる。
【0019】本発明のフラックス入りワイヤとは、図1
のa〜dにその例を示す様な断面形状のワイヤで、オー
ステナイト系のステンレス鋼のパイプあるいは帯鋼から
成る外皮1に、充填フラックス2を被包したもので、同
図aに示す様な継ぎ目のないもの、あるいは同図b〜d
の如く継ぎ目3を有するものでもよい。
【0020】
【実施例】表1に示す成分のオーステナイト系ステンレ
ス鋼のパイプ及び帯鋼を用い、表2、表3及び表4に示
すフラックスをワイヤ全重量に対して19〜28%充填
して、ワイヤ径1.2mmφのステンレス鋼溶接用フラ
ックス入りワイヤを製造した。なお、パイプは所定の充
填率にフラックスが入る径まで管引きした後、フラック
スを振動充填させた。表2、表3及び表4においてワイ
ヤNo.1〜19が本発明例のフラックス入りワイヤ、
No.20〜39が比較例である。
【0021】溶接試験は、電流200A(DCEP)、
電圧31V、溶接速度35cm/min、シールドガス
は100%CO 2 :25l/minの溶接条件で行っ
た。
【0022】試験鋼板は、ワイヤNo.4、No.5に
ついては表1に示す成分のSUS304N2鋼板それ以
外のワイヤはSUS329J3L鋼板を用いてT字型に
組み立て、片側1パス水平すみ肉溶接を行い溶接作業性
を確認した。それらの結果を表5に示す。評価は実用上
良好は場合は○、実用上問題がある場合は×とした。そ
れらの結果を表5に示す。
【0023】本発明例であるワイヤNo.1〜19は、
TiO 2 、SiO 2 、Al 2 O 3 、MgO、金属フッ化物、
K、N等をフラックス中に適正量含有し、且つフラック
ス中のスラグ剤の総量が適正であるので、溶接作業性が
良好で、ブローホール、スラグ巻き込み等の溶接欠陥も
発生せず、極めて満足な結果であった。
【0024】比較例中ワイヤNo.20は、TiO 2 量
が多いのでスパッタが多発し、溶接作業性が劣化した。
さらに、スラグの流動性が劣化し、ビード形状が不良と
なった。
【0025】TiO 2 量が少ないワイヤNo.21は、
アーク状態が不安定となり、スラグの被包性及び剥離性
が悪くなった。さらに、スラグの耐飛散性が悪くなっ
た。
【0026】SiO 2 量が多いワイヤNo.22は、ス
ラグが流れやすくスラグの被包性が劣化しスラグの焼付
きを生じ、スラグ剥離性及びスラグの耐飛散性が悪くな
った。さらに、ビード形状が不良となった。
【0027】SiO 2 量が少ないワイヤNo.23は、
スラグの流動性が悪く、ビード形状が不良となった。
【0028】Al 2 O 3 量が多いワイヤNo.24は、ス
ラグの粘性が低下し、被包性が悪く、ビード形状が不良
となった。
【0029】Al 2 O 3 量が少ないワイヤNo.25は、
スラグが流れやすく被包性が劣化し、スラグ剥離性が低
下した。さらに、ビード形状が不良となった。
【0030】ZrO 2 量が多いワイヤNo.26は、溶
接金属の表面にスラグが噛み込んでスラグの剥離性が悪
くなった。さらに、溶接直後にスラグの一部が跳ねてス
ラグの耐飛散性が劣化した。
【0031】MgO量が多いワイヤNo.27は、スラ
グが流れやすくなりスラグが溶接ビード表面に均一に被
包せず、スラグの被包性が悪く剥離性が低下した。ま
た、スパッタ発生量も多く、溶接作業性が劣った。
【0032】MgO量が少ないワイヤNo.28はスラ
グの流動性が悪く被包性が劣化し、ビード形状が不良と
なった。
【0033】K量が多いワイヤNo.29は、アークの
吹付けが強すぎてスパッタが多く発生した。さらに、ス
ラグが流れやすくなりスラグの被包性が悪く剥離性が低
下した。
【0034】K量の少ないワイヤNo.30は、アーク
が不安定となりスパッタが多く発生した。
【0035】金属フッ化物が多いワイヤNo.31は、
フッ素ガス発生量が過剰となりスパッタ及び溶接フュー
ムの発生量が多くなった。また、スラグの融点が下がり
スラグの被包性が劣化した。
【0036】金属フッ化物が少ないワイヤNo.32
は、スラグが溶接金属に均一に被包せず、スラグ剥離性
が悪かった。さらに、ビード表面にピットが発生した。
【0037】フラックスのN量が多いワイヤNo.33
は、スパッタが多く発生し、溶接金属中にブローホール
が発生した。
【0038】外皮のNが多いワイヤNo.34は、製造
工程においてワイヤの加工硬化が大きくワイヤの焼鈍回
数が増加し、さらに、ワイヤ断線回数も増加し、生産性
が劣った。
【0039】ワイヤの総Nが多いワイヤNo.37は、
溶接金属中にブローホールが発生した。
【0040】総Nが少ないワイヤNo.38は、溶接作
業性は良好であったが別途実施した溶着金属試験におい
て母材と同等の引張強さが得られなかった。
【0041】全スラグ剤成分の合計量が多いワイヤN
o.35は、スラグ量が過剰となり、スラグ巻き込みを
生じると共に、スパッタの発生量が多くなった。
【0042】スラグ剤成分の合計量が少ないワイヤN
o.36は、スラグ量が不足し、ビード全体を覆うこと
ができず、スラグの被包性が劣化し、ビード形状、スラ
グ剥離性が悪くなった。さらに、スラグの耐飛散性が劣
化した。
【0043】
【表1】
【0044】
【表2】【0045】
【表3】
【0046】
【表4】【0047】
【表5】【0048】
【発明の効果】以上詳述したように本発明のステンレス
鋼溶接用フラックス入りワイヤは、窒素含有量の高いス
テンレス鋼の溶接において、機械的性能を満足しつつ、
アーク状態、スパッタ発生量、スラグ被包・剥離性、ス
ラグ耐飛散性等の溶接作業性に優れたステンレス鋼溶接
用フラックス入りワイヤとして有益である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to welding of austenitic stainless steel and duplex stainless steel having a high nitrogen content and excellent in corrosion resistance and crevice corrosion resistance of a weld metal. The present invention relates to a flux-cored wire for stainless steel welding that is used, has no welding defects such as blowholes, and has excellent welding workability. [0002] SUS304N2, SUS304LN,
SUS316LN, SUS317LNSUS329J3
Austenitic stainless steel and duplex stainless steel having a high nitrogen content, such as L and SUS329J4L, are stainless steels having excellent corrosion resistance and strength properties. It is used as a corrosion-resistant material for chemical plant equipment, oil wells, gas wells and the like that require pitting corrosion resistance and crevice corrosion resistance, and because of its high strength, it is also used as a structural material for buildings and vehicles.
Materials used for these weldings are required to have the same weld metal performance as the base metal and good welding workability. Among the welding materials, flux-cored wires that can be welded with high efficiency have come to be used in many cases, and their demands are particularly high. However, when stainless steel with a high nitrogen content is welded using a conventional flux-cored wire for welding austenitic stainless steel, there is a problem that slag is scattered immediately after welding or a part of the slag is burned to a weld bead. . This not only significantly reduces the efficiency of welding work, but also has a problem in terms of safety because slag is scattered. [0003] There are flux cored wires described in JP-A-8-118071 and JP-A-9-239586 for welding high-nitrogen stainless steel to solve this problem. Welding workability such as bead shape, slag encapsulation and peelability, slag scattering resistance is not sufficient, and welding defects such as blowholes in the weld metal due to nitrogen have not been completely solved. Was. Therefore, there has been a strong demand for the development of a flux-cored wire for stainless steel welding that solves these problems. DISCLOSURE OF THE INVENTION [0004] The present invention provides a method for welding a stainless steel having a high nitrogen content, which has no welding defects, has an arc stability, a spatter generation amount, a bead shape, a slag encapsulating property, An object of the present invention is to provide a flux-cored wire for welding stainless steel having excellent welding workability such as peelability and slag scattering resistance. [0005] In order to solve the above-mentioned problems, the present inventors have focused on adjusting the N amount of the wire sheath, the slag agent component of the filling flux, and the slag agent amount. The composition of the slag agent component and the amount of the slag agent were variously examined. As a result, when welding stainless steel with a high nitrogen content, welding workability such as arc stability, spatter generation, bead shape, slag encapsulation and peeling properties, and slag scattering resistance is excellent. A flux-cored wire for welding stainless steel without welding defects such as blowholes in metal was found. That is, the gist of the present invention is to provide a flux cored wire for stainless steel welding in which a flux is filled in a stainless steel sheath, the N content of the wire sheath is 0.19% by weight or less, and the filling flux is TiO 2 : 3.2 to 7.5% by weight based on the total weight of the wire, S
iO 2 : 1.0 to 4.0%, Al 2 O 3 : 0.1 to 1.6
%, MgO: 0.15 to 1.0%, metal fluoride (F conversion value): 0.3 to 1.17%, K compound (K conversion value):
0.3 to 0.73%, N compound (N conversion value): 0.11
% Or less, and ZrO 2 as an inevitable impurity: 0.
08% or less (including 0%), and the total of the slag agent components is 5.3 to 12.5% by weight, and furthermore, N contained in the wire sheath and N contained in the flux with respect to the total weight of the wire.
The total of the compounds (in terms of N) is 0.07 to 0.24% by weight.
A flux-cored wire for stainless steel welding, characterized in that: [0007] The reasons for limiting the components of the flux cored wire for stainless steel welding of the present invention will be described below. The TiO 2 in the filling flux stabilizes the arc, forms a slag with good encapsulation and peeling properties, and further forms a slag with good scattering resistance. Is not exhibited, and if it exceeds 7.5%, the fluidity of the slag deteriorates, and the bead shape becomes poor. Also,
Not only spatter is likely to occur, but also slag entrainment defects are likely to occur. Rutile, titanium slag, illuminite, potassium titanate, sodium titanate and the like can be used as TiO 2 . [0009] SiO 2 is a component necessary for adjusting the fluidity of the slag, and is a component for improving the bead shape.
%, The fluidity of the slag is poor and the bead shape is poor, and if it exceeds 4.0%, the slag flows easily, and the slag removability and the bead shape are poor. Furthermore, the scattering resistance of the slag deteriorates. As SiO 2 , besides silica sand and silica stone, potassium feldspar and the like can be used. [0010] Al 2 O 3 is a component that adjusts the fluidity of the slag to improve the bead shape. However, if it is less than 0.1%, the slag flows easily, so that the slag has poor encapsulation properties and the slag has a releasability. And the bead shape becomes poor. 1.
If it exceeds 6%, the viscosity of the slag decreases, the encapsulation of the slag is poor, and the bead shape is poor. As Al 2 O 3 ,
Alumina, potassium feldspar and the like can be used. MgO is a component necessary for adjusting the fluidity of the slag and the solidification temperature of the slag, and is a component for improving the bead shape. If the content of MgO is less than 0.15%, the fluidity of the slag is poor and the bead shape is poor. If it exceeds 1.0%, slag flows easily and the slag is not uniformly covered on the surface of the weld bead, so that the slag encapsulability and peelability are deteriorated, and the amount of spatter generated is increased, thereby deteriorating welding workability. Also,
Slag entrainment is likely to occur. The metal fluoride improves the pit resistance, adjusts the melting point of the slag, and improves the slag encapsulating property and the releasability. However, when the F value is less than 0.3%, pits are generated. The encapsulability and peelability of the slag deteriorate, and if it exceeds 1.17%, the melting point of the slag remarkably decreases, and the encapsulation of the slag deteriorates. Further, a large amount of fume is generated with the generation of fluorine gas. Metal fluorides are LiF, MgF 2 , AlF 2 ,
K 2 Zr 2 F 6 or the like can be used, and the same effect can be obtained by using any metal fluoride. The K compound is added to stabilize the arc. In particular, in the present invention, the ratio of TiO 2 is high,
It suppresses an increase in the amount of droplets and spatter generation. Further, it is a component that adjusts the fluidity of the slag to improve the bead shape. However, if it is less than 0.3% in terms of K, the arc becomes unstable and the amount of spatters increases, and
If it exceeds, the blowing force of the arc becomes too strong, and the amount of spatters increases, and the slag flows easily, the encapsulating property of the slag deteriorates, and the slag peeling property becomes poor. As the K compound, potassium oxide, zirconium fluoride, potassium fluorosilicate and the like can be used. N increases the strength and is a strong austenite-forming element, and is effective in obtaining high corrosion resistance in the form of coexistence with Cr, Ni and Mo. If the total of N contained in the wire sheath and the N compound contained in the flux (N conversion value) is less than 0.07% based on the total weight of the wire, the effect is not exhibited, and if it exceeds 0.24%, the strength and corrosion resistance are obtained. Is not only saturated, but also blow holes are generated. In this case, if the N compound (N-equivalent value) contained in the flux exceeds 0.11%, blowholes are generated in the weld metal, and the amount of spatters increases, thereby significantly deteriorating the welding workability. If the N content of the wire sheath exceeds 0.19%, the sheath becomes hard and the wire drawability is significantly deteriorated, and the number of annealings in the manufacturing process is increased, and the number of wire breaks is increased, and the productivity is significantly reduced. If the N content of the wire sheath is small, a large amount of the N compound must be added from the flux. However, if a large amount of the N compound is added from the flux, the amount of spatter is increased, and blow holes are generated in the weld metal. I do.
Further, the yield of N in the weld metal becomes unstable, and a stable weld metal may not be obtained. Therefore, it is desirable that the N content of the wire sheath be 0.02% or more. As the N compound in the flux, metal manganese nitride, ferromanganese nitride, chromium nitride, or the like can be used. ZrO 2 forms a compound with N, and slag bites into the bead surface to significantly deteriorate the slag removability.
Accordingly, the present invention is one of the point to ensure that ZrO 2 is not as much as possible is contained, ZrO 2 content of 0%
And 0.08% or less. The filler flux adjusts the alloy composition depending on the steel plate to be welded. Ni, Cr, M as modifier
n, Mo, Si, Nb, Fe, Ti, Al, stainless steel powder or the like is used. Further, granulation may be performed using a fixing agent according to the raw material particle size, flux component, filling method, and the like. In this case, components resulting from the fixing agent, for example, in the case of water glass, SiO 2 , Na 2 O , slag agent amount in advance considering that K 2 O or the like is increased 5.
It is necessary to mix the raw materials so as to be 0 to 12.5%. The slag agent component in the present invention means non-metal components such as oxides and fluorides, and P, S and the like as impurities, but also includes a regulator for adjusting alloy components. There is also. If the total amount of the slag is less than 5.3% based on the total weight of the wire, the amount of the slag is insufficient, the entire bead cannot be covered, the encapsulation of the slag is deteriorated, and the bead shape and the slag removability are deteriorated. become worse. Furthermore, the scattering resistance of the slag deteriorates. If it exceeds 12.5%, the amount of slag becomes excessive and the amount of spatter generated increases. Further, welding defects such as slag entrapment are likely to occur. The flux-cored wire of the present invention is shown in FIG.
A to d show a cross-sectional shape of the wire as shown in the example, and a sheath 1 made of an austenitic stainless steel pipe or a strip steel is covered with a filling flux 2 as shown in FIG. Seamless, or b-d
May have a seam 3 as shown in FIG. EXAMPLES Austenitic stainless steel pipes and strips having the components shown in Table 1 were used, and the fluxes shown in Tables 2, 3 and 4 were filled at 19 to 28% of the total weight of the wire. A flux-cored wire for welding stainless steel having a wire diameter of 1.2 mmφ was manufactured. After the pipe was drawn to a diameter at which the flux entered a predetermined filling rate, the flux was charged by vibration. In Tables 2, 3, and 4, the wire No. 1 to 19 are flux-cored wires of the present invention,
No. 20 to 39 are comparative examples. The welding test was conducted at a current of 200 A (DCEP),
The welding was performed under the conditions of a voltage of 31 V, a welding speed of 35 cm / min, and a shielding gas of 100% CO 2 : 25 l / min. [0022] The test steel sheet was a wire no. 4, no. As for No. 5, SUS304N2 steel plate having the components shown in Table 1 and other wires were assembled in a T-shape using SUS329J3L steel plate, and one-pass horizontal fillet welding was performed on one side to confirm welding workability. Table 5 shows the results. The evaluation was evaluated as ○ when practically good, and × when practically problematic. Table 5 shows the results. The wire No. of the present invention example. 1 to 19
TiO 2 , SiO 2 , Al 2 O 3 , MgO, metal fluoride,
Since K and N etc. are contained in the flux in appropriate amounts and the total amount of slag agent in the flux is appropriate, welding workability is good, and welding defects such as blow holes and slag entrapment do not occur. It was a good result. In the comparative example, the wire No. In No. 20, since the amount of TiO 2 was large, spatter frequently occurred, and welding workability was deteriorated.
Furthermore, the fluidity of the slag deteriorated, and the bead shape became poor. The wire No. with a small amount of TiO 2 21 is
The arc state became unstable, and the encapsulating property and peeling property of the slag deteriorated. In addition, the slag became less splash resistant. The wire No. having a large amount of SiO 2 was used. In No. 22, the slag flowed easily, the encapsulation of the slag was deteriorated, the slag was seized, and the slag peeling property and the slag scattering resistance were deteriorated. Further, the bead shape was defective. The wire No. having a small amount of SiO 2 . 23 is
The fluidity of the slag was poor, and the bead shape was poor. The wire No. having a large amount of Al 2 O 3 was used. In No. 24, the viscosity of the slag was reduced, the encapsulation was poor, and the bead shape was poor. The wire No. having a small amount of Al 2 O 3 was used. 25 is
The slag flowed easily, the encapsulation property was deteriorated, and the slag peelability was reduced. Further, the bead shape was defective. The wire No. having a large amount of ZrO 2 was used. In No. 26, the slag bitten into the surface of the weld metal, and the slag peelability became poor. Further, immediately after welding, a part of the slag rebounded, and the slag scattering resistance was deteriorated. The wire No. having a large amount of MgO was used. In No. 27, the slag flowed easily, the slag was not uniformly covered on the surface of the weld bead, and the slag was poor in encapsulation property, and the peelability was reduced. Also, the amount of spatter generated was large, and welding workability was poor. The wire No. having a small amount of MgO was used. In No. 28, the fluidity of the slag was poor, the encapsulation property was deteriorated, and the bead shape was poor. When the wire No. has a large K content, In No. 29, the spraying of the arc was too strong and a lot of spatters were generated. Further, the slag flowed easily, the slag was poor in encapsulation, and the peelability was reduced. The wire No. having a small K amount. In No. 30, the arc became unstable and a lot of spatters were generated. The wire No. containing a large amount of metal fluoride was used. 31 is
The amount of generated fluorine gas was excessive, and the amount of generated spatter and welding fume was increased. Further, the melting point of the slag was lowered, and the encapsulation of the slag was deteriorated. The wire No. having less metal fluoride was used. 32
The slag was not uniformly encapsulated in the weld metal, and the slag removability was poor. Furthermore, pits were generated on the bead surface. The wire No. having a large amount of N in the flux was used. 33
In the test, a large amount of spatter was generated, and blow holes were generated in the weld metal. The wire No. having a large amount of N in the outer skin was used. In No. 34, the work hardening of the wire was large in the manufacturing process, the number of times of annealing of the wire increased, and the number of times of wire disconnection also increased, resulting in inferior productivity. The wire No. having a large total N of the wires. 37 is
Blow holes occurred in the weld metal. The wire No. having a small total N In No. 38, although the welding workability was good, a tensile strength equivalent to that of the base material was not obtained in a separately performed weld metal test. Wire N having a large total amount of all slag components
o. In No. 35, the amount of slag became excessive, slag was involved, and the amount of spatter generated increased. The wire N having a small total amount of the slag agent components
o. In No. 36, the amount of slag was insufficient, the entire bead could not be covered, the encapsulation of the slag was deteriorated, and the bead shape and the slag removability were poor. Furthermore, the scattering resistance of the slag deteriorated. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] As described above in detail, the flux-cored wire for stainless steel welding of the present invention can satisfy the mechanical performance in welding stainless steel having a high nitrogen content while satisfying the mechanical performance.
It is useful as a flux-cored wire for welding stainless steel having excellent welding workability such as arc state, spatter generation amount, slag encapsulation / peeling property, and slag scattering resistance.
【図面の簡単な説明】 【図1】フラックス入りワイヤの断面図である。 【符号の説明】 1 外皮 2 充填フラックス 3 継ぎ目[Brief description of the drawings] FIG. 1 is a cross-sectional view of a flux-cored wire. [Explanation of symbols] 1 skin 2 Filling flux 3 seams
フロントページの続き (72)発明者 金田 慎一 東京都中央区築地三丁目5番4号 日鐵 溶接工業株式会社 研究所内 (56)参考文献 特開 平8−118071(JP,A) 特開 平9−122977(JP,A) 特開 平9−122978(JP,A) 特開 平9−239586(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 35/368 B23K 35/30 Continuation of front page (72) Inventor Shinichi Kaneda 3-5-4 Tsukiji, Chuo-ku, Tokyo Nippon Steel Welding Industry Co., Ltd. Laboratory (56) References JP-A-8-1118071 (JP, A) JP-A-9 -122977 (JP, A) JP-A-9-122978 (JP, A) JP-A-9-239586 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23K 35/368 B23K 35/30
Claims (1)
填してなるステンレス鋼溶接用フラックス入りワイヤに
おいて、ワイヤ外皮のN含有量が0.19重量%以下
で、充填フラックスはワイヤ全重量に対して重量%でT
iO 2 :3.2〜7.5%、SiO 2 :1.0〜4.0
%、Al 2 O 3 :0.1〜1.6%、MgO:0.15〜
1.0%、金属弗化物(F換算値):0.3〜1.17
%、K化合物(K換算値):0.3〜0.73%、N化
合物(N換算値):0.11%以下を含有し、不可避不
純物としてのZrO 2 :0.08%以下(0%を含
む)、かつスラグ剤成分の合計が5.3〜12.5重量
%、さらにワイヤ全重量に対してワイヤ外皮に含有する
Nとフラックスに含まれるN化合物(N換算値)の合計
が0.07〜0.24重量%であることを特徴とするス
テンレス鋼溶接用フラックス入りワイヤ。(1) A flux-cored wire for stainless steel welding in which a flux is filled in a stainless steel sheath, wherein the N content of the wire sheath is 0.19% by weight or less, Filling flux is T by weight% based on the total weight of wire.
iO 2: 3.2~7.5%, SiO 2 : 1.0~4.0
%, Al 2 O 3: 0.1~1.6 %, MgO: 0.15~
1.0%, metal fluoride (F conversion value): 0.3 to 1.17
%, K compound (K conversion value): 0.3 to 0.73%, N compound (N conversion value): 0.11% or less, and ZrO 2 as an unavoidable impurity: 0.08% or less (0 %, And the total amount of the slag agent components is 5.3 to 12.5% by weight, and the total of N contained in the wire sheath and N compounds contained in the flux (N-converted value) is based on the total weight of the wire. A flux-cored wire for welding stainless steel, wherein the flux is 0.07 to 0.24% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27956398A JP3481146B2 (en) | 1998-10-01 | 1998-10-01 | Flux-cored wire for stainless steel welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27956398A JP3481146B2 (en) | 1998-10-01 | 1998-10-01 | Flux-cored wire for stainless steel welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000107890A JP2000107890A (en) | 2000-04-18 |
JP3481146B2 true JP3481146B2 (en) | 2003-12-22 |
Family
ID=17612727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27956398A Expired - Fee Related JP3481146B2 (en) | 1998-10-01 | 1998-10-01 | Flux-cored wire for stainless steel welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3481146B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100355369B1 (en) * | 2000-06-07 | 2002-10-11 | 고려용접봉 주식회사 | Flux cored wire for arc-welding of austenitic stainless steel |
CN114273817B (en) * | 2022-01-24 | 2023-02-17 | 昆山京群焊材科技有限公司 | Austenitic stainless steel welding rod for hydrogen energy |
-
1998
- 1998-10-01 JP JP27956398A patent/JP3481146B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000107890A (en) | 2000-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4986562B2 (en) | Flux-cored wire for titania-based gas shielded arc welding | |
JP3017063B2 (en) | High nitrogen flux cored wire for all-position welding of Cr-Ni stainless steel | |
JP5283993B2 (en) | Flux-cored wire for titania-based gas shielded arc welding | |
JP3529362B2 (en) | Metal shielded wire for gas shielded arc welding | |
JP4300153B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6017406B2 (en) | Stainless steel flux cored wire for self shielded arc welding | |
JPS5913955B2 (en) | Composite wire for stainless steel welding | |
JP2614969B2 (en) | Gas shielded arc welding titania-based flux cored wire | |
WO2020217963A1 (en) | Ni-BASED ALLOY FLUX-CORED WIRE | |
JP2711077B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP7160734B2 (en) | flux cored wire | |
JP3589917B2 (en) | Flux-cored wire for duplex stainless steel welding | |
JP3481146B2 (en) | Flux-cored wire for stainless steel welding | |
JPWO2020110856A1 (en) | Flux-filled wire and welded joint manufacturing method | |
JP6085205B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP5361797B2 (en) | Flux-cored wire for horizontal fillet gas shielded arc welding | |
JP2001205483A (en) | Flux-containing wire for gas shield arc welding | |
JP2020131234A (en) | Stainless steel flux-cored wire for self-shielded arc-welding | |
JP5669684B2 (en) | Flux-cored wire for horizontal fillet gas shielded arc welding | |
JP4040765B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP3814166B2 (en) | Flux-cored wire for welding high nitrogen content stainless steel | |
JP3828088B2 (en) | Flux-cored wire for fillet welding | |
JP4845682B2 (en) | Flux-cored wire for gas shielded arc welding | |
JPH11138295A (en) | Wire including flux for electrogas arc welding of stainless steel | |
JPH0545359B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030924 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081010 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091010 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |