JP6085205B2 - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP6085205B2
JP6085205B2 JP2013062929A JP2013062929A JP6085205B2 JP 6085205 B2 JP6085205 B2 JP 6085205B2 JP 2013062929 A JP2013062929 A JP 2013062929A JP 2013062929 A JP2013062929 A JP 2013062929A JP 6085205 B2 JP6085205 B2 JP 6085205B2
Authority
JP
Japan
Prior art keywords
mass
compound
flux
content
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013062929A
Other languages
Japanese (ja)
Other versions
JP2014184481A (en
Inventor
石▲崎▼ 圭人
圭人 石▲崎▼
貴之 小池
貴之 小池
尚英 古川
尚英 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013062929A priority Critical patent/JP6085205B2/en
Priority to CN201310704268.9A priority patent/CN104070305A/en
Priority to CN201910534785.3A priority patent/CN110153593A/en
Priority to KR1020140034167A priority patent/KR101600172B1/en
Publication of JP2014184481A publication Critical patent/JP2014184481A/en
Application granted granted Critical
Publication of JP6085205B2 publication Critical patent/JP6085205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3026Mn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01003Lithium [Li]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01009Fluorine [F]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]

Description

本発明は、ガスシールドアーク溶接用フラックス入りワイヤに関する。より詳しくは、すみ肉溶接に用いられるガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for gas shielded arc welding. More specifically, the present invention relates to a flux-cored wire for gas shield arc welding used for fillet welding.

船舶や橋梁などの分野では、すみ肉溶接が適用されることが多い。また、一般に、船舶や橋梁などの大型構造物には、製作期間中の発錆を防止するために、一次防錆塗料が塗布されたプライマ塗装鋼材が使用される。しかしながら、プライマ塗装鋼材をすみ肉溶接する場合、防錆塗料の影響により、ピット、ガス溝及びブローホールなどの気孔が発生しやすく、また、アークが不安定となりやすいため、ビード形状やスラグ剥離性が劣化するという問題がある。   Fillet welding is often applied in fields such as ships and bridges. In general, for large structures such as ships and bridges, a primer coated steel material coated with a primary rust preventive paint is used in order to prevent rusting during the production period. However, when fillet-welding primer-coated steel materials, pores such as pits, gas grooves and blowholes are likely to occur due to the influence of the anticorrosive paint, and the arc tends to become unstable, so bead shape and slag peelability There is a problem of deterioration.

このような気孔発生、ビード形状及びスラグ剥離性の劣化は、手直し作業やスラグ除去作業の増加を招くことから、すみ肉溶接の自動化及び高能率化を図る上で大きな障害となっている。そこで、従来、プライマ塗装鋼材のすみ肉溶接に関して、耐気孔性、ビード形状及びスラグ剥離性などの特性を改善するため、種々の提案がなされている(例えば、特許文献1〜3参照。)   Such pore generation, bead shape, and deterioration of slag peelability cause an increase in reworking work and slag removing work, which is a major obstacle to automation of fillet welding and high efficiency. Therefore, various proposals have been made for improving the properties such as pore resistance, bead shape, and slag peelability with respect to fillet welding of primer-coated steel (see, for example, Patent Documents 1 to 3).

特許文献1に記載のフラックス入りワイヤでは、ZrOをスラグ形成剤の主要成分とすることにより、耐気孔(耐ピット)性向上を図っている。一方、特許文献2に記載のフラックス入りワイヤでは、プライマ膜厚が厚いプライマ塗装鋼板の水平すみ肉溶接において耐気孔性を得るため、TiOを主成分とすると共に、SiO−ZrO量を適正な範囲にしている。また、特許文献3に記載のフラックス入りワイヤは、耐気孔性を向上させると共に、ビード形状及びビード外観を良好に維持するために、フッ素源の少なくとも一部として合成フッ素雲母を用いている。 In the flux-cored wire described in Patent Document 1, pore resistance (pit resistance) is improved by using ZrO 2 as a main component of the slag forming agent. On the other hand, in the flux-cored wire described in Patent Document 2, in order to obtain porosity resistance in horizontal fillet welding of a primer-coated steel sheet having a large primer film thickness, TiO 2 is the main component and the amount of SiO 2 —ZrO 2 is reduced. It is in the proper range. In addition, the flux-cored wire described in Patent Document 3 uses synthetic fluorine mica as at least a part of the fluorine source in order to improve the pore resistance and to maintain a good bead shape and bead appearance.

特開2006−95550号公報JP 2006-95550 A 特開2013−18031号公報JP2013-18031A 特開2011−62745号公報JP 2011-62745 A

しかしながら、前述した従来のフラックス入りワイヤは、プライマ塗装鋼材のすみ肉溶接において、全ての特性を満足するものではない。例えば、特許文献1に記載のフラックス入りワイヤは、主成分としているZrOが高融点で高粘度の酸化物であるため、スラグ粘度の調整が難しく、最適な領域が狭い。また、このフラックス入りワイヤは、断面形態によっては、製造中、保管中又は使用中のフラックス吸湿により、耐気孔性が劣化しやすいという問題点もある。 However, the above-described conventional flux-cored wires do not satisfy all the characteristics in fillet welding of primer-coated steel materials. For example, in the flux-cored wire described in Patent Document 1, since ZrO 2 as a main component is an oxide having a high melting point and a high viscosity, it is difficult to adjust the slag viscosity, and the optimum region is narrow. In addition, depending on the cross-sectional shape, the flux-cored wire also has a problem that the porosity resistance is likely to deteriorate due to flux moisture absorption during manufacture, storage, or use.

一方、特許文献2に記載のフラックス入りワイヤでは、TiO、SiO、ZrO及びMn/Siの比を限定することにより耐気孔性向上を図っているが、耐気孔性以外の性能については十分とは言えない。また、特許文献3に記載のフラックス入りワイヤは、Na量、K量及びF量を特定することで、目的とする効果が得られているが、アークの安定性及びそれに伴うスラグ剥離性の劣化について、改善が求められている。 On the other hand, in the flux-cored wire described in Patent Document 2, pore resistance is improved by limiting the ratio of TiO 2 , SiO 2 , ZrO 2 and Mn / Si. That's not enough. In addition, the flux-cored wire described in Patent Document 3 has obtained the intended effect by specifying the Na amount, K amount, and F amount, but the stability of the arc and the accompanying deterioration in slag peelability. There is a need for improvement.

そこで、本発明は、すみ肉溶接において、溶接作業性に優れ、耐気孔性、ビード形状及びスラグ剥離性の全てが良好なガスシールドアーク溶接用フラックス入りワイヤを提供することを主目的とする。   Therefore, the main object of the present invention is to provide a flux-cored wire for gas shielded arc welding that is excellent in welding workability in fillet welding and has excellent porosity resistance, bead shape and slag peelability.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮内にフラックスが充填されたガスシールドアーク溶接用フラックス入りワイヤであって、ワイヤ全質量あたり、Ti及びTi化合物(Ti換算値):1.0〜4.0質量%、Si及びSi化合物(Si換算値):0.8〜2.5質量%、Zr及びZr化合物(Zr換算値):0.14〜0.4質量%、Mn:2.0〜3.0質量%、C:0.02〜0.10質量%、S:0.005〜0.030質量%、Bi及びBi化合物(Bi換算値):0.005〜0.040質量%、Na化合物(Na換算値):0.01〜0.20質量%、K化合物(K換算値):0.01〜0.20質量%、F化合物(F換算値):0.01〜0.20質量%、Al及びAl化合物(Al換算値):0.05〜0.50質量%、Mg及びMg化合物(Mg換算値):0.05〜0.50質量%を含有すると共に、Na化合物含有量(Na換算値)を[Na]、K化合物含有量(K換算値)を[K]、F化合物含有量(F換算値)を[F]、Si及びSi化合物の総含有量(Si換算値)を[Si]、Bi及びBi化合物の総含有量(Bi換算値)を[Bi]、S含有量を[S]としたとき、下記数式1〜3を満たし、すみ肉溶接に用いられるものである。 The flux-cored wire for gas shielded arc welding according to the present invention is a flux-cored wire for gas shielded arc welding in which a steel sheath is filled with flux, and Ti and Ti compound (Ti equivalent value) per total wire mass. : 1.0 to 4.0 mass%, Si and Si compounds (Si conversion value): 0.8 to 2.5 mass%, Zr and Zr compound (Zr conversion value): 0.14 to 0.4 mass% , Mn: 2.0 to 3.0 mass%, C: 0.02 to 0.10 mass%, S: 0.005 to 0.030 mass%, Bi and Bi compound (Bi equivalent value): 0.005 -0.040 mass%, Na compound (Na conversion value): 0.01-0.20 mass%, K compound (K conversion value): 0.01-0.20 mass%, F compound (F conversion value) : 0.01-0.20% by mass, Al and Al compound (A l conversion value): 0.05 to 0.50 mass%, Mg and Mg compound (Mg conversion value): 0.05 to 0.50 mass%, and Na compound content (Na conversion value) [ Na], K compound content (K conversion value) is [K], F compound content (F conversion value) is [F], Si and Si compound total content (Si conversion value) is [Si], Bi When the total content of Bi and Bi compounds (Bi equivalent value) is [Bi] and the S content is [S], the following formulas 1 to 3 are satisfied, and it is used for fillet welding.

本発明のガスシールドアーク溶接用フラックス入りワイヤは、ワイヤ全質量あたり、B及びB化合物(B換算値):0.0090質量%以下を含有する
また、本発明のガスシールドアーク溶接用フラックス入りワイヤは、例えば軟鋼、高張力鋼又は低合金鋼の水平すみ肉溶接に用いられる。
Flux-cored wire for gas shielded arc welding of the present invention, the total wire mass per, B and B compounds (B-converted value): containing 0.0090 mass% or less.
The flux-cored wire for gas shielded arc welding according to the present invention is used for horizontal fillet welding of, for example, mild steel, high-tensile steel, or low alloy steel.

なお、フラックス入りワイヤに含有される各成分の量は、C及びSは燃焼−赤外線吸収法で、Ti、Si、Zr、Mn、Al、Mg及びBはICP発光分光分析方法で、Bi、Na及びKは原子吸光分析方法で、Fは中和滴定法で、それぞれ測定することができる。   The amount of each component contained in the flux-cored wire is as follows: C and S are combustion-infrared absorption methods, Ti, Si, Zr, Mn, Al, Mg, and B are ICP emission spectroscopic analysis methods; Bi, Na And K can be measured by an atomic absorption analysis method, and F can be measured by a neutralization titration method.

本発明によれば、すみ肉溶接において、溶接作業性に優れ、耐気孔性、ビード形状及びスラグ剥離性の全てが良好なフラックス入りワイヤを実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, in fillet welding, it is excellent in welding workability | operativity and can implement | achieve the flux cored wire with which all of porosity resistance, bead shape, and slag peelability are favorable.

前述したように、ZrOは、スラグ粘度の調整が難しく、最適な領域が狭い傾向にある。このため、本発明者は、耐気孔性、ビード形状、スラグ剥離性が良好なガスシールドアークすみ肉溶接用フラックス入りワイヤの実現を目的とし、よりスラグ粘度を調整しやすいTiOを主体とするスラグ形成剤について、鋭意検討を行い、最適な成分範囲を見出した。しかし、全ての元素が適正範囲となっているにもかかわらず、目的の特性が得られないケースが散見された。 As described above, ZrO 2 is difficult to adjust the slag viscosity, and the optimum region tends to be narrow. For this reason, the present inventor aims to realize a flux-cored wire for gas shielded arc fillet welding with good porosity resistance, bead shape, and slag peelability, and mainly uses TiO 2 that can easily adjust the slag viscosity. The slag forming agent was intensively studied and the optimum component range was found. However, there are some cases where the desired properties cannot be obtained even though all the elements are within the proper range.

そこで、本発明者は、さらに鋭意検討を重ね、耐気孔性やビード形状の安定化には、溶融スラグ及び溶融池の粘性を調整することが有効であることを見出した。そして、溶融スラグ及び溶融池の粘性の調整に効果的な元素であるNa、K、F、Si、Bi及びSに着目し、ワイヤ全体におけるNa量、K量及びF量とそのバランス、並びにSi量、Bi量及びS量とそのバランスを、特定の範囲にすることにより、目的の特性が得られることを見出した。   Therefore, the present inventor has conducted further diligent studies and found that adjusting the viscosity of the molten slag and the molten pool is effective in stabilizing the pore resistance and the bead shape. Then, focusing on Na, K, F, Si, Bi and S, which are effective elements for adjusting the viscosity of the molten slag and molten pool, the amount of Na, K and F in the entire wire, and their balance, and Si It has been found that by setting the amount, Bi amount and S amount and their balance within a specific range, the desired characteristics can be obtained.

以下、本発明を実施するための形態について、詳細に説明する。本実施形態のフラックス入りワイヤは、鋼製外皮にフラックスを充填したものであり、その外径は、例えば0.9〜2.0mmである。また、フラックス充填率は、ワイヤ中の各成分が本発明の範囲内であれば、任意の値に設定することができるが、ワイヤの伸線性及び溶接時の作業性(送給性など)の観点から、ワイヤ全質量の10〜20質量%とすることが好ましい。   Hereinafter, embodiments for carrying out the present invention will be described in detail. The flux cored wire of this embodiment is a steel outer shell filled with flux, and the outer diameter thereof is, for example, 0.9 to 2.0 mm. In addition, the flux filling rate can be set to any value as long as each component in the wire is within the range of the present invention. However, the wire drawability and workability at the time of welding (feedability, etc.) can be set. From the viewpoint, it is preferably 10 to 20% by mass of the total mass of the wire.

本実施形態のフラックス入りワイヤは、ワイヤ全質量あたり、Ti及びTi化合物(Ti換算値):1.0〜4.0質量%、Si及びSi化合物(Si換算値):0.5〜2.5質量%、Zr及びZr化合物(Zr換算値):0.1〜0.6質量%、Mn:2.0〜3.0質量%、C:0.02〜0.10質量%、S:0.005〜0.030質量%、Bi及びBi化合物(Bi換算値):0.005〜0.040質量%、Na化合物(Na換算値):0.01〜0.20質量%、K化合物(K換算値):0.01〜0.20質量%、F化合物(F換算値):0.01〜0.20質量%、Al及びAl化合物(Al換算値):0.05〜0.50質量%、Mg及びMg化合物(Mg換算値):0.05〜0.50質量%を含有する。   In the flux-cored wire of the present embodiment, Ti and Ti compound (Ti converted value): 1.0 to 4.0% by mass, Si and Si compound (Si converted value): 0.5 to 2. 5% by mass, Zr and Zr compound (Zr equivalent value): 0.1-0.6% by mass, Mn: 2.0-3.0% by mass, C: 0.02-0.10% by mass, S: 0.005-0.030 mass%, Bi and Bi compound (Bi conversion value): 0.005-0.040 mass%, Na compound (Na conversion value): 0.01-0.20 mass%, K compound (K conversion value): 0.01-0.20 mass%, F compound (F conversion value): 0.01-0.20 mass%, Al and Al compound (Al conversion value): 0.05-0. 50 mass%, Mg and Mg compound (Mg conversion value): 0.05-0.50 mass% is contained.

また、本実施形態のフラックス入りワイヤは、Na化合物含有量(Na換算値)を[Na]、K化合物含有量(K換算値)を[K]、F化合物含有量(F換算値)を[F]、Si及びSi化合物の総含有量(Si換算値)を[Si]、Bi及びBi化合物の総含有量(Bi換算値)を[Bi]、S含有量を[S]としたとき、下記数式4〜6を満たす。そして、本実施形態のフラックス入りワイヤは、ガスシールドアーク溶接によるすみ肉溶接に用いられる。   In addition, the flux-cored wire of this embodiment has an Na compound content (Na converted value) of [Na], a K compound content (K converted value) of [K], and an F compound content (F converted value) of [ F], when the total content of Si and Si compounds (Si equivalent value) is [Si], the total content of Bi and Bi compounds (Bi equivalent value) is [Bi], and the S content is [S], The following mathematical formulas 4 to 6 are satisfied. And the flux cored wire of this embodiment is used for fillet welding by gas shield arc welding.

次に、本実施形態のフラックス入りワイヤに含有される各成分の数値限定理由について説明する。   Next, the reason for limiting the numerical value of each component contained in the flux-cored wire of this embodiment will be described.

[Ti及びTi化合物(Ti換算値):1.0〜4.0質量%]
Tiは、金属又は合金の形態、及び酸化物や金属間化合物などの化合物の形態で添加される。また、本実施形態のフラックス入りワイヤにおけるTi源の具体例としては、金属Ti、Fe−Ti、TiO、FeTiO、BaTiOなどが挙げられる。
[Ti and Ti compound (Ti conversion value): 1.0 to 4.0% by mass]
Ti is added in the form of a metal or alloy and in the form of a compound such as an oxide or an intermetallic compound. Specific examples of the Ti source in the flux-cored wire of the present embodiment include metal Ti, Fe—Ti, TiO 2 , FeTiO 3 , BaTiO 3 and the like.

金属又は合金の形態で添加されたTiは、脱酸作用によりTiOを生成する。TiOなどのTi酸化物は、スラグ形成剤として作用するが、Ti及びTi化合物の総含有量が1.0質量%未満であると、その作用が不十分となり、スラグ包皮性及びスラグ剥離性が低下して、ビード形状及びビード外観が劣化する。一方、Ti及びTi化合物の総含有量が4.0質量%を超えると、スラグ形成厚さが過剰となり、耐気孔性が劣化する。よって、Ti及びTi化合物の総含有量は、Ti換算で、1.0〜4.0質量%とする。 Ti added in the form of a metal or alloy generates TiO 2 by deoxidation. Ti oxide such as TiO 2 acts as a slag forming agent, but when the total content of Ti and Ti compounds is less than 1.0% by mass, the action becomes insufficient, and slag foreskin property and slag peelability. Decreases and the bead shape and bead appearance deteriorate. On the other hand, if the total content of Ti and Ti compound exceeds 4.0% by mass, the slag formation thickness becomes excessive and the porosity resistance deteriorates. Therefore, the total content of Ti and Ti compound is 1.0 to 4.0% by mass in terms of Ti.

Ti及びTi化合物の総含有量は、スラグ形成剤としての作用向上の観点から、1.3質量%以上であることが好ましく、より好ましくは1.5質量%以上である。一方、耐気孔性向上の観点からは、Ti及びTi化合物の総含有量は、3.0質量%以下であることが好ましく、より好ましくは2.5質量%以下である。   The total content of Ti and Ti compound is preferably 1.3% by mass or more, more preferably 1.5% by mass or more, from the viewpoint of improving the action as a slag forming agent. On the other hand, from the viewpoint of improving the porosity resistance, the total content of Ti and Ti compound is preferably 3.0% by mass or less, and more preferably 2.5% by mass or less.

[Si及びSi化合物(Si換算値):0.5〜2.5質量%]
Siも、金属、合金又は各種化合物の形態で添加され、本実施形態のフラックス入りワイヤにおけるSi源の具体例としては、鋼製外皮に含有されるSi、フラックスに含有されるFe−Si、Fe−Si−Mn、Fe−Si−Mg、REM−Ca−Si、Fe−Si−B、SiO、ZrSiO、KSiF及びMgSiOなどが挙げられる。
[Si and Si compound (Si equivalent value): 0.5 to 2.5% by mass]
Si is also added in the form of a metal, an alloy, or various compounds. Specific examples of the Si source in the flux-cored wire of this embodiment include Si contained in the steel outer sheath, Fe-Si, Fe contained in the flux. -Si-Mn, Fe-Si- Mg, REM-Ca-Si, Fe-Si-B, etc. SiO 2, ZrSiO 3, K 2 SiF 6 and MgSiO 3 and the like.

化合物の形態で添加されたSiは、溶融スラグ界面において溶融金属との酸化還元反応により還元され、溶融金属中では金属Siとして存在する。この金属Siには、溶融池の粘性を上げる効果がある。一方、溶融スラグ中では、脱酸作用により、流動性を増加させる効果があるSiOが生成する。 Si added in the form of a compound is reduced by a redox reaction with the molten metal at the molten slag interface, and exists as metallic Si in the molten metal. This metal Si has the effect of increasing the viscosity of the molten pool. On the other hand, in the molten slag, SiO 2 having an effect of increasing fluidity is generated by the deoxidation action.

このように、ワイヤ中のSi成分は、水平すみ肉姿勢での溶接において、溶融金属及び溶融スラグの両面から、ビード形状への影響が大きい。具体的には、Si及びSi化合物の総含有量が0.5質量%未満の場合、溶融池の粘性が下がる一方で、溶融スラグの流動性が低下するため、ビード形状が不安定になる。また、Si及びSi化合物の総含有量が2.5質量%を超えると、溶融金属の粘性が上がる一方で、溶融スラグの流動性が増加するため、ビード形状が凸ビードとなる。よって、Si及びSi化合物の総含有量は、Si換算で、0.5〜2.5質量%とする。   Thus, the Si component in the wire has a great influence on the bead shape from both sides of the molten metal and molten slag in welding in a horizontal fillet posture. Specifically, when the total content of Si and Si compound is less than 0.5% by mass, the viscosity of the molten pool decreases, while the fluidity of the molten slag decreases, and the bead shape becomes unstable. Moreover, when the total content of Si and Si compounds exceeds 2.5 mass%, the viscosity of the molten metal increases, while the fluidity of the molten slag increases, so that the bead shape becomes a convex bead. Therefore, the total content of Si and Si compounds is 0.5 to 2.5 mass% in terms of Si.

Si及びSi化合物の総含有量は、ビード形状の安定化の観点から、0.9質量%以上が好ましく、より好ましくは1.1質量%以上である。一方、ビード形状改善の観点からは、Si及びSi化合物の総含有量は、2.0質量%以下が好ましく、より好ましくは1.6質量%以下である。   From the viewpoint of stabilizing the bead shape, the total content of Si and Si compounds is preferably 0.9% by mass or more, and more preferably 1.1% by mass or more. On the other hand, from the viewpoint of improving the bead shape, the total content of Si and Si compound is preferably 2.0% by mass or less, and more preferably 1.6% by mass or less.

[Zr及びZr化合物(Zr換算値):0.1〜0.6質量%]
Zrも、金属、合金又は化合物の形態で添加され、本実施形態のフラックス入りワイヤにおけるZr源の具体例としては、金属Zr、Fe−Zr及びZrOなどが挙げられる。金属又は合金の形態で添加されたZrは、脱酸作用によりZrOを生成する。そして、ZrOなどのZr酸化物は、水平すみ肉溶接において、ビードのなじみ性を向上させる効果がある。
[Zr and Zr compound (Zr conversion value): 0.1 to 0.6% by mass]
Zr is also added in the form of a metal, an alloy or a compound. Specific examples of the Zr source in the flux-cored wire of this embodiment include metals Zr, Fe—Zr, and ZrO 2 . Zr added in the form of metal or alloy produces ZrO 2 by deoxidation. Then, Zr oxides such as ZrO 2, in the horizontal fillet welding, the effect of improving the conformability of the bead.

ただし、Zr及びZr化合物の総含有量が0.1質量%未満の場合、なじみ性向上の効果が低下する。また、Zr及びZr化合物の総含有量が0.6質量%を超えると、スラグの凝固温度が高くなると共に、スラグの粘度も高くなるため、溶接金属中のガスが大気に放出されずにスラグに閉じ込められ、耐気孔性が劣化する。よって、Zr及びZr化合物の総含有量は、Zr換算で、0.1〜0.6質量%とする。   However, when the total content of Zr and the Zr compound is less than 0.1% by mass, the effect of improving the conformability decreases. Also, if the total content of Zr and Zr compounds exceeds 0.6 mass%, the solidification temperature of the slag increases and the viscosity of the slag also increases, so that the gas in the weld metal is not released into the atmosphere and the slag is not released. It is trapped in the pores, and the porosity resistance deteriorates. Therefore, the total content of Zr and Zr compounds is 0.1 to 0.6% by mass in terms of Zr.

Zr及びZr化合物の総含有量は、ビードのなじみ性向上の観点から、0.15質量%以上が好ましく、より好ましくは0.2質量%以上である。一方、耐気孔性向上の観点からは、Zr及びZr化合物の総含有量は、0.5質量%以下であることが好ましく、より好ましくは0.4質量%以下である。   The total content of Zr and Zr compounds is preferably 0.15% by mass or more, more preferably 0.2% by mass or more, from the viewpoint of improving the conformability of beads. On the other hand, from the viewpoint of improving the porosity resistance, the total content of Zr and Zr compounds is preferably 0.5% by mass or less, and more preferably 0.4% by mass or less.

[Mn:2.0〜3.0質量%]
Mnは、溶接金属の脱酸を促進すると共に、溶接金属の靭性及び強度を高める効果も有している。しかし、Mn含有量が2.0質量%未満であると、その効果が不十分となり、溶接金属の強度及び靭性が劣化する。また、Mn含有量が3.0質量%を超えると、強度が必要以上に高くなり、靭性が劣化する。よって、Mn含有量は2.0〜3.0質量%とする。Mn含有量は、溶接金属の強度及び靭性向上の観点から、2.2質量%以上であることが好ましく、また、溶接金属の強度と靭性のバランスの観点から、2.8質量%以下であることが好ましい。
[Mn: 2.0 to 3.0% by mass]
Mn promotes the deoxidation of the weld metal and also has the effect of increasing the toughness and strength of the weld metal. However, if the Mn content is less than 2.0% by mass, the effect becomes insufficient, and the strength and toughness of the weld metal deteriorate. Moreover, when Mn content exceeds 3.0 mass%, intensity | strength will become higher than necessary and toughness will deteriorate. Therefore, Mn content shall be 2.0-3.0 mass%. The Mn content is preferably 2.2% by mass or more from the viewpoint of improving the strength and toughness of the weld metal, and is 2.8% by mass or less from the viewpoint of the balance between the strength and toughness of the weld metal. It is preferable.

[C:0.02〜0.10質量%]
Cは、溶接金属の強度を向上させる効果を有する。しかし、C含有量が0.02質量%未満の場合、その効果が十分に得られず、溶接金属の強度が不足すると共に、靭性も劣化する。一方、C含有量が0.10質量%を超えると、アークが集中しすぎてアンダカットが発生しやすくなる。よって、C含有量は0.02〜0.10質量%とする。C含有量は、溶接金属の強度及び靭性向上の観点から、0.03質量%以上であることが好ましく、また、アンダカットの抑制の観点から、0.08質量%以下であることが好ましい。
[C: 0.02 to 0.10% by mass]
C has an effect of improving the strength of the weld metal. However, when the C content is less than 0.02% by mass, the effect is not sufficiently obtained, the strength of the weld metal is insufficient, and the toughness is also deteriorated. On the other hand, if the C content exceeds 0.10% by mass, the arc is excessively concentrated and undercut is likely to occur. Therefore, the C content is 0.02 to 0.10% by mass. The C content is preferably 0.03% by mass or more from the viewpoint of improving the strength and toughness of the weld metal, and is preferably 0.08% by mass or less from the viewpoint of suppressing undercut.

[S:0.005〜0.030質量%]
Sは、溶接金属の靭性を低下させるため、従来は、その含有量を低減する規制元素として扱われていた。一方、本発明者は、Sが、溶融池の粘性及び表面張力の調整に非常に効果的な元素であることを発見した。そこで、本実施形態のフラックス入りワイヤでは、Sを、溶融池の粘性を下げて、溶接時に発生したガスの放出を促進すると共に、ビード止端部のなじみをよくするために、積極的に添加する。
[S: 0.005-0.030 mass%]
Since S reduces the toughness of the weld metal, conventionally, it has been treated as a regulatory element that reduces its content. On the other hand, the present inventors have discovered that S is a very effective element for adjusting the viscosity and surface tension of the molten pool. Therefore, in the flux-cored wire of this embodiment, S is positively added to lower the viscosity of the molten pool, promote the release of gas generated during welding, and improve the familiarity of the toe end of the bead. To do.

しかし、S含有量が0.005質量%未満の場合、溶融池の粘性が高くなり、耐気孔性が劣化すると共に、ビードのなじみ性も低下する。また、S含有量が0.030質量%を超えると、溶接金属の靭性が低下する。よって、S含有量は0.005〜0.030質量%とする。S含有量は、耐気孔性の観点から、0.008質量%以上であることが好ましく、0.010質量%よりも多いことがより好ましい。一方、溶接金属の靭性確保の観点からは、S含有量は、0.025質量%以下にすることが好ましい。   However, when the S content is less than 0.005% by mass, the viscosity of the molten pool increases, the porosity resistance deteriorates, and the conformability of the beads also decreases. Moreover, when S content exceeds 0.030 mass%, the toughness of a weld metal will fall. Therefore, S content shall be 0.005-0.030 mass%. The S content is preferably 0.008% by mass or more, and more preferably more than 0.010% by mass, from the viewpoint of porosity resistance. On the other hand, from the viewpoint of ensuring the toughness of the weld metal, the S content is preferably 0.025% by mass or less.

[Bi及びBi化合物(Bi換算値):0.005〜0.040質量%]
Biも、金属、合金又は化合物の形態で添加され、本実施形態のフラックス入りワイヤにおけるBi源の具体例としては、金属Bi及びBiなどが挙げられる。Bi及びBi化合物は、スラグ剥離性を向上させる効果に加えて、溶融池の粘度調整にも効果的な元素である。更に、B及びBi化合物には、前述したSと同様に、溶接時に発生したガスの放出を促進する効果もある。
[Bi and Bi compounds (Bi equivalent): 0.005 to 0.040 mass%]
Bi is also added in the form of a metal, an alloy or a compound, and specific examples of the Bi source in the flux-cored wire of this embodiment include metal Bi and Bi 2 O 3 . Bi and Bi compounds are effective elements for adjusting the viscosity of the molten pool in addition to the effect of improving the slag peelability. Further, the B and Bi compounds have an effect of promoting the release of gas generated during welding, as in the case of S described above.

しかし、Bi及びBi化合物の総含有量が0.005質量%未満の場合、溶融池の粘性が高くなり、耐気孔性が劣化する。また、Bi及びBi化合物の総含有量が0.040質量%を超えると、溶接金属の靭性が低下する。よって、Bi及びBi化合物の総含有量は、Bi換算で、0.005〜0.040質量%とする。   However, when the total content of Bi and Bi compounds is less than 0.005% by mass, the viscosity of the molten pool increases and the porosity resistance deteriorates. Moreover, when the total content of Bi and Bi compound exceeds 0.040 mass%, the toughness of a weld metal will fall. Therefore, the total content of Bi and Bi compounds is 0.005 to 0.040 mass% in terms of Bi.

Bi及びBi化合物の総含有量は、耐気孔性の観点から、0.008質量%以上が好ましく、より好ましくは0.012質量%以上である。また、溶接金属の靭性確保の観点からは、Bi及びBi化合物の総含有量は、0.030質量%以下にすることが好ましい。   The total content of Bi and Bi compounds is preferably 0.008% by mass or more, more preferably 0.012% by mass or more from the viewpoint of porosity resistance. Further, from the viewpoint of ensuring the toughness of the weld metal, the total content of Bi and Bi compounds is preferably 0.030% by mass or less.

[Na化合物(Na換算値):0.01〜0.20質量%]
本実施形態のフラックス入りワイヤにおけるNa化合物の具体例としては、NaF、NaO及びNaCOなどが挙げられる。Naには、アークを安定させる効果がある。また、Naは、溶融スラグの粘性と融点を下げる効果もあり、溶接時に発生したガスを、溶融スラグを通過させて、大気に放出するために有効な元素である。
[Na compound (Na equivalent value): 0.01 to 0.20 mass%]
Specific examples of the Na compound in the flux-cored wire of this embodiment include NaF, Na 2 O, and Na 2 CO 3 . Na has an effect of stabilizing the arc. Na also has an effect of lowering the viscosity and melting point of the molten slag, and is an effective element for releasing the gas generated during welding through the molten slag to the atmosphere.

しかし、Na化合物含有量が0.01質量%未満であると、溶融スラグの粘性が高くなり、耐気孔性が劣化する。また、Na化合物含有量が0.20質量%を超えると、耐吸湿性が低下し、耐気孔性が劣化する。よって、Na化合物含有量は、Na換算で、0.01〜0.20質量%とする。Na化合物含有量は、溶融スラグの粘性の観点から、0.03質量%以上が好ましく、より好ましくは0.06質量%以上である。また、耐吸湿性の観点からは、Na含有量は、0.18質量%以下が好ましく、より好ましくは0.16質量%以下である。   However, when the Na compound content is less than 0.01% by mass, the viscosity of the molten slag increases and the pore resistance deteriorates. On the other hand, if the Na compound content exceeds 0.20% by mass, the hygroscopic resistance decreases and the porosity resistance deteriorates. Therefore, Na compound content shall be 0.01-0.20 mass% in Na conversion. From the viewpoint of the viscosity of the molten slag, the Na compound content is preferably 0.03% by mass or more, and more preferably 0.06% by mass or more. Further, from the viewpoint of moisture absorption resistance, the Na content is preferably 0.18% by mass or less, more preferably 0.16% by mass or less.

[K化合物(K換算値):0.01〜0.20質量%]
本実施形態のフラックス入りワイヤにおけるK化合物の具体例としては、KO、KF及びKSiFなどが挙げられる。Kも、Naと同様に、アークを安定させる効果と溶融スラグの粘性と融点を下げる効果がある。
[K compound (K converted value): 0.01 to 0.20% by mass]
Specific examples of the K compound in the flux cored wire of the present embodiment include K 2 O, KF, K 2 SiF 6 and the like. K, like Na, has an effect of stabilizing the arc and an effect of lowering the viscosity and melting point of the molten slag.

しかし、K化合物含有量が0.01質量%未満であると、溶融スラグの粘性が高くなり、耐気孔性が劣化する。また、K化合物含有量が0.20質量%を超えると、耐吸湿性が低下し、耐気孔性が劣化する。よって、K化合物含有量は、K換算で、0.01〜0.20質量%とする。K含有量は、溶融スラグの粘性の観点から、0.03質量%以上が好ましく、より好ましくは0.06質量%以上である。また、耐吸湿性の観点からは、K含有量は、0.18質量%以下が好ましく、より好ましくは0.16質量%以下である。   However, if the K compound content is less than 0.01% by mass, the viscosity of the molten slag increases and the pore resistance deteriorates. On the other hand, if the K compound content exceeds 0.20% by mass, the hygroscopic resistance decreases and the porosity resistance deteriorates. Therefore, K compound content shall be 0.01-0.20 mass% in K conversion. From the viewpoint of the viscosity of the molten slag, the K content is preferably 0.03% by mass or more, and more preferably 0.06% by mass or more. Further, from the viewpoint of moisture absorption resistance, the K content is preferably 0.18% by mass or less, more preferably 0.16% by mass or less.

[F化合物(F換算値):0.01〜0.20質量%]
本実施形態のフラックス入りワイヤにおけるF化合物の具体例としては、CaF、BaF、NaF、KSiF、SrF、AlF,MgF及びLiFなどが挙げられる。Fは、NaやKと同様に、溶融スラグの粘性を下げる効果がある。また、Fには、溶接時にHと結合してHFを形成し、溶融金属中の水分を低減させる効果もあり、耐気孔性の向上に非常に有効な成分である。
[F compound (F conversion value): 0.01 to 0.20 mass%]
Specific examples of the F compound in the flux-cored wire of this embodiment include CaF 2 , BaF 2 , NaF, K 2 SiF 6 , SrF 2 , AlF 3 , MgF 2, and LiF. F, like Na and K, has the effect of reducing the viscosity of the molten slag. Further, F has an effect of combining with H during welding to form HF and reducing moisture in the molten metal, and is a very effective component for improving the porosity resistance.

しかし、F化合物含有量が0.01質量%未満の場合、前述した効果が得られず、耐気孔性が劣化する。また、F化合物含有量が0.20質量%を超えると、溶融スラグの粘度が著しく低下し、上脚部のスラグ包皮性が低下し、ビード形状が劣化すると共に、スラグ剥離性も劣化する。よって、F化合物含有量は、F換算で、0.01〜0.20質量%とする。   However, when the F compound content is less than 0.01% by mass, the above-described effects cannot be obtained, and the porosity resistance deteriorates. Moreover, when F compound content exceeds 0.20 mass%, the viscosity of a molten slag will fall remarkably, the slag husk property of an upper leg part will fall, a bead shape will deteriorate, and slag peelability will also deteriorate. Therefore, F compound content shall be 0.01-0.20 mass% in conversion of F.

F含有量は、耐気孔性の観点から、0.02質量%以上が好ましく、より好ましくは0.05質量%以上である。また、溶融スラグの粘度の観点からは、F含有量は、0.18質量%以下が好ましく、より好ましくは0.16質量%以下である。   The F content is preferably 0.02% by mass or more, more preferably 0.05% by mass or more, from the viewpoint of porosity resistance. Further, from the viewpoint of the viscosity of the molten slag, the F content is preferably 0.18% by mass or less, and more preferably 0.16% by mass or less.

[Al及びAl化合物(Al換算値):0.05〜0.50質量%]
Alは、金属又は合金の形態、及び酸化物や金属間化合物などの化合物の形態で添加される。本実施形態のフラックス入りワイヤにおけるAl源の具体例としては、鋼製外皮に含有される金属Al、フラックスに含有される金属Al、Fe−Al、Al−Mg、Al及びAlFなどが挙げられる。
[Al and Al compounds (Al converted value): 0.05 to 0.50 mass%]
Al is added in the form of a metal or alloy and in the form of a compound such as an oxide or an intermetallic compound. Specific examples of the Al source in the flux-cored wire of the present embodiment include metal Al contained in the steel outer sheath, metal Al contained in the flux, Fe—Al, Al—Mg, Al 2 O 3 and AlF 3. Is mentioned.

Alは、金属又は合金の形態で、強力な脱酸剤として添加されることが多く、脱酸作用によりAlを生成する。そして、AlなどのAl酸化物は、スラグの凝固点を上昇させる効果がある。しかし、Al及びAl化合物の総含有量が0.05質量%未満の場合、溶接ビード止端部のなじみ性が低下する傾向にある。また、Al及びAl化合物の総含有量が0.50質量%を超えると、スラグの凝固点が高くなり、耐気孔性が劣化する傾向にある。よって、Al及びAl化合物の総含有量は、Al換算で、0.05〜0.50質量%とする。 Al is often added as a strong deoxidizer in the form of a metal or an alloy, and Al 2 O 3 is generated by a deoxidation action. Then, Al oxides such as Al 2 O 3 has the effect of raising the freezing point of the slag. However, when the total content of Al and Al compound is less than 0.05% by mass, the conformability of the weld bead toe portion tends to decrease. On the other hand, if the total content of Al and Al compound exceeds 0.50% by mass, the freezing point of the slag becomes high and the porosity resistance tends to deteriorate. Therefore, the total content of Al and Al compound is 0.05 to 0.50 mass% in terms of Al.

Al及びAl化合物の総含有量は、溶接ビード止端部のなじみ性の観点から、0.10質量%以上とすることが好ましく、より好ましくは0.15質量%以上である。また、スラグの凝固点の観点からは、Al及びAl化合物の総含有量は、0.45質量%以下であることが好ましく、より好ましくは0.40質量%以下である。   The total content of Al and Al compound is preferably 0.10% by mass or more, more preferably 0.15% by mass or more, from the viewpoint of conformability of the weld bead toe. From the viewpoint of the freezing point of slag, the total content of Al and Al compound is preferably 0.45% by mass or less, more preferably 0.40% by mass or less.

[Mg及びMg化合物(Mg換算値):0.05〜0.50質量%]
Mgも、金属、合金又は化合物の形態で添加され、本実施形態のフラックス入りワイヤにおけるMg源の具体例としては、金属Mg、Al−Mg、Fe−Si−Mg、Ni−Mg、MgO、MgCO、MgSiO及びMgFなどが挙げられる。Mgは、金属又は合金の形態で、強力な脱酸剤として添加されることが多く、脱酸作用によりMgOを生成する。そして、MgOなどのMg酸化物は、スラグの凝固点を上昇させる効果がある。
[Mg and Mg compound (Mg equivalent value): 0.05 to 0.50 mass%]
Mg is also added in the form of a metal, an alloy or a compound. Specific examples of the Mg source in the flux-cored wire of this embodiment include metal Mg, Al—Mg, Fe—Si—Mg, Ni—Mg, MgO, and MgCO. 3 , MgSiO 3, MgF 2 and the like. Mg is often added as a strong deoxidizer in the form of a metal or an alloy, and MgO is generated by a deoxidation action. And Mg oxides, such as MgO, have the effect of raising the freezing point of slag.

しかし、Mg及びMg化合物の総含有量が0.05質量%未満の場合、溶接ビード止端部のなじみ性が低下する傾向にある。また、Mg及びMg化合物の総含有量が0.50質量%を超えると、スラグの凝固点が高くなり、耐気孔性が劣化する傾向にある。よって、Mg及びMg化合物の総含有量は、Mg換算で、0.05〜0.50質量%とする。   However, when the total content of Mg and Mg compound is less than 0.05% by mass, the conformability of the weld bead toe portion tends to decrease. On the other hand, if the total content of Mg and Mg compound exceeds 0.50% by mass, the freezing point of the slag increases and the porosity resistance tends to deteriorate. Therefore, the total content of Mg and Mg compound is 0.05 to 0.50 mass% in terms of Mg.

Mg及びMg化合物の総含有量は、溶接ビード止端部のなじみ性の観点から、0.10質量%以上とすることが好ましく、より好ましくは0.15質量%以上である。また、スラグの凝固点の観点からは、Mg及びMG化合物の総含有量は、0.45質量%以下であることが好ましく、より好ましくは0.40質量%以下である。   The total content of Mg and Mg compound is preferably 0.10% by mass or more, and more preferably 0.15% by mass or more, from the viewpoint of conformability of the weld bead toe. Moreover, from the viewpoint of the freezing point of the slag, the total content of Mg and MG compounds is preferably 0.45% by mass or less, more preferably 0.40% by mass or less.

[([Na]+[K])/[F]:15以下]
前述したように、Na、K及びFには、溶融スラグの粘性を下げ、耐気孔性を向上させる効果がある。一方、Na及びKは、過度に添加すると、耐吸湿性を劣化させる懸念もある。これに対して、Fは、溶融金属中の水分を低減させる効果があり、耐気孔性の向上に非常に有効な成分である。
[([Na] + [K]) / [F]: 15 or less]
As described above, Na, K, and F have the effect of reducing the viscosity of the molten slag and improving the pore resistance. On the other hand, when Na and K are added excessively, there is a concern that the moisture absorption resistance is deteriorated. On the other hand, F has an effect of reducing moisture in the molten metal and is a very effective component for improving the pore resistance.

そこで、発明者は、Na化合物、K化合物及びF化合物の含有量について、更に検討を行い、Na化合物とK化合物の総含有量([Na]+[K])と、F化合物含有量([F])との比を、特定の範囲にすることが有効であることを見出した。即ち、Na化合物とK化合物の合計量に対して、F化合物を適量添加することにより、Na及びK添加による耐吸湿性の劣化傾向を、F添加による溶融金属中の水分低減効果によって抑制することができ、目的とする耐気孔性能が得られることを発見した。   Therefore, the inventor further examined the contents of the Na compound, the K compound, and the F compound, and the total content of the Na compound and the K compound ([Na] + [K]) and the F compound content ([[ It has been found that it is effective to set the ratio to F]) within a specific range. That is, by adding an appropriate amount of the F compound to the total amount of the Na compound and the K compound, the deterioration tendency of the moisture absorption resistance due to the addition of Na and K is suppressed by the moisture reduction effect in the molten metal due to the addition of F. It was discovered that the desired pore-resistant performance was obtained.

ここで、([Na]+[K])/[F]が15を超えると、Na化合物とK化合物の合計量に対して、F化合物が不足するため、耐気孔性が劣化する。よって、([Na]+[K])/[F]は15以下とする。([Na]+[K])/[F]は、耐気孔性向上の観点から、12以下であることが好ましく、より好ましくは10以下である。   Here, when ([Na] + [K]) / [F] exceeds 15, the F compound is insufficient with respect to the total amount of the Na compound and the K compound, so that the porosity resistance deteriorates. Therefore, ([Na] + [K]) / [F] is set to 15 or less. ([Na] + [K]) / [F] is preferably 12 or less, more preferably 10 or less, from the viewpoint of improving the porosity resistance.

[[Na]/[K]:0.3〜4.0]
前述したように、Na及びKには、アークを安定させる効果があるが、それぞれ作用が異なり、Naはアークを集中させて安定化し、Kはアークを広げて安定化させる。本発明者は、このアーク特性に着目して鋭意検討した結果、Na化合物含有量(Na換算値)と、K化合物含有量(K換算値)の比(=[Na]/[K])を特定することにより、よりアーク特性を良好にして、ビード形状及びスラグ剥離性を向上できることを見出した。
[[Na] / [K]: 0.3 to 4.0]
As described above, Na and K have an effect of stabilizing the arc, but their actions are different, Na concentrates and stabilizes the arc, and K widens and stabilizes the arc. As a result of diligent investigation focusing on this arc characteristic, the present inventor determined the ratio (= [Na] / [K]) of the Na compound content (Na converted value) and the K compound content (K converted value). By specifying, it discovered that an arc characteristic was made more favorable and bead shape and slag peelability could be improved.

しかし、[Na]/[K]が0.3未満の場合、アークが広がりすぎて、アンダカットが発生しやすくなり、スラグ剥離性が劣化する。また、[Na]/[K]が4.0を超えると、アークが集中しすぎるため、ビード形状が凸となる。よって、[Na]/[K]は0.3〜4.0とする。[Na]/[K]は、スラグ剥離性向上の観点から、0.5以上が好ましく、より好ましくは0.8以上である。また、ビード形状の観点から、[Na]/[K]は、3.5以下であることが好ましく、より好ましくは3.0以下である。   However, when [Na] / [K] is less than 0.3, the arc spreads too much, and undercut is likely to occur, and the slag peelability deteriorates. Further, when [Na] / [K] exceeds 4.0, the arc is excessively concentrated, and the bead shape becomes convex. Therefore, [Na] / [K] is set to 0.3 to 4.0. [Na] / [K] is preferably 0.5 or more, more preferably 0.8 or more, from the viewpoint of improving the slag peelability. Moreover, from the viewpoint of the bead shape, [Na] / [K] is preferably 3.5 or less, and more preferably 3.0 or less.

[[Si]/([Bi]+[S]):10〜110]
前述したように、Si、Bi及びSは、溶融池の粘性調整に有効な元素であるが、その作用が異なり、Siは溶融池の粘性を高め、Bi及びSは溶融池の粘性を下げる。本発明者が鋭意検討した結果、目的の特性を確保するためには、Si、Bi及びSのバランスが重要であることを見出した。
[[Si] / ([Bi] + [S]): 10 to 110]
As described above, Si, Bi, and S are effective elements for adjusting the viscosity of the molten pool, but their actions are different. Si increases the viscosity of the molten pool, and Bi and S decrease the viscosity of the molten pool. As a result of intensive studies by the present inventors, it has been found that the balance of Si, Bi and S is important in order to ensure the desired characteristics.

Si及びSi化合物の総含有量(Si換算値)と、Bi及びBi化合物の総含有量(Bi換算値)並びにS含有量の合計との比(=[Si]/([Bi]+[S])が10未満の場合、溶融池の粘性が低くなりすぎて、ビード形状が不安定となる。一方、[Si]/([Bi]+[S])が110を超えると、溶融池の粘性が高くなりすぎて、溶接時に発生したガスがうまく放出されず、耐気孔性が劣化する。よって、[Si]/([Bi]+[S])は10〜110とする。   The ratio of the total content of Si and Si compounds (Si equivalent value) to the total content of Bi and Bi compounds (Bi equivalent value) and the total of S content (= [Si] / ([Bi] + [S ]) Is less than 10, the viscosity of the molten pool becomes too low and the bead shape becomes unstable, while if [Si] / ([Bi] + [S]) exceeds 110, Since the viscosity becomes too high, the gas generated during welding is not released well, and the porosity resistance deteriorates, so [Si] / ([Bi] + [S]) is set to 10 to 110.

[Si]/([Bi]+[S])は、ビード形状の安定化の観点から、20以上であることが好ましく、より好ましくは25以上である。また、耐気孔性の観点から、[Si]/([Bi]+[S])は85以下であることが好ましく、より好ましくは50以下である。   [Si] / ([Bi] + [S]) is preferably 20 or more, more preferably 25 or more, from the viewpoint of stabilization of the bead shape. Further, from the viewpoint of porosity resistance, [Si] / ([Bi] + [S]) is preferably 85 or less, and more preferably 50 or less.

[B及びB化合物(B換算値):0.0090質量%以下]
本実施形態のフラックス入りワイヤは、必要に応じて、前述した各成分に加えて、B(金属又は合金)及び/又はB化合物を添加することができる。B及びB化合物は、その多くがBとなりスラグ形成剤として作用するが、一部は溶接金属中に留まり、溶接金属の靭性を向上させる。しかし、B及びB化合物の総含有量が0.0090質量%を超えると、溶接金属の強度が高くなり、靭性が劣化する。そこで、B及びB化合物を添加する場合は、B換算値で、0.0090質量%以下とすることが好ましい。
[B and B compound (B conversion value): 0.0090 mass% or less]
The flux-cored wire of the present embodiment can be added with B (metal or alloy) and / or B compound in addition to the above-described components as necessary. Most of the B and B compounds become B 2 O 3 and act as a slag forming agent, but some of them remain in the weld metal and improve the toughness of the weld metal. However, if the total content of B and B compounds exceeds 0.0090% by mass, the strength of the weld metal increases and the toughness deteriorates. Then, when adding B and a B compound, it is preferable to set it as 0.0090 mass% or less in B conversion value.

B及びB化合物を添加する場合は、溶接金属の靭性の観点から、これらの総含有量を0.0010質量%以上とすることが好ましく、また、0.0070質量%以下とすることが好ましい。   When adding B and a B compound, it is preferable to make these total content into 0.0010 mass% or more from a viewpoint of the toughness of a weld metal, and it is preferable to set it as 0.0070 mass% or less.

[残部]
本実施形態のフラックス入りワイヤの成分組成における残部は、Fe、並びにNi、Mo、Cu、Cr、Ca、Nb、V、Liなどの合金剤及びその化合物、P、Sb、Asなどの不可避的不純物である。なお、前述した各元素が酸化物や窒化物として添加された場合は、本実施形態のフラックス入りワイヤの残部には、OやNも含まれる。
[Remainder]
The balance in the component composition of the flux-cored wire of this embodiment is Fe, and alloying agents such as Ni, Mo, Cu, Cr, Ca, Nb, V, Li and their compounds, unavoidable impurities such as P, Sb, As It is. In addition, when each element mentioned above is added as an oxide or nitride, O and N are also contained in the remainder of the flux cored wire of this embodiment.

[製造方法]
本実施形態のフラックス入りワイヤを製造する際は、先ず、鋼製外皮内にフラックスを充填する。その際、外皮には、伸線加工性が良好な軟鋼や低合金鋼を使用することが好ましい。また、フラックスの組成及び充填率は、ワイヤ全体の組成が前述した範囲になるよう外皮の組成や厚さなどに応じて適宜調整することができる。なお、ワイヤの伸線性及び溶接時の作業性(送給性など)の観点からは、フラックスの充填率は、ワイヤ全質量の10〜20質量%とすることが好ましい。
[Production method]
When manufacturing the flux-cored wire of this embodiment, first, the flux is filled in the steel outer sheath. At that time, it is preferable to use mild steel or low alloy steel having good wire drawing workability for the outer skin. The composition and filling rate of the flux can be appropriately adjusted according to the composition and thickness of the outer skin so that the composition of the entire wire is in the above-described range. In addition, from the viewpoint of wire drawability and workability during welding (feedability, etc.), the flux filling rate is preferably 10 to 20% by mass of the total mass of the wire.

次に、外皮内にフラックスが充填されたワイヤを、孔ダイスやローラダイスを用いて伸線することにより縮径し、例えば外径が0.9〜2.0mmのフラックス入りワイヤを得る。   Next, the wire in which the outer shell is filled with the flux is reduced in diameter by drawing with a hole die or a roller die to obtain a flux-cored wire having an outer diameter of 0.9 to 2.0 mm, for example.

以上詳述したように、本実施形態のフラックス入りワイヤは、成分組成に加えて、Na量、K量及びF量とそのバランス、並びにSi量、Bi量及びS量とそのバランスを特定しているため、溶接作業性を安定化させると共に、ビード形状及びスラグ剥離性を良好にすることができる。   As described above in detail, in addition to the component composition, the flux-cored wire of the present embodiment specifies the Na amount, K amount and F amount and their balance, and the Si amount, Bi amount and S amount and their balance. Therefore, welding workability can be stabilized and bead shape and slag peelability can be improved.

以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、下記表1に示す組成の軟鋼からなる管状の外皮(直径1.4mm)にフラックスを充填し、実施例及び比較例のフラックス入りワイヤを作製した。このとき、フラックスの充填率は、ワイヤ全質量あたり、10〜20質量%の範囲になるようにした。   Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention. In this example, flux was filled in a tubular outer shell (diameter: 1.4 mm) made of mild steel having the composition shown in Table 1 below, and flux-cored wires of Examples and Comparative Examples were produced. At this time, the filling rate of the flux was in the range of 10 to 20% by mass with respect to the total mass of the wire.

次に、実施例及び比較例の各フラックス入りワイヤを使用して、下記表2に示す組成の母材に対して、ガスシールドアーク溶接を行った。このとき、母材表面には、塗装(プライマ主成分:Zn、プライマ膜厚30μm)を施しておいた。また、シールドガスとしては、CO(100%)を使用した。 Next, gas shielded arc welding was performed on the base materials having the compositions shown in Table 2 below using the flux-cored wires of Examples and Comparative Examples. At this time, the surface of the base material was coated (primer main component: Zn, primer film thickness 30 μm). Further, CO 2 (100%) was used as the shielding gas.

そして、実施例及び比較例の各フラックス入りワイヤを使用したガスアーク溶接について、以下に示す方法で、溶接部の耐気孔性、ビード外観及び溶接部の機械的性質の評価を行った。   And about the gas arc welding which uses each flux cored wire of an Example and a comparative example, the porosity shown by the method shown below, the bead appearance, and the mechanical property of the weld part were evaluated.

<耐気孔性>
耐気孔性の評価は、試験板として2枚の板状母材を使用し、一方の板材上に他方の板材を立て、実施例及び比較例の各フラックス入りワイヤを使用して、すみ肉部を水平すみ肉溶接することにより行った。その際、溶接条件は、溶接電流値を300〜310A(DC−EP)、溶接速度を70mm/分、トーチ角度を45°、前後退角を0°とし、目標脚長は5mmとした。そして、2組の試験板について、同じ条件で、それぞれ試験板600mm長を溶接した。
<Porosity resistance>
The evaluation of porosity resistance uses two plate-shaped base materials as test plates, stands the other plate material on one plate material, and uses each flux-cored wire of Examples and Comparative Examples, and fillet portion Was performed by horizontal fillet welding. At that time, the welding conditions were a welding current value of 300 to 310 A (DC-EP), a welding speed of 70 mm / min, a torch angle of 45 °, a front receding angle of 0 °, and a target leg length of 5 mm. And about 2 sets of test plates, 600 mm length of the test plate was welded on the same conditions, respectively.

評価は、横板側の溶接部に発生したピット又はガス溝などの溶接欠陥の発生数を測定し、欠陥がなかった場合をきわめて良好(◎+)、欠陥が1個の場合を非常に良好(◎)、欠陥の個数が2〜3個の場合を良好(○)、欠陥の数が4個以上を不良(×)とした。   Evaluation was made by measuring the number of weld defects such as pits or gas grooves generated in the weld on the side of the horizontal plate. Very good (◎ +) when there is no defect, very good when there is only one defect. (◎), the case where the number of defects was 2 to 3 was good (◯), and the number of defects was 4 or more was bad (x).

<ビード形状・外観>
ビード形状・外観の評価は、前述した耐気孔性評価において水平すみ肉溶接した溶接部を観察し、溶接止端部のなじみ及び凸形状度合いについて視覚的に評価した。その際、溶接止端部のなじみがよいもの及び凸形状度合いが小さいものから、きわめて良好(◎+)、非常に良好(◎)、良好(○)、不良(×)と4段階で判定した。また、アンダカットについては、0.2mm以下のものをきわめて良好(◎+)とし、0.2mmを超え0.3mm以下のものを非常に良好(◎)、0.3mmを超え0.4mm以下のものを良好(○)と判定し、0.4mmを超えるものを不良(×)とし、両判定で低い方を最終判定結果とした。
<Bead shape / appearance>
In the evaluation of the bead shape and appearance, the welded portion which was welded by horizontal fillet in the above-described porosity resistance evaluation was observed, and the familiarity of the weld toe and the degree of convex shape were visually evaluated. At that time, the welding toe part was well-fitted and the degree of convexity was small, so it was judged in 4 stages: very good (◎ +), very good (◎), good (○), and bad (×). . For undercutting, those with a diameter of 0.2 mm or less are considered very good (良好 +), those with a thickness exceeding 0.2 mm and 0.3 mm or less are very good (◎), and are exceeding 0.3 mm and 0.4 mm or less. Were judged as good (◯), those exceeding 0.4 mm were judged as bad (x), and the lower one in both judgments was taken as the final judgment result.

<溶接部の機械的性質>
溶接部の機械的性質については、実施例及び比較例の各フラックス入りワイヤを使用して6層12パス下向き溶接した溶接部において、JIS Z 3111に規定されている衝撃試験を行い、その結果により評価した。その際、溶接電流値を290〜320A(DC−EP)、パス間温度を150±10℃とした。その結果、雰囲気温度0℃における衝撃値が70J以上であったものを非常に良好(◎)、47J以上70J未満であったものを良好(○)、47J未満を不良(×)とした。
<Mechanical properties of welds>
As for the mechanical properties of the welded part, the impact test specified in JIS Z 3111 was conducted on the welded part welded downward with 6 layers and 12 passes using the flux-cored wires of Examples and Comparative Examples. evaluated. At that time, the welding current value was 290 to 320 A (DC-EP), and the interpass temperature was 150 ± 10 ° C. As a result, those having an impact value of 70 J or more at an atmospheric temperature of 0 ° C. were judged as very good ((), those with 47 J or more and less than 70 J were judged as good (◯), and those with less than 47 J were judged as bad (×).

以上の結果を、下記表3〜7に示す。なお、下記表3〜7に示すワイヤ成分の残部は、Fe、合金剤、不可避的不純物、酸化物に由来するO及び窒化物に由来するNなどである。   The above results are shown in Tables 3 to 7 below. The remainder of the wire components shown in Tables 3 to 7 below are Fe, alloying agents, unavoidable impurities, O derived from oxides, N derived from nitrides, and the like.

上記表7に示す比較例No.127のワイヤは、Tiの含有量が1.0質量%未満であるため、ビード外観・形状が劣化した。一方、比較例No.128のワイヤは、Tiの含有量が4.0質量%を超えているため、耐気孔性が劣化した。また、比較例No.129のワイヤは、Si含有量が0.5質量%未満であるため、ビード外観・形状が劣化した。一方、比較例No.130のワイヤは、Si含有量が2.5質量%を超えているため、ビード外観・形状が劣化した。   Comparative Example No. shown in Table 7 above. The 127 wire had a Ti content of less than 1.0% by mass, so the bead appearance and shape deteriorated. On the other hand, Comparative Example No. In 128 wires, since the Ti content exceeded 4.0 mass%, the porosity resistance deteriorated. Comparative Example No. Since the 129 wire had a Si content of less than 0.5% by mass, the bead appearance and shape deteriorated. On the other hand, Comparative Example No. The 130 wire had a Si content exceeding 2.5 mass%, and therefore the bead appearance and shape deteriorated.

比較例No.131のワイヤは、Zrの含有量が0.10質量%未満であるため、ビード外観・形状が劣化した。一方、比較例No.132のワイヤは、Zr含有量が0.60質量%を超えているため、耐気孔性が劣化した。比較例No.133のワイヤは、Mnの含有量が2.0質量%未満であるため、靭性が劣化した。一方、比較例No.134のワイヤは、Mn含有量が3.0質量%を超えているため、溶接金属の靭性が劣化した。   Comparative Example No. Since the wire No. 131 had a Zr content of less than 0.10% by mass, the bead appearance and shape deteriorated. On the other hand, Comparative Example No. Since the 132 wire had a Zr content exceeding 0.60 mass%, the porosity resistance deteriorated. Comparative Example No. The 133 wire had a Mn content of less than 2.0% by mass, so its toughness deteriorated. On the other hand, Comparative Example No. Since the Mn content of the wire No. 134 exceeded 3.0% by mass, the toughness of the weld metal deteriorated.

比較例No.135のワイヤは、C含有量が0.02質量%未満であるため、溶接金属の靭性が劣化した。一方、比較例No.136のワイヤは、C含有量が0.10質量%を超えているため、ビード外観・形状が劣化した。比較例No137のワイヤは、S含有量が0.005質量%未満であるため、耐気孔性が劣化し、更にビード外観・形状も劣化した。一方、比較例No.138のワイヤは、S含有量が0.030質量%を超えているため溶接金属の靭性が劣化した。   Comparative Example No. The 135 wire had a C content of less than 0.02% by mass, so the toughness of the weld metal deteriorated. On the other hand, Comparative Example No. The 136 wire had a C content exceeding 0.10% by mass, so that the bead appearance and shape deteriorated. Since the S content of the wire of Comparative Example No. 137 was less than 0.005% by mass, the porosity resistance was deteriorated and the bead appearance and shape were also deteriorated. On the other hand, Comparative Example No. Since the 138 wire had an S content exceeding 0.030 mass%, the toughness of the weld metal deteriorated.

比較例No.139のワイヤは、Bi含有量が0.005質量%未満であるため、耐気孔性が劣化した。一方、比較例No.140のワイヤは、Bi含有量が0.040質量%を超えているため、溶接金属の靭性が劣化した。比較例No.141のワイヤは、Na化合物含有量が0.01質量%未満であるため、耐気孔性が劣化した。一方、比較例No.142のワイヤは、Na化合物含有量が0.20質量%を超えているため、耐気孔性が劣化した。   Comparative Example No. The wire No. 139 had a Bi content of less than 0.005% by mass, so the porosity resistance was deteriorated. On the other hand, Comparative Example No. In 140 wire, the Bi content exceeded 0.040 mass%, so the toughness of the weld metal deteriorated. Comparative Example No. Since the wire No. 141 had a Na compound content of less than 0.01% by mass, the porosity resistance deteriorated. On the other hand, Comparative Example No. The 142 wire had a Na compound content of more than 0.20% by mass, and therefore its porosity resistance deteriorated.

比較例No.143のワイヤは、K化合物含有量が0.01質量%未満であるため、耐気孔性が劣化した。一方、比較例No.144のワイヤは、K化合物含有量が0.20質量%を超えているため、耐気孔性が劣化した。比較例No.145のワイヤは、F化合物含有量が0.01質量%未満であるため、耐気孔性が劣化した。一方、比較例No.146のワイヤは、F化合物含有量が0.20質量%を超えているため、ビード外観・形状が劣化した。   Comparative Example No. Since the K compound content of the 143 wire was less than 0.01% by mass, the porosity resistance was deteriorated. On the other hand, Comparative Example No. The 144 wire had a K compound content of more than 0.20% by mass, and therefore its porosity resistance deteriorated. Comparative Example No. Since the 145 wire had an F compound content of less than 0.01% by mass, the porosity resistance deteriorated. On the other hand, Comparative Example No. Since the F compound content of the 146 wire exceeded 0.20 mass%, the bead appearance and shape deteriorated.

比較例No.147のワイヤは、Al含有量が0.05質量%未満であるため、ビード外観・形状が劣化した。一方、比較例No.148のワイヤは、Al含有量が0.50質量%を超えているため、耐気孔性が劣化した。比較例No.149のワイヤは、Mg含有量が0.05質量%未満であるため、ビード外観・形状が劣化した。一方、比較例No.150のワイヤは、Mg含有量が0.50質量%を超えているため、耐気孔性が劣化した。   Comparative Example No. Because the Al content of the 147 wire was less than 0.05% by mass, the bead appearance and shape deteriorated. On the other hand, Comparative Example No. Since the Al content of the 148 wire exceeded 0.50% by mass, the porosity resistance deteriorated. Comparative Example No. The 149 wire had a Mg content of less than 0.05% by mass, so the bead appearance and shape deteriorated. On the other hand, Comparative Example No. The 150 wire had a Mg content of more than 0.50% by mass, so the porosity resistance deteriorated.

比較例No.151のワイヤは、([Na]+[K])/[F]が15を超えているため、耐気孔性が劣化した。比較例No.152のワイヤは、[Na]/[K]が0.3未満であるため、ビード外観・形状が劣化した。一方、比較例No.153のワイヤは、[Na]/[K]が4.0を超えているため、ビード外観・形状が劣化した。比較例No.154のワイヤは、[Si]/([Bi]+[S])が10未満であったため、ビード外観・形状が劣化した。一方、比較例No.155のワイヤは、[Si]/([Bi]+[S])が110を超えているため、耐気孔性が劣化した。   Comparative Example No. Since the wire No. 151 had ([Na] + [K]) / [F] exceeding 15, the pore resistance was deteriorated. Comparative Example No. Since the wire No. 152 had [Na] / [K] less than 0.3, the bead appearance and shape deteriorated. On the other hand, Comparative Example No. Since the wire of 153 had [Na] / [K] exceeding 4.0, the bead appearance and shape deteriorated. Comparative Example No. Since the wire of 154 had [Si] / ([Bi] + [S]) of less than 10, the bead appearance and shape deteriorated. On the other hand, Comparative Example No. Since the wire of 155 has [Si] / ([Bi] + [S]) exceeding 110, the porosity resistance deteriorated.

比較例No.156のワイヤは、0.0090質量%を超えてBが添加されているため、溶接金属の靭性が劣化した。   Comparative Example No. Since 156 wire was added with B exceeding 0.0090 mass%, the toughness of the weld metal deteriorated.

これに対して、上記表3〜6に示す実施例No.1〜126のワイヤは、本発明の範囲を満足するものであるため、耐気孔性、ビード形状・外観、溶接部の機械的性質が良好であった。以上の結果から、本発明によれば、すみ肉溶接において、溶接作業性に優れ、耐気孔性、ビード形状及びスラグ剥離性の全てが良好なガスシールドアーク溶接用フラックス入りワイヤが得られることが確認された。   On the other hand, Example No. shown in the said Tables 3-6. Since the wires of 1 to 126 satisfy the scope of the present invention, the pore resistance, the bead shape / appearance, and the mechanical properties of the welded portion were good. From the above results, according to the present invention, in fillet welding, it is possible to obtain a flux-cored wire for gas shielded arc welding that is excellent in welding workability and has excellent pore resistance, bead shape and slag peelability. confirmed.

Claims (2)

鋼製外皮内にフラックスが充填されたガスシールドアーク溶接用フラックス入りワイヤ
であって、
ワイヤ全質量あたり、
Ti及びTi化合物(Ti換算値):1.0〜4.0質量%、
Si及びSi化合物(Si換算値):0.8〜2.5質量%、
Zr及びZr化合物(Zr換算値):0.14〜0.4質量%、
Mn:2.0〜3.0質量%、
C:0.02〜0.10質量%、
S:0.005〜0.030質量%、
Bi及びBi化合物(Bi換算値):0.005〜0.040質量%、
Na化合物(Na換算値):0.01〜0.20質量%、
K化合物(K換算値):0.01〜0.20質量%、
F化合物(F換算値):0.01〜0.20質量%、
Al及びAl化合物(Al換算値):0.05〜0.50質量%、
Mg及びMg化合物(Mg換算値):0.05〜0.50質量%、
B及びB化合物(B換算値):0.0090質量%以下、
を含有すると共に、
Na化合物含有量(Na換算値)を[Na]、K化合物含有量(K換算値)を[K]、F化合物含有量(F換算値)を[F]、Si及びSi化合物の総含有量(Si換算値)を[Si]、Bi及びBi化合物の総含有量(Bi換算値)を[Bi]、S含有量を[S]としたとき、下記数式(I)〜(III)を満たし、
すみ肉溶接に用いられるガスシールドアーク溶接用フラックス入りワイヤ。
A flux-cored wire for gas shielded arc welding in which a flux is filled in a steel outer sheath,
Per total wire mass,
Ti and Ti compound (Ti conversion value): 1.0 to 4.0% by mass,
Si and Si compound (Si equivalent value): 0.8 to 2.5% by mass,
Zr and Zr compound (Zr equivalent value): 0.14 to 0.4% by mass,
Mn: 2.0 to 3.0% by mass,
C: 0.02-0.10 mass%,
S: 0.005-0.030 mass%,
Bi and Bi compound (Bi conversion value): 0.005-0.040 mass%,
Na compound (Na equivalent value): 0.01-0.20% by mass,
K compound (K conversion value): 0.01-0.20 mass%,
F compound (F conversion value): 0.01-0.20 mass%,
Al and Al compound (Al conversion value): 0.05 to 0.50 mass%,
Mg and Mg compound (Mg conversion value): 0.05 to 0.50 mass%,
B and B compound (B conversion value): 0.0090 mass% or less,
And containing
The Na compound content (Na equivalent value) is [Na], the K compound content (K equivalent value) is [K], the F compound content (F equivalent value) is [F], the total content of Si and Si compounds When (Si equivalent value) is [Si], the total content of Bi and Bi compounds (Bi equivalent value) is [Bi], and the S content is [S], the following mathematical formulas (I) to (III) are satisfied. ,
A flux-cored wire for gas shielded arc welding used for fillet welding.
軟鋼、高張力鋼又は低合金鋼の水平すみ肉溶接に用いられることを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。   The flux-cored wire for gas shielded arc welding according to claim 1, wherein the flux-cored wire is used for horizontal fillet welding of mild steel, high-tensile steel or low-alloy steel.
JP2013062929A 2013-03-25 2013-03-25 Flux-cored wire for gas shielded arc welding Active JP6085205B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013062929A JP6085205B2 (en) 2013-03-25 2013-03-25 Flux-cored wire for gas shielded arc welding
CN201310704268.9A CN104070305A (en) 2013-03-25 2013-12-19 Flux cored wire for gas shielded arc welding
CN201910534785.3A CN110153593A (en) 2013-03-25 2013-12-19 Flux-cored wire for gas-shielded arc welding
KR1020140034167A KR101600172B1 (en) 2013-03-25 2014-03-24 Flux cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062929A JP6085205B2 (en) 2013-03-25 2013-03-25 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2014184481A JP2014184481A (en) 2014-10-02
JP6085205B2 true JP6085205B2 (en) 2017-02-22

Family

ID=51592128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062929A Active JP6085205B2 (en) 2013-03-25 2013-03-25 Flux-cored wire for gas shielded arc welding

Country Status (3)

Country Link
JP (1) JP6085205B2 (en)
KR (1) KR101600172B1 (en)
CN (2) CN104070305A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016187828A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
JP6509007B2 (en) * 2015-03-30 2019-05-08 株式会社神戸製鋼所 Method of manufacturing flux-cored wire for gas shielded arc welding
JP6746338B2 (en) * 2016-03-25 2020-08-26 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667635B2 (en) * 1994-03-31 1997-10-27 株式会社神戸製鋼所 Stainless steel flux cored wire
JPH09314383A (en) * 1996-05-24 1997-12-09 Nippon Steel Corp High-speed horizontal fillet gas shielded metal arc welding method
JP4425756B2 (en) 2004-09-28 2010-03-03 日鐵住金溶接工業株式会社 Flux-cored wire for horizontal fillet welding
JP4531617B2 (en) * 2005-04-07 2010-08-25 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP4986562B2 (en) * 2006-10-02 2012-07-25 株式会社神戸製鋼所 Flux-cored wire for titania-based gas shielded arc welding
JP4838100B2 (en) * 2006-11-06 2011-12-14 日鐵住金溶接工業株式会社 Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP4776508B2 (en) * 2006-11-20 2011-09-21 株式会社神戸製鋼所 Flux-cored wire for electrogas arc welding
CN101396774B (en) * 2007-09-30 2010-12-08 苏派特金属(昆山)有限公司 Flux-cored wire
JP5014189B2 (en) 2008-02-12 2012-08-29 日鐵住金溶接工業株式会社 Two-electrode fillet gas shielded arc welding method
EP2289661B1 (en) * 2009-08-27 2014-04-02 Nippon Steel & Sumikin Welding Co., Ltd. Flux cored wire for gas shielded arc welding of high strength steel
JP4949449B2 (en) 2009-09-18 2012-06-06 株式会社神戸製鋼所 Flux-cored wire for welding
JP5450293B2 (en) * 2010-07-01 2014-03-26 株式会社神戸製鋼所 Fillet welded joint and gas shielded arc welding method
CN102554497B (en) * 2010-12-21 2014-06-04 中冶建筑研究总院有限公司 Flux-cored wire for fine-grain high-strength steel bar CO2 arc welding
JP5557790B2 (en) * 2011-04-13 2014-07-23 日鐵住金溶接工業株式会社 Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP5669684B2 (en) * 2011-07-12 2015-02-12 日鐵住金溶接工業株式会社 Flux-cored wire for horizontal fillet gas shielded arc welding
CN102873468B (en) * 2012-09-18 2014-10-01 武汉铁锚焊接材料股份有限公司 High-speed flat fillet weld flux-cored wire and preparation and application thereof

Also Published As

Publication number Publication date
CN110153593A (en) 2019-08-23
JP2014184481A (en) 2014-10-02
CN104070305A (en) 2014-10-01
KR20140116821A (en) 2014-10-06
KR101600172B1 (en) 2016-03-04

Similar Documents

Publication Publication Date Title
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5207994B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
WO2015005002A1 (en) Flux-cored wire for build-up welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP5283993B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
JP6017406B2 (en) Stainless steel flux cored wire for self shielded arc welding
JP6085205B2 (en) Flux-cored wire for gas shielded arc welding
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP6969705B1 (en) Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JP4949449B2 (en) Flux-cored wire for welding
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP2006224178A (en) Flux-cored wire for gas-shielded arc fillet welding
WO2016060208A1 (en) Wire containing flux for gas shield arc welding
JP5824403B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5361797B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP2002331384A (en) Metal based-flux-cored wire for gas shielded arc welding
CN113613829A (en) Ni-based alloy flux-cored wire
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
JP2014176878A (en) Horizontal fillet gas shield arc welding method
JP5669684B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6085205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150