JPS6312271A - Method for thawing and refrigerating frozen food - Google Patents

Method for thawing and refrigerating frozen food

Info

Publication number
JPS6312271A
JPS6312271A JP61142721A JP14272186A JPS6312271A JP S6312271 A JPS6312271 A JP S6312271A JP 61142721 A JP61142721 A JP 61142721A JP 14272186 A JP14272186 A JP 14272186A JP S6312271 A JPS6312271 A JP S6312271A
Authority
JP
Japan
Prior art keywords
temperature
thawing
refrigerator
air
frozen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61142721A
Other languages
Japanese (ja)
Inventor
Yukio Hashimoto
幸雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAKU KK
Original Assignee
AAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAKU KK filed Critical AAKU KK
Priority to JP61142721A priority Critical patent/JPS6312271A/en
Publication of JPS6312271A publication Critical patent/JPS6312271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To thaw and refrigerate a food without impairing the freshness and quality thereof, by starting thawing of the frozen food while maintaining the interior of a thawing refrigerator at a specific temperature and slowly thawing the food while maintaining the interior at a temperature lower than the temperature when the core temperature of the food attains the temperature zone of the maximum ice crystal formation. CONSTITUTION:In thawing a frozen food by blowing heated and humidified air on the food, the temperature in a thawing refrigerator is at first set at a relatively high temperature (T1). The setting of the temperature in the refrigerator is next changed to a temperature (T2) lower than the original temperature (T1) when the temperature of the core part of the food attains the temperature zone (TC) of the maximum ice crystal formation to slowly thaw the food. When the thawing is completed, the temperature in the refrigerator is set at the optimum refrigeration temperature (T3).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、低温または超低温でQ速冷凍した凍結魚、魚
卵及び畜肉等を解凍する場合、該冷凍品の鮮度と品質を
損なうことなく、また解凍において生じる目減りを抑制
しながら短時間且つ経済的に解凍する方法に関するもの
であり、特に冷凍魚及び冷凍魚卵を一時的且つ大量に解
凍して水産加工原料として使用づる場合や、解凍後jT
魚として直接消費に供する場合に最大に効果を発揮する
解凍及び冷蔵方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for thawing frozen fish, fish roe, livestock meat, etc. that has been Q-speed frozen at low or ultra-low temperatures without impairing the freshness and quality of the frozen products. This relates to a method for thawing fish and frozen fish roe in a short time and economically while suppressing the loss of weight that occurs during thawing, especially when temporarily thawing frozen fish and frozen fish roe to be used as raw materials for seafood processing, and when
This relates to a thawing and refrigeration method that is most effective when the fish is directly consumed.

従来の技術 従来例えば冷凍魚を産業規模で大量に解凍する場合は、
自然解凍法、水解凍法、温風解凍法等が伝統的且つ一般
的に採用されているが、これ等の方法は、いづれちM糠
中及び解凍後に鮮度が著しく低下して肉組織中の細胞液
や血液をドリップとして流出するために品質管理面で問
題点が多い。
Conventional technology Conventionally, for example, when thawing frozen fish in large quantities on an industrial scale,
Natural thawing method, water thawing method, warm air thawing method, etc. are traditionally and commonly used, but these methods all significantly reduce the freshness in the bran and after thawing, resulting in loss of freshness in the meat tissue. There are many problems in terms of quality control because cell fluid and blood flow out as drips.

例えば、自然解凍法は、土間解凍や天日解凍等にみられ
る如く季節や気温の変化に直接影響されまた被解凍品を
長時間日光や外気に晒すため、肉組織の酸化や表皮の退
職等鮮度の低下が著しく、また気温が上Rすると、魚体
のみならず工場内に滴下した体液、血液に雑菌が繁殖し
て腐敗の原因となり、加工工場内に腐臭が充満するなど
食品の衛生管理面でも問題が多い。
For example, natural thawing methods are directly affected by changes in season and temperature, as seen in dirt floor thawing and solar thawing, and the thawing products are exposed to sunlight and the outside air for long periods of time, resulting in oxidation of the meat tissue and loss of the epidermis. If the freshness is significantly reduced and the temperature rises, bacteria will grow not only in the fish but also in the body fluids and blood dripping into the factory, causing spoilage and causing food hygiene management issues such as a rotten smell filling the processing factory. But there are many problems.

また水M凍結t;l 、冷凍品を真水または面木中に直
接浸漬するか冷凍品に大7Hの水を撒いて強制的に解凍
するが、自然解凍法に比べて時間的に右利であるものの
、内部が凍った状態で表面が融けてしまうため、融けた
部分の肉組織が水で膨潤し、細胞を破壊してドリップを
流出する等魚体の品質を損なうばかりか、魚肉の栄養素
と滋味を失わしめる不呉合があった。この現象は、水の
熱伝導性が低いため表面の融けた部分と凍結部分との間
に水が一種の断熱膜として介在し、外部から受けた熱を
内部に伝え難くする。その結果水浸しの状態はしだいに
大きくなり、品質を低下させると共に流出したドリップ
が大量の解凍用水を汚染して新たな公害源となる。また
、食品加エエ揚の非衛生な状態は結果的に販売先、消費
者からの製品の忌避を招き、製品画格面でより不利な状
況をln <。
In addition, when freezing with water, the frozen product is immersed directly in fresh water or water, or the frozen product is forcibly thawed by sprinkling 7H of water on it, but this method takes less time than the natural thawing method. However, since the surface of the fish melts while the inside is frozen, the thawed meat tissue swells with water, destroying the cells and causing drips to flow out, which not only impairs the quality of the fish body, but also reduces the nutrients in the fish meat. There was a rift that made the food lose its flavor. This phenomenon occurs because the thermal conductivity of water is low, so water acts as a kind of heat insulating film between the melted and frozen parts of the surface, making it difficult for heat received from the outside to be transferred to the inside. As a result, the waterlogged state gradually increases, degrading the quality and contaminating the large amount of water used for thawing, which becomes a new source of pollution. In addition, unhygienic conditions during food processing result in customers and consumers avoiding the product, creating a more disadvantageous situation in terms of product quality.

また寒冷地においては、冬季の水作業が不可能なため、
解凍用水に渇水を使用したり、解凍水にスチームを注入
して熱を補給するなど種々の工夫をしているが、時には
冷凍品の冷熱によって逆に解凍水が氷結して魚体や魚卵
に凍れ子などの凍C事故を発生させるなど新たな経済的
損失を生んでいる。
In addition, in cold regions, water work in winter is impossible, so
Various efforts have been made, such as using drought water for thawing and injecting steam into the thawing water to replenish heat, but sometimes the thawing water freezes due to the cold heat of frozen products, damaging fish bodies and fish eggs. This is causing new economic losses such as freezing C accidents such as frozen children.

温風による空気解凍法は、ヒーターで加熱した空気をフ
ァンで解凍庫に送り解凍する方法で、温水解凍と同様、
寒冷地で普及している。しかしこの方法も、庫内の温度
、湿度を安定的に維持することが難しいことと、庫内の
空気循環が均一に行われないため被解凍品に解凍ムラや
バラつきを生じて、解凍後の製品化の段階で品質の均一
化を阻害している。特に、一時的かつ大量に解凍して加
工処理をする水産加工工場では、この解凍方法は品質管
理面で適当とされない。
The air thawing method using hot air is a method of thawing air heated by a heater and sent to the thawing chamber using a fan.Similar to hot water thawing,
Popular in cold regions. However, with this method, it is difficult to maintain stable temperature and humidity inside the refrigerator, and the air circulation inside the refrigerator is not uniform, resulting in uneven thawing and unevenness in the thawed products. This impedes the uniformity of quality at the stage of commercialization. In particular, this thawing method is not considered appropriate in terms of quality control in seafood processing factories that temporarily thaw and process large quantities of fish.

以上のような問題点を考慮して、近時、低温、8湿の空
気を解凍庫に供給して解凍する空気解凍法が開発されて
いるが、該解凍法による装置は冷凍良品全般を対家とす
る汎用型として冷蔵に力点をおいて開発されているため
、産業規模での冷凍魚の大量集中解凍などに重要な機能
である解凍時間の短縮や、解凍熱量のコントロール及び
魚種によって異なる解凍終温に基づいた解凍の終了、及
び過剰解凍による品質の低下防1などの点で不充分であ
り、関連業界での凹及度が未だ低い状況にある。
In consideration of the above-mentioned problems, an air thawing method has recently been developed in which low-temperature, humid air is supplied to the thawing chamber to defrost the product. It has been developed with emphasis on refrigeration as a general-purpose type for home use, so it can shorten thawing time, control the amount of thawing heat, and thaw differently depending on the species of fish, which is an important function for intensively thawing large quantities of frozen fish on an industrial scale. It is insufficient in terms of terminating thawing based on the final temperature and preventing quality deterioration due to excessive thawing, and the level of progress in related industries is still low.

以上、冷凍魚の解凍方法について各科従来方法を例示し
たが、産業規模で冷凍魚を解凍する方法としては、いず
れも品質管理、作業性、コスト面で一長一短があり決定
的な解凍方法は未だ11られていない。
As mentioned above, conventional methods for thawing frozen fish have been exemplified in each category, but all methods for thawing frozen fish on an industrial scale have advantages and disadvantages in terms of quality control, workability, and cost, and there are still 11 definitive thawing methods. It has not been done.

本発明は以上の問題点に鑑みてなされたもので、その目
的は、低温または超低温で凍結した冷凍品を効率良く且
つ品質を損うことなく解凍し、また冷蔵する方法を提供
することである。
The present invention has been made in view of the above problems, and its purpose is to provide a method for efficiently thawing and refrigerating frozen products frozen at low or ultra-low temperatures without impairing quality. .

問題点を解決するための手段 本発明は前記目的を達成するため、冷凍品に加温(加熱
)加湿した空気を吹き付けて解凍するに際し、先ず冷凍
・冷蔵In内の空気温度を第1の温度に制御、維持して
解凍を行うと同峙に被解凍品の芯温を検知し、該芯温が
被解凍品組織の最大氷結晶生成温度帯に達した時、冷蔵
庫内の湿度を前2第1の温度よりも低い第2の温度に再
制御、維持して解凍を緩慢に行い、更に前記芯温か所定
の解凍線温に達した時解凍を終了するようにしたことを
要旨とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention first sets the air temperature in the freezer/refrigerator In to a first temperature when blowing heated (heated) and humidified air onto a frozen product to thaw it. At the same time, the core temperature of the product to be thawed is detected, and when the core temperature reaches the maximum ice crystal formation temperature range of the tissue of the product to be thawed, the humidity in the refrigerator is The gist is that the second temperature is re-controlled and maintained at a second temperature lower than the first temperature, thawing is performed slowly, and the thawing is completed when the core temperature reaches a predetermined thawing line temperature. It is.

また本願用2の発明は、前記の如く解凍を行った後、冷
凍・冷蔵庫内に吹き入れる空気の加熱を停止せしめ、庫
内の空気温度を検知して所定の冷蔵温度に制御する一方
、洗浄した低温、高湿度の空気によって冷凍品の冷蔵を
おこなうことを要旨とする。
In addition, the invention of Application No. 2 stops heating the air blown into the freezer/refrigerator after thawing as described above, detects the air temperature inside the refrigerator, and controls the temperature to a predetermined refrigeration temperature. The main idea is to refrigerate frozen products using low-temperature, high-humidity air.

更に本願用2の発明において、前記空気の加熱を停止す
ると共に庫内への空気の吹き入れを停止し、この庫内の
空気温度を検知して当該庫内の温度を所定の氷温II1
.謁戊に制御、維持し、解凍品を氷温域で冷蔵すること
もできる。
Furthermore, in the invention of the second aspect of the present application, heating of the air is stopped and blowing of air into the refrigerator is also stopped, and the temperature of the air inside the refrigerator is detected and the temperature in the refrigerator is adjusted to a predetermined ice temperature II1.
.. It can be controlled and maintained by the audience, and thawed products can be refrigerated at freezing temperatures.

作用 冷凍品として冷凍魚を例にとり、低温または超低温で凍
結した冷凍魚を解凍する場合、まず凍結温度が低い解凍
初期の段階で第1の湿度として20℃から30℃位の温
度範囲の高湿の空気を解凍1111内に供給し、この空
気を該庫内で解凍ファンによって秒速3m(メートル)
から6mの範囲内に加速して被解凍品に吹き付けると、
冷凍魚の表面温度と芯温は第1mに示す解凍曲線を11
6いて急速に昇温する。 これは、加熱、加湿した空気
中に含まれる水蒸気と微細粒子との温水滴が凍結品に接
触して露化し霧状に氷結する際放出する水蒸気潜熱と温
水及び空気の顕然とを内部に伝熱する結果によるもので
あり、更に冷凍品の内部では伝えられた外部熱を水より
遥かに高い熱伝導率をもつ氷によって芯央部に伝える効
果によるもので、従って表層部と中心部との熱交換が効
率良く行われ、両者の温度差を少なくBつ被解凍品の表
面を氷結したままの状態で解凍を進行する。その結果、
表層部分には組織破壊が起きず、ドリップの流出も見ら
れない。こうして、該加熱、加湿空気を所定の流出で継
続的に庫内に供給すると、被解凍品の品質は損なわれず
短時間で解凍が終了する。
Taking frozen fish as an example of a frozen product, when thawing frozen fish frozen at low or ultra-low temperatures, the first humidity level is high humidity in the temperature range of about 20°C to 30°C at the early stage of thawing when the freezing temperature is low. of air is supplied into the thawing chamber 1111, and this air is blown at a speed of 3 m (meters) per second by a thawing fan inside the chamber.
When the product is accelerated and sprayed within a range of 6 meters from
For the surface temperature and core temperature of frozen fish, follow the thawing curve shown in 1st m.
6 and the temperature rises rapidly. This is because the latent heat of water vapor released when hot water droplets of water vapor and fine particles contained in heated and humidified air come into contact with a frozen product and freeze into a mist, and the actual heat of the hot water and air are released into the interior. This is due to the result of heat transfer, and is also due to the effect that inside the frozen product, the transferred external heat is transferred to the center of the core by ice, which has a much higher thermal conductivity than water. Heat exchange is performed efficiently, the temperature difference between the two is reduced, and thawing proceeds while the surface of the product to be thawed remains frozen. the result,
No tissue destruction occurred in the surface layer, and no drips were observed. In this way, when the heated and humidified air is continuously supplied into the refrigerator at a predetermined flow rate, the quality of the product to be thawed is not impaired and thawing is completed in a short time.

次に被解凍品の凍結温度が一5℃まで胃温すると最大氷
結晶生成温度帯に達するが、この温度帯での解凍は緩慢
に行う必要がある。仮に解凍を短時間で進めると組織内
で融けた水が組織中に吸収されない状態で塊状に成長し
細胞を破壊してドリップの浸出を始める。このドリップ
は一旦流出し始めると止まり難く、魚肉或いは魚卵の品
質を著しく損ねることになる。
Next, when the stomach temperature of the product to be thawed reaches 15° C., the maximum ice crystal formation temperature range is reached, but thawing in this temperature range must be performed slowly. If thawing is continued for a short period of time, the water that has melted within the tissue will not be absorbed into the tissue and will grow into clumps, destroying cells and causing drip leaching. Once this drip starts flowing out, it is difficult to stop, and the quality of fish meat or fish roe is significantly impaired.

本発明による解凍方法では、この最大氷結晶生成温度帯
を緩慢な速度で通過させるため、冷凍品の芯部に温度検
知素子を装着し、該氷結晶生成温度を検知して庫内温度
を第2の温度である3℃から5℃の低温域に制御し、こ
れを維持する。こうすると、解凍中のドリップの流出聞
は従来解凍法に比べて激減する。この方法は、特に凍結
した魚卵例えば数の子の解凍にたいして極めて有効であ
り、解凍によって通常見られる卵核の破壊と細胞液の流
出が生じないため、解凍後の数の予加工に当っての品質
低下と目減りの発生が従来方法に比べて大幅に改善され
る。
In the thawing method according to the present invention, in order to pass through this maximum ice crystal formation temperature range at a slow speed, a temperature detection element is attached to the core of the frozen product, and the temperature inside the refrigerator is adjusted by detecting the ice crystal formation temperature. The temperature is controlled to a low temperature range of 3°C to 5°C, which is the temperature in step 2, and maintained. In this way, the amount of spillage during thawing is drastically reduced compared to the conventional thawing method. This method is particularly effective for thawing frozen fish eggs, such as herring roe, and does not cause destruction of the egg nucleus or outflow of cell fluid, which is normally seen during thawing, so the quality can be improved during pre-processing of the roe after thawing. The occurrence of deterioration and eye loss is greatly improved compared to conventional methods.

また冷凍魚の氷結点は魚種によって多少の差はあるが平
均−2℃から一1℃の温度域にあり、従って魚体温度が
該氷結温度に達した時解凍が終了すればよい。この解凍
線温と0℃との間の温度域はいわゆる氷温域とされ、無
氷結であるが細菌の活動はみられず魚肉の熟成も呼出す
る。従って該解凍線温をもって解凍を終了すれば品質的
には最善の状態が得られる。本発明による解凍方法はか
かる効果に注目し、冷凍魚の中心温度を温度検知素子で
検出して、該温度が所定の解凍終温に達した時庫内空気
への加熱を停止し、解凍を終了づる。
Furthermore, the freezing point of frozen fish varies somewhat depending on the species of fish, but on average it is in the temperature range of -2°C to -11°C, so thawing can be completed when the body temperature of the fish reaches the freezing temperature. The temperature range between this thawing line temperature and 0°C is the so-called freezing temperature range, and although there is no freezing, no bacterial activity is observed and fish meat is ripened. Therefore, if thawing is completed at this thawing line temperature, the best quality can be obtained. The thawing method according to the present invention focuses on this effect, detects the center temperature of frozen fish with a temperature detection element, and when the temperature reaches a predetermined final thawing temperature, stops heating the air in the refrigerator to finish thawing. Zuru.

次に萌述の解凍終了後、工場の作業準備等で引き続き冷
蔵を必要とする場合、庫内温度を3℃から5℃の低温域
に保ら、且つ乾燥を防止するため庫内湿度を90パ一セ
ント前後の相対湿度に維持してNAS△10.000ク
ラス程度の清浄度に保てば外部細菌による新たな汚染が
起きず、同時に庫内の異臭が除かれて食品間の臭気移転
もなく、庫内の衛生状態を最良に保つことが出来る。本
発明による解凍後の冷蔵方法は以上の点に注目し解凍を
終了した後の庫内に低温、多湿且つ洗浄した高清浄度の
空気を循環供給する。これにより、食肉の長期鮮度保持
とドリップの流出による目減りの光生防止に従来みられ
ない効果が得られ、同時に庫内の臭気除去と衛生状態を
著しく改善することが出来る。なお本冷蔵方法において
、庫内への加湿空気の供給を停止して前述した冷蔵品の
氷温域温度に庫内空気を冷却して維持ずれば、雑菌の繁
殖は勿論食品の熟成も抑止され、鮮度を最良の状態に保
つことが出来る。
Next, after thawing the Moejo, if continued refrigeration is required for factory work preparations, etc., the temperature inside the refrigerator should be kept in the low range of 3℃ to 5℃, and the humidity inside the chamber should be kept at 90℃ to prevent drying. If the relative humidity is maintained at around 100% and the cleanliness is maintained at about NAS△10.000 class, new contamination by external bacteria will not occur, and at the same time, strange odors inside the refrigerator will be removed and odor transfer between foods will be prevented. This allows you to maintain the best sanitary conditions inside the refrigerator. The refrigeration method after thawing according to the present invention focuses on the above points, and circulates and supplies low temperature, high humidity, and highly clean air into the refrigerator after thawing is completed. As a result, it is possible to maintain the freshness of meat for a long period of time and to prevent the loss of meat due to the leakage of drips, which has not been seen before, and at the same time, it is possible to remove odors in the refrigerator and to significantly improve the sanitary conditions. In addition, in this refrigeration method, if the supply of humidified air into the refrigerator is stopped and the air inside the refrigerator is cooled and maintained at the freezing temperature range of the refrigerated items mentioned above, not only the growth of bacteria but also the ripening of the food will be inhibited. , it is possible to maintain the freshness at its best.

実施例 以下本発明による一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described below based on the drawings.

第2図は本光明方法を実現するための解凍装置の一実施
例を図示したもので、1は周囲を断熱した解凍・冷蔵庫
で、天井部に冷凍器2と内部に複数の解凍ファン3を設
置しである。解凍・冷蔵庫1に被解凍品である冷凍魚4
が搬入され解凍運転を開始すると、庫内の空気はダクト
5を通じて庫外に設置した空気洗浄1?56にターボ・
ブロアー7によって吸引される。該ターボ・ブロアー7
は所定の速度で高速回転でるが、この回転速■は駆動用
インバーターモーター8によって変速が可能で解凍・冷
蔵庫1に供給する空気昂を調節することが出来る。空気
洗浄塔6は洗浄水の貯蔵タンク9を内蔵しており、給水
ポンプで水を汲み上げて熱交換器10に送水する。汲み
上げられた水は、該熱交換器10において、温水ボイラ
ー11で加熱され温水ポンプ12で給水された所定温度
の渇水と熱交換されて空気洗浄塔6に送られる。該洗浄
塔6のターボ・ブロアー7では庫内から吸気された空気
と熱交換器10から送られた温水が混合され高速で回転
しながら断熱圧縮される。この際ターボ・ブロアー7に
注入された温水は微粒子状に砕かれて空気との接触面積
を最大にされ、空気と接触して空気中に浮遊するゆ芥、
細菌、胞子、臭気等を効率良く吸着し、空気を洗浄する
。同時に温水との接触により該空気は所定の温度に加熱
(或いは加温〉され、加湿される。更にターボ・ブロア
ー7内の水と空気の混合ガスは回転によって遠心分離さ
れ、水は貯水タンク9に排水され、空気は圧縮されてタ
ーボ・ブロアー7に接続した気液分離室13に排気され
る。
Fig. 2 shows an example of a defrosting device for realizing the present Komei method. 1 is a defrosting/refrigerator whose surroundings are insulated, and a refrigerator 2 is mounted on the ceiling and a plurality of defrosting fans 3 are installed inside. It is installed. Thaw/Frozen fish to be thawed in refrigerator 1 4
When the refrigerator is brought in and the thawing operation starts, the air inside the refrigerator is sent to the air cleaner 1-56 installed outside the refrigerator through the duct 5 to the turbo
It is sucked by the blower 7. The turbo blower 7
rotates at a high speed at a predetermined speed, but this rotational speed (2) can be varied by the drive inverter motor 8, and the air flow supplied to the defrosting/refrigerator 1 can be adjusted. The air cleaning tower 6 has a built-in storage tank 9 for cleaning water, and a water supply pump pumps up water and sends the water to the heat exchanger 10. In the heat exchanger 10, the pumped water is heated by a hot water boiler 11 and exchanged with dry water at a predetermined temperature supplied by a hot water pump 12, and then sent to the air cleaning tower 6. In the turbo blower 7 of the cleaning tower 6, air taken from inside the warehouse and hot water sent from the heat exchanger 10 are mixed and adiabatically compressed while rotating at high speed. At this time, the hot water injected into the turbo blower 7 is crushed into fine particles to maximize the contact area with the air, and the particles that come into contact with the air and float in the air,
It efficiently adsorbs bacteria, spores, odors, etc. and cleans the air. At the same time, the air is heated (or warmed) to a predetermined temperature by contact with hot water and humidified.Furthermore, the mixed gas of water and air in the turbo blower 7 is centrifuged by rotation, and the water is transferred to the water storage tank 9. The air is compressed and exhausted to a gas-liquid separation chamber 13 connected to a turbo blower 7.

該気液分離室13に排気された圧縮空気はここで断熱膨
張して冷fJ]され、空気中の水分は露化作用を助長し
て、より大きな粒子に成長し気液分離室13内を回転し
ながら出口に送られるが、その過程で水滴の一部が該気
液分離室13の壁に接触して排出される。こうして脱水
された空気は、再び解凍・冷蔵庫1に循環される。次に
該庫内にあっ−Cは、内部に設置した温度検知索子14
によって解凍中の庫内温度を監視し、庫内温度が所定の
温度より低い場合は温水ポンプ12を作動して加熱し、
高温の場合は作動を停止させて所定の温度水準に維持す
る。また庫内に設置された冷凍魚4の内部に芯温検知素
子15を挿着して冷凍魚4の中心部温度を検知し、該中
心部温度が最大氷結晶生成温度帯に達した時、庫内温度
を所定の低温域(例えば3℃〜5℃)に下げて維持する
。更に、該中心部温度が所定のvB凍終温(−2°C〜
−1℃)に達した時、直らに渇水ポンプ12の作動を停
止して庫内に供給する空気の加熱を停止する。以上の庫
内温度の制御は中央制御ユニットであるコントロール・
パネル・ボックス16に内蔵された解凍運転回路により
行う。コントロール・パネル・ボックス16は、解凍運
転回路と、冷蔵運転回路を有しており、それぞれの作動
目的に応じて冷凍器2と解凍ファン3の作動を切り換え
制御する。
The compressed air exhausted into the gas-liquid separation chamber 13 is adiabatically expanded and cooled fJ], and the moisture in the air promotes the dew action and grows into larger particles that flow inside the gas-liquid separation chamber 13. The water droplets are sent to the outlet while rotating, and in the process, some of the water droplets come into contact with the wall of the gas-liquid separation chamber 13 and are discharged. The air thus dehydrated is thawed and circulated to the refrigerator 1 again. Next, inside the refrigerator, A-C is the temperature detection cord 14 installed inside.
The temperature inside the refrigerator is monitored during thawing, and if the temperature inside the refrigerator is lower than a predetermined temperature, the hot water pump 12 is activated to heat the refrigerator.
If the temperature is high, the operation is stopped and the temperature is maintained at a predetermined level. In addition, a core temperature detection element 15 is inserted into the inside of the frozen fish 4 installed in the refrigerator to detect the temperature at the center of the frozen fish 4, and when the temperature at the center reaches the maximum ice crystal formation temperature range, The temperature inside the refrigerator is lowered and maintained within a predetermined low temperature range (for example, 3°C to 5°C). Furthermore, the core temperature is within a predetermined vB freezing final temperature (-2°C ~
-1°C), the operation of the drought pump 12 is immediately stopped to stop heating the air supplied into the refrigerator. The above-mentioned temperature control inside the refrigerator is controlled by the central control unit.
This is done by a defrosting operation circuit built into the panel box 16. The control panel box 16 has a thawing operation circuit and a refrigeration operation circuit, and switches and controls the operation of the refrigerator 2 and the thawing fan 3 according to the purpose of each operation.

次に、1111述の解凍終了後、冷凍魚を継続して冷蔵
する場合、冷蔵運転回路を始動させ、庫内温度を温度検
知索子14で検知して、該温度が所定の冷蔵温度を超え
る場合は解凍・冷蔵庫1にイ・]属する冷凍器2を作動
させて冷却する。該冷凍器2は前記解凍ファン3と同様
複数装備されており、いずれも冷蔵運転回路に内蔵され
たマイクロコンピュータ−によって所定の冷蔵温度に必
要な冷熱吊を演口し、インバーター制御によって庫内温
度を安定させ、維持する。また、冷凍器2の霜取りは、
複数の冷凍器2を交互に作動させ、庫内の温度、湿度に
変化を与えないようにしである。
Next, when the frozen fish is to be continuously refrigerated after the thawing described in 1111 is completed, the refrigeration operation circuit is started, the temperature inside the refrigerator is detected by the temperature detection cable 14, and the temperature exceeds the predetermined refrigeration temperature. In this case, the freezer 2 belonging to the thawing/refrigerator 1 is operated to cool it down. Like the defrosting fan 3, the refrigerator 2 is equipped with a plurality of units, each of which uses a microcomputer built into the refrigeration operation circuit to control the cooling and heating required for a predetermined refrigeration temperature, and adjusts the internal temperature by inverter control. stabilize and maintain. In addition, the defrosting of freezer 2 is
A plurality of refrigerators 2 are operated alternately so that the temperature and humidity inside the refrigerator do not change.

以上は庫内に加湿した清浄空気を供給して冷)Aする方
法であるが、次に庫内温度を氷点下のいわゆる氷温域に
維持して冷蔵する場合は、庫内に加湿空気を供給すると
氷着するため、ターボ・ブロアー7の運転を停止して庫
内への空気供給を停止する。従って庫内の静止空気の冷
却のみによって氷温冷蔵が行われるが、この場合庫内温
度と湿度は若干変動する。
The above is a method for cooling the refrigerator by supplying humidified clean air into the refrigerator.Next, when maintaining the temperature inside the refrigerator in the so-called freezing temperature range for refrigeration, supply humidified air into the refrigerator. Then, ice builds up, so the operation of the turbo blower 7 is stopped and the air supply to the inside of the refrigerator is stopped. Therefore, ice-temperature refrigeration is performed only by cooling the still air inside the refrigerator, but in this case, the temperature and humidity inside the refrigerator vary slightly.

前記解凍装置は空気洗浄液を加熱し、それによって冷凍
・冷蔵庫1内の空気温度を制御する方式を取るが、他の
方式の解凍装置を採用することも出来る。
The thawing device heats the air cleaning liquid and thereby controls the air temperature inside the freezer/refrigerator 1, but other types of thawing devices may also be used.

第3図乃至第7図は循環空気を加熱(又は冷却)するこ
とによって冷蔵庫内温度を制御するようにした解凍!A
置の他の実施例を示す図である。この実施例に係る解凍
装置は、空気洗浄を必要とする装置A(前記実施例にお
ける冷凍・冷蔵庫1に相当する)に接続された気体洗浄
塔Bと、この気体洗浄塔Bに接続されて被洗浄気体の湿
度調節を行う温度制tIl装置とを有して成る。気体洗
浄塔Bは、装置への排出導管A1に接続され、被洗浄気
体が導入される気液混合部21と、気液混合部21で生
成された気液混合体を回転圧縮する圧縮部22と、圧縮
部22から送られた気液混合体を循環させ気液分離を行
うサイクロン23と、気液分離された気体を再度回転圧
縮する下側圧縮部24と、この下側圧縮部24から送ら
れた気体を循環させると共に、装置への吸入導管A2に
洗浄気体を供給する下側サイクロン25とから成り、二
段構えの気体圧縮、膨張操作をするようになっている。
Figures 3 to 7 show a thawing system that controls the temperature inside the refrigerator by heating (or cooling) circulating air! A
It is a figure which shows another Example of a station. The thawing device according to this embodiment includes a gas cleaning tower B connected to a device A that requires air cleaning (corresponding to the freezer/refrigerator 1 in the above embodiment), and a gas cleaning tower B connected to the gas cleaning tower B to and a temperature controlled tIl device for controlling the humidity of the cleaning gas. The gas cleaning tower B includes a gas-liquid mixing section 21 that is connected to the discharge conduit A1 to the device and into which the gas to be cleaned is introduced, and a compression section 22 that rotationally compresses the gas-liquid mixture generated in the gas-liquid mixing section 21. , a cyclone 23 that circulates the gas-liquid mixture sent from the compression section 22 and performs gas-liquid separation, a lower compression section 24 that rotationally compresses the separated gas again, and a lower compression section 24 that rotates and compresses the separated gas again. It consists of a lower cyclone 25 that circulates the sent gas and supplies cleaning gas to the suction conduit A2 to the device, and performs two-stage gas compression and expansion operations.

気液混合部21は、装置Aの気体排出導管A1に接続さ
れた導入管31を有する中空容器から成り、この中空容
器内は天井面から垂下した外筒壁32と、床面から立上
がった内筒壁33とによって仕切られた迷路状の通路3
4,35..36が形成され、被洗浄空気が、第3図中
矢印で示すように、先ず通路34に流入し、次いで通路
35を経て通路36へと、順次蛇行して流れるようにな
っている。気液混合部21の天月面には各通路34゜3
5.36に対応して液体噴霧器37が取付けられており
、この液体噴霧器37から噴露されだ液体は、通路34
.36においては被洗浄気体に対して平行流となって流
れる一方、通路35においては被洗浄気体に対して対向
流となって流れる。
The gas-liquid mixing section 21 consists of a hollow container having an introduction pipe 31 connected to the gas discharge conduit A1 of the device A, and inside this hollow container there is an outer cylindrical wall 32 hanging down from the ceiling and a wall 32 rising from the floor. A maze-like passage 3 partitioned by an inner cylinder wall 33
4,35. .. 36 is formed, and the air to be cleaned first flows into the passage 34, then passes through the passage 35, and flows into the passage 36 in a meandering manner, as shown by the arrow in FIG. Each passage 34°3 is provided on the top surface of the gas-liquid mixing section 21.
A liquid sprayer 37 is installed corresponding to 5.36, and the liquid sprayed from this liquid sprayer 37 flows through the passage 34.
.. In the passage 36, the flow is parallel to the gas to be cleaned, while in the passage 35, it flows in a counter flow to the gas to be cleaned.

また、気液混合部21の底部には液体排出口38が設け
られ、上記気液混合部21内において一次的に気体洗浄
を行った結果滴下した液体を外部へ排出するようにして
いる。
Further, a liquid discharge port 38 is provided at the bottom of the gas-liquid mixing section 21 to discharge the liquid dropped as a result of the primary gas cleaning inside the gas-liquid mixing section 21 to the outside.

圧縮部22は、上部から下部にかけて次第に拡開する錐
体構造を有し、気液混合部21の通路36の出口部分に
接続された筺体41と、筺体41内部に配置された遠心
ターボ送III機42とから成る。遠心ターボ送風機4
2には高速成は超高速回転する送風機が用いられ、気液
混合体を鐘体41中心部から外方の側壁内面へ向けて跳
ね飛ばす回転翼を有している。また筺体41の底部には
液体排出口43が設けられている。
The compression section 22 has a conical structure that gradually expands from the top to the bottom, and includes a casing 41 connected to the outlet portion of the passage 36 of the gas-liquid mixing section 21, and a centrifugal turbo feed III disposed inside the casing 41. It consists of a machine 42. Centrifugal turbo blower 4
2 uses a blower that rotates at an ultra-high speed and has rotary blades that bounce the gas-liquid mixture from the center of the bell body 41 toward the inner surface of the outer side wall. Further, a liquid discharge port 43 is provided at the bottom of the housing 41.

サイクロン23は、筒状の固定された中空体から成り、
中空体内部には、下方位置に開口53を有する外筒51
と、上方位置に開口54を有する内筒52とを有し、中
空体内筒と外筒51との間には通路55が形成され、外
筒51と内筒52との間には通路55が形成されると共
に、内筒52の内側には通路57が形成されている。4
ノイクロン23の上部は仕切板45によって圧縮部22
の下端と仕切られ、通路55に対応する部分には、仕切
板45を切欠き、折り曲げて形成した複数の開口46が
形成され、この開口46によって圧縮部22とサイクロ
ン23とが連通されている。開口53もまた外筒51の
下方部分を切欠き、且つこの部分を折曲成形することに
よって形成されている。開口46及び開口53を形成す
るに当っては、切欠きの形成方向及び折り曲げ方向を考
慮して圧縮部22からサイクロン23、或は通路55か
ら通路56への気液混合体の流れ方向を適切に定めるこ
とができる。この実施例においては、仕切板45には、
第5図に示すように、上方から見て右回り方向への気流
を伯る開口46が形成されている一方、外筒51には、
同じく上方から見て左回りの方向への気流を作る開口5
3が形成しであるから、通路55を通る気液混合体と通
路56を通る気液混合体とは互いに反対方向に回転する
。また、サイクロン23の底部には、当該サイクロン2
3内で気液分離された液体排出口58が設けられている
The cyclone 23 consists of a cylindrical fixed hollow body,
Inside the hollow body, there is an outer cylinder 51 having an opening 53 at a lower position.
and an inner cylinder 52 having an opening 54 at an upper position, a passage 55 is formed between the hollow inner cylinder and the outer cylinder 51, and a passage 55 is formed between the outer cylinder 51 and the inner cylinder 52. In addition, a passage 57 is formed inside the inner cylinder 52. 4
The upper part of the Noicron 23 is connected to the compression part 22 by the partition plate 45.
A plurality of openings 46 are formed by cutting out and bending the partition plate 45 in a portion that is partitioned from the lower end and corresponds to the passage 55, and the compression section 22 and the cyclone 23 are communicated with each other through the openings 46. . The opening 53 is also formed by cutting out the lower part of the outer cylinder 51 and bending this part. When forming the openings 46 and 53, the flow direction of the gas-liquid mixture from the compression part 22 to the cyclone 23 or from the passage 55 to the passage 56 is determined appropriately by considering the direction in which the notch is formed and the direction in which the notch is bent. can be determined. In this embodiment, the partition plate 45 includes:
As shown in FIG. 5, an opening 46 is formed in the outer cylinder 51 to block the airflow in the clockwise direction when viewed from above.
Similarly, an opening 5 that creates airflow in a counterclockwise direction when viewed from above.
3, the gas-liquid mixture passing through the passage 55 and the gas-liquid mixture passing through the passage 56 rotate in opposite directions. In addition, at the bottom of the cyclone 23, the cyclone 2
A liquid discharge port 58 is provided in which gas and liquid are separated.

サイクロン23の下方には遠心ターボ送1!1161を
組込んだ第2段目の圧縮部、即ち下側圧縮部24と筒体
71を有する下側サイクロン25とが配設されている。
A second stage compression section incorporating the centrifugal turbo feeder 1!1161, that is, a lower cyclone 25 having a lower compression section 24 and a cylindrical body 71 is disposed below the cyclone 23.

これら下側圧縮部24及び下側サイクロン25は、上記
圧縮部22及びサイクロン23とほぼ同じ機能を有し、
二段階にわたる気液分離操作を実現することにより気液
の分離効率を向上せしめている。遠心ターボ送風!11
42及び61は、仕切板45及び筒体71に取付けられ
た軸受28.29によって回転可能に支持されたシャフ
ト27に一体的に取付けられ、当該シャフト27の基端
部に接続された駆動モータ26を作動させることにより
いずれの遠心ターボ送風機42゜61も高速回転するこ
とが出来る。下側サイクロン25は洗浄気体を排出する
排気管72を有し、この排気管72は装置Aの吸入導管
A2に接続されている。また、第3図生得862.73
は下側圧縮部24及び下III liイクロン25のそ
れぞれにおいて、気液分離された液体を排出するための
液体排出口を示す。
These lower compression section 24 and lower cyclone 25 have almost the same functions as the compression section 22 and cyclone 23,
The gas-liquid separation efficiency is improved by realizing a two-stage gas-liquid separation operation. Centrifugal turbo air blower! 11
42 and 61 are integrally attached to a shaft 27 rotatably supported by bearings 28 and 29 attached to the partition plate 45 and the cylindrical body 71, and a drive motor 26 connected to the base end of the shaft 27. By operating both centrifugal turbo blowers 42°61, it is possible to rotate at high speed. The lower cyclone 25 has an exhaust pipe 72 for discharging the cleaning gas, which exhaust pipe 72 is connected to the suction conduit A2 of the device A. Also, Figure 3 Innate 862.73
indicates a liquid discharge port for discharging the liquid separated into gas and liquid in each of the lower compression part 24 and the lower III li-icron 25.

この気体洗浄及び温度制御装置における気体洗浄用液体
の供給、排出は液体循環装置によって行われる。この液
体循環装置は、内部に気液混合用の液体(通常は水)が
入れられるタンク77と、先端が各液体噴′a器に接続
される一方阜端がタンク77の水中に差込まれた供給パ
イプ78と、タンク77から液体を汲み上げるために供
給パイプ78に接続され、タンク77内に気液分離され
た液体を戻す液回収用パイプ76とを右して成る。
The supply and discharge of gas cleaning liquid in this gas cleaning and temperature control device is performed by a liquid circulation device. This liquid circulation device consists of a tank 77 in which a liquid for gas-liquid mixing (usually water) is placed, and a top end connected to each liquid sprayer and a bottom end inserted into the water of the tank 77. A liquid recovery pipe 76 is connected to the supply pipe 78 for pumping up the liquid from the tank 77 and returns the liquid separated into the tank 77.

タンク77は、内部の液体を排出するため電磁弁83に
より開m操作されるドレインパイプ79と、タンク77
に新しい液体を供給するため、゛電磁弁82によって開
開操作される液流入パイプ80とを備え、電磁弁82は
液面上に位買合せされたフロート式の水位計81によっ
て作動、非作動の制御がされる様になっている。
The tank 77 has a drain pipe 79 that is opened by a solenoid valve 83 to drain the liquid inside the tank 77 .
In order to supply new liquid to the tank, a liquid inlet pipe 80 is provided which is opened and opened by a solenoid valve 82, and the solenoid valve 82 is activated and deactivated by a float-type water level gauge 81 set above the liquid level. It is designed to be controlled.

また、この装置における温度調節は、気体洗浄塔Bに接
続された温度制御装置90によって行われる。この温度
制御装置90は、低温低圧の気体冷媒を圧縮するコンプ
レッサ91と、コンプレッサ91に接続されこのコンプ
レッサ91への冷媒の流入路91a及び流出路91bを
切換える四方弁92と、コンプレッサ91により生成さ
れた高温高圧の気体冷媒を放熱によって凝縮点まで冷却
し高圧の液体に還元するコンデンサ93と、コンデンサ
に1妄続され、又液体冷媒に含まれる水分やゴミを取除
き、冷媒が円滑に供給できる様に止めておくリキッドタ
ンク94と、リキッドタンク94に接続され、液体冷媒
を急激に膨張させて低温、低圧の霧状の液体にする膨張
弁95とから成る。膨張弁95は導管96に接続される
一方、コンプレッサ91は導管97に接続される。
Further, temperature control in this device is performed by a temperature control device 90 connected to the gas cleaning tower B. This temperature control device 90 includes a compressor 91 that compresses a low-temperature, low-pressure gas refrigerant, a four-way valve 92 that is connected to the compressor 91 and switches an inflow path 91a and an outflow path 91b of the refrigerant to the compressor 91, and a refrigerant generated by the compressor 91. The refrigerant is connected to the condenser 93, which cools the high-temperature, high-pressure gas refrigerant to the condensation point by heat radiation and reduces it to a high-pressure liquid. It consists of a liquid tank 94 that is kept in place, and an expansion valve 95 that is connected to the liquid tank 94 and rapidly expands the liquid refrigerant to form a low-temperature, low-pressure mist liquid. Expansion valve 95 is connected to conduit 96, while compressor 91 is connected to conduit 97.

また、気体洗浄塔にあっては、気液混合部21天井面か
ら垂下した外筒壁32、及びサイクロン23内の外筒5
1は、いずれも壁面が二重構造に構成されてそれぞれ第
1及び第2の中空の循環室39.59が形成され、内部
には冷媒が循環するようになっている。そして、導管9
6は、第1の循環室39に接続されると共に、途中で分
岐管96aが伸びて第2の循EM室59に接続される。
In addition, in the gas cleaning tower, an outer cylinder wall 32 hanging from the ceiling surface of the gas-liquid mixing section 21 and an outer cylinder 5 inside the cyclone 23
1 has a double wall structure, forming first and second hollow circulation chambers 39 and 59, respectively, in which a refrigerant circulates. And conduit 9
6 is connected to the first circulation chamber 39, and a branch pipe 96a extends along the way to be connected to the second circulation EM chamber 59.

第1の循IM室39への導管96.97の接続位置及び
第2の循環室5つへの導管96a、97aの接続位置は
、それぞれ一方が各循環室39.59の上端近くに接続
、他方が下端近くに接続されているとか、或は循環室3
9.59の直径方向に相対向した位置に接続されている
といったように、冷媒の流れに対して離れた(Qffi
関係に設定されてる。
The connection position of the conduit 96.97 to the first circulation IM chamber 39 and the connection position of the conduit 96a, 97a to the five second circulation chambers are such that one is connected near the upper end of each circulation chamber 39.59, The other is connected near the bottom end, or the circulation chamber 3
Qffi
It is set in a relationship.

導 管96の分岐部より先方位置と分岐管96aにはそ
れぞれ電磁弁98.99が取付けられ、これらの電磁弁
98.99の作動によって第1及び第2の循環室39.
59を通過する冷媒の流量制御を行うようになっている
。なお上記電磁弁98゜99は導管97の分岐部先方位
置と分岐管97aとに取付けられていてもよい。
Electromagnetic valves 98 and 99 are respectively attached to the branch pipe 96a and a position ahead of the branch part of the conduit 96, and the first and second circulation chambers 39.
The flow rate of the refrigerant passing through the refrigerant 59 is controlled. Note that the electromagnetic valves 98 and 99 may be attached to the forward position of the branch part of the conduit 97 and the branch pipe 97a.

さらに、モータ26.ポンプ84.電磁弁83゜98.
99及びコンプレッサ91は、これらの各部材に接続さ
れた中央制御ユニット100によって各部の作動が制御
される。中央制御ユニット100は先に説明したコント
ロール・パネル・ボックス16とほぼ同じ構成を有し、
前記第1の解凍温度を設定するための温度設定機構およ
び第2の解凍温度を設定するための温度設定機構を持ち
、また装置Aに配置されて温度や湿度、更には冷凍魚4
の芯温を測定する温度検知器101に接続され、この温
度検知器101からの信号に基づきモータ26やポンプ
64、或はコンプレッサ91の回転速度を調整したり、
電磁弁83.98.99の開閉制御を行う。
Furthermore, the motor 26. Pump 84. Solenoid valve 83°98.
The operation of each part of the compressor 99 and the compressor 91 is controlled by a central control unit 100 connected to each of these members. The central control unit 100 has substantially the same configuration as the control panel box 16 described above,
It has a temperature setting mechanism for setting the first thawing temperature and a temperature setting mechanism for setting the second thawing temperature.
is connected to a temperature sensor 101 that measures the core temperature of
Controls opening and closing of electromagnetic valves 83, 98, and 99.

かかる構成を有する気体洗浄及び制御装置において、装
置Aから導入管31を通って気体洗浄塔Bの気液混合部
21へ流入した被洗浄気体は、通路34,35.36を
流れる間に噴霧器37から噴出された噴霧液体によって
、通路34.36では平行流洗浄、通路35では対向流
洗浄を交互に繰返される。この気液混合部21内の噴霧
液体は、多種類の粒子寸法を持った霧で、大粒のものは
気体と接融した後、気液混合部21下部に設けられた液
体排出口38より気体洗浄当日外に排出される。また、
液体微小粒子は、気体と接触しながらこの気体流に同伴
して圧縮部22の遠心ターボ送風橢42内へ吸引される
In the gas cleaning and control device having such a configuration, the gas to be cleaned that flows from the device A through the introduction pipe 31 into the gas-liquid mixing section 21 of the gas cleaning tower B passes through the atomizer 37 while flowing through the passages 34, 35, and 36. Parallel flow cleaning in the passages 34 and 36 and counterflow cleaning in the passage 35 are alternately repeated by the sprayed liquid ejected from the passages 34 and 36. The sprayed liquid in the gas-liquid mixing section 21 is a mist with various particle sizes, and after large particles are fused with the gas, the gas is discharged from the liquid outlet 38 provided at the bottom of the gas-liquid mixing section 21. It will be discharged outside on the day of cleaning. Also,
The liquid microparticles are drawn into the centrifugal turbo blower 42 of the compression section 22 along with the gas flow while coming into contact with the gas.

遠心ターボ送風機42内では、気液混合体は、図中矢印
で示すように中心部から外周部へと流れ、その液体粒子
は、高速回転している回転翼との衝突により破砕されて
微粒子となり、同時に圧縮された気体と混合、接触して
、当該気体中に含まれる物質、生物及びガス体を再度吸
着、除去する。
Inside the centrifugal turbo blower 42, the gas-liquid mixture flows from the center to the outer periphery as shown by the arrows in the figure, and the liquid particles are crushed into fine particles by collision with the rotor blades rotating at high speed. At the same time, it mixes with and contacts the compressed gas, and adsorbs and removes substances, organisms, and gaseous bodies contained in the gas again.

気液混合体中の一部液微粒子は高速回転中の回転Wによ
り遠心方向に加速され、筺体41の内壁に衝突して気体
から分離される。油微粒子は、衝突の勢いと筺体41の
側壁が錐体構造をなしていることと相俟って、次第に筺
体41内壁に沿って下方へ流れ、大粒の液粒子となって
液体排出口43から装置外に排出される。
Some of the liquid particles in the gas-liquid mixture are accelerated in the centrifugal direction by the rotation W during high-speed rotation, collide with the inner wall of the housing 41, and are separated from the gas. Due to the force of the collision and the fact that the side wall of the casing 41 has a conical structure, the oil particles gradually flow downward along the inner wall of the casing 41 and become large liquid particles that are discharged from the liquid discharge port 43. It is discharged outside the device.

この気液混合体は、仕切板45の開口46を通ってサイ
クロン23の通路55内に噴出され、この通路55内を
旋回しながら下降する。圧縮部22内で圧縮された気体
は、上記サイクロン23内に送り込まれることによって
断熱膨張、これによって冷却作用を受ける。このため、
飽和状態となっていた気液混合体内の微粒子が核となっ
て液体成分を凝縮させ、液粒子に成長させる。気液混合
体は、サイクロン23内において、通路55内を上方か
ら見て右゛まわりに旋回下降する一方、開口53によっ
て回転方向を変えられて通路55内を左回りに旋回上背
し、更に開口54から通路57に入ってこの通路57に
沿って下降する。そして、この気液混合体の循環中に、
上記凝縮、生長せしめられた油微粒子は気体中の微粒子
を補集し気体から分離される。この気液分離された液体
はサイクロン23底部に集まって液体排出口58から装
置外に排出される。
This gas-liquid mixture is ejected into the passage 55 of the cyclone 23 through the opening 46 of the partition plate 45, and descends while swirling inside the passage 55. The gas compressed in the compression section 22 is fed into the cyclone 23, where it undergoes adiabatic expansion and is thereby subjected to a cooling effect. For this reason,
The fine particles in the saturated gas-liquid mixture serve as nuclei, causing the liquid components to condense and grow into liquid particles. In the cyclone 23, the gas-liquid mixture rotates clockwise and descends when looking inside the passage 55 from above, while the rotation direction is changed by the opening 53, rotates counterclockwise inside the passage 55, and then rotates upwards. It enters a passage 57 through the opening 54 and descends along this passage 57. During the circulation of this gas-liquid mixture,
The condensed and grown oil particles collect particles in the gas and are separated from the gas. This gas-liquid separated liquid gathers at the bottom of the cyclone 23 and is discharged from the liquid outlet 58 to the outside of the apparatus.

気液分離された気体は、通路57を通って下降し、サイ
クロン23下部に接続されている下側圧縮部24に吸込
まれ、遠心ターボ送1!1ti61の作動によって再度
圧縮され且つ気体に同伴している残留液粒子を分離補集
し、液体は上記と同様液体排出口62からVAZi外へ
排出される。他方、圧縮された気体は、旋回しながら下
側サイクロン25に入り、再度同伴している残留液粒子
を分離補集したF2清浄気体となり当該下側υイクロン
25に接続された気体吸入管A2を通して装置A内に送
り込まれる。これにより装置A内の空気は次第に清浄さ
れ、雰囲気調節が行なわれる。
The gas separated into gas and liquid descends through the passage 57, is sucked into the lower compression part 24 connected to the lower part of the cyclone 23, is compressed again by the operation of the centrifugal turbo feeder 1!1ti61, and is entrained in the gas. The remaining liquid particles are separated and collected, and the liquid is discharged to the outside of the VAZi from the liquid discharge port 62 in the same manner as described above. On the other hand, the compressed gas enters the lower cyclone 25 while swirling, becomes F2 clean gas that separates and collects the remaining liquid particles, and passes through the gas suction pipe A2 connected to the lower υ cyclone 25. It is sent into device A. As a result, the air inside the apparatus A is gradually purified and the atmosphere is adjusted.

この空気洗浄操作中において、中央制御ユニット100
からの指令によって温度調節が行なわれるとぎは、温度
制御装置90が作動する。第3図の例では、四方弁92
の操作により、コンプレッサ91の流出路91bに]ン
デンザ93が接続されているから、この温度制御I装置
1ff90では冷却サイクルが形成されている。したが
って、コンプレッサ91で圧縮された冷媒はコンデンサ
93で放熱され、膨張弁95で断熱冷却されて第1及び
第2の循環室39.59で吸熱を行う。これにより空気
洗浄塔B内を流れる被洗浄気体は設定温度になるまで冷
却せしめられる。そしてこの温度調節操作は中央制御ユ
ニット100にJ3ける制御操作によって、適宜コント
ロールされ、装置A内を常時最適な状態に維持する。
During this air cleaning operation, the central control unit 100
When the temperature is adjusted according to a command from the controller, the temperature control device 90 is activated. In the example of FIG. 3, the four-way valve 92
As a result of this operation, the compressor 93 is connected to the outlet path 91b of the compressor 91, so a cooling cycle is formed in this temperature control device 1ff90. Therefore, the refrigerant compressed by the compressor 91 radiates heat in the condenser 93, is adiabatically cooled in the expansion valve 95, and absorbs heat in the first and second circulation chambers 39,59. As a result, the gas to be cleaned flowing in the air cleaning tower B is cooled down to the set temperature. This temperature adjustment operation is appropriately controlled by the control operation at J3 in the central control unit 100, and the inside of the apparatus A is always maintained in an optimal state.

なお、四方弁92を第3図に示す状態から反時計方向へ
90度回転さぼると、第7図に示すようにコンプレッサ
91の流入路にコンデンサ93が接続されるようになり
、気体洗浄塔Bにとっては加熱サイクルが形成される。
If the four-way valve 92 is rotated 90 degrees counterclockwise from the state shown in FIG. 3, the condenser 93 will be connected to the inflow path of the compressor 91 as shown in FIG. A heating cycle is formed.

これにより気体洗浄塔B内を流れる被洗浄気体は、設定
温度になるまで中央制御ユニット100の制御下で暖め
られ、装ff1A内を冷凍品の解凍に最適な温度になる
ようにする。
As a result, the gas to be cleaned flowing in the gas cleaning tower B is warmed under the control of the central control unit 100 until it reaches the set temperature, and the temperature in the equipment ff1A is made optimal for thawing frozen products.

次に前記第1及び第2の実施例に係る解凍装置を用いた
解凍作業の一実行例について説明する。
Next, an example of a defrosting operation using the defrosting apparatus according to the first and second embodiments will be described.

第1図は既に前述の説明でも述べたように、本発明によ
り実施した解凍・冷蔵の経過を図示したものであるが、
まず解凍・冷蔵庫1.Aにカナダ産冷凍にしん10,0
00キログラムを搬入し、解凍を開始した。解凍開始時
の凍結温度は表面温度、芯温とも平均して一20℃であ
った。解凍運転開始と同時に温水ボイラーの温水温度を
60℃に設定した。熱交換器を経由して空気清浄浴に供
給される洗浄水温度を40℃、洗浄水と熱交換し庫内に
供給される空気の温度を20℃、相対湿度は95パーセ
ントに設定した。解凍運転開始と共に庫内の空気は一2
0℃の冷凍魚4と熱交換し温度が急速に低下したが、時
間当り60回の換気回数で新鮮空気を供給することによ
ってすぐに回復した。一方、冷凍魚4の凍結温度は第1
図に示す通り急速に上背した。この際庫内の空気をまん
べん無く冷凍魚4に接触させ解凍を効率良く行うために
、庫内の解凍ファンを作動して風速を秒速3メートル以
上に加速した。解凍開始から4時間後、冷凍魚4の芯温
は一5℃まで上背し最大氷結晶生成温度帯に到達したの
で 庫内温度を自動的に」−5℃に設定し制御した。解
凍開始から12時間後冷凍魚4の芯温は−1,5℃を示
し、解凍終温に達したので、芯温センサー15の指示に
より供給空気の加熱を自動的に停止した。
As already mentioned in the above explanation, FIG. 1 illustrates the progress of thawing and refrigeration carried out according to the present invention.
First, defrost/refrigerate 1. A: Frozen herring from Canada 10.0
00 kg was brought in and thawing began. The freezing temperature at the start of thawing was -20°C on average for both surface temperature and core temperature. At the same time as the thawing operation started, the hot water temperature of the hot water boiler was set to 60°C. The temperature of the washing water supplied to the air cleaning bath via the heat exchanger was set to 40°C, the temperature of the air exchanged with the washing water and supplied into the warehouse was set to 20°C, and the relative humidity was set to 95%. When the thawing operation starts, the air inside the refrigerator drops to 12
Although the temperature rapidly decreased due to heat exchange with the frozen fish 4 at 0°C, it quickly recovered by supplying fresh air at a ventilation rate of 60 times per hour. On the other hand, the freezing temperature of frozen fish 4 is the first
As shown in the figure, the patient quickly turned upside down. At this time, in order to bring the air inside the warehouse into even contact with the frozen fish 4 and thaw it efficiently, the thawing fan inside the warehouse was operated to accelerate the wind speed to 3 meters per second or more. Four hours after the start of thawing, the core temperature of frozen fish 4 rose to -5°C and reached the maximum ice crystal formation temperature range, so the internal temperature was automatically set and controlled at -5°C. Twelve hours after the start of thawing, the core temperature of the frozen fish 4 was -1.5° C., which reached the final thawing temperature, so heating of the supplied air was automatically stopped in response to an instruction from the core temperature sensor 15.

この冷凍魚4は解凍完了後引き続き冷蔵する必要があっ
たので、前述の解凍運転終了後直ちに冷蔵・運転回路に
接続し、庫内冷′ia温度を+3℃に設定し庫内湿度を
95パーセントRHに維持した。
Since this frozen fish 4 needed to be kept refrigerated after it was thawed, it was connected to the refrigeration/driving circuit immediately after the thawing operation described above was completed, and the temperature inside the refrigerator was set to +3℃, and the humidity inside the refrigerator was 95%. Maintained at RH.

以上の解凍冷蔵運転の結果、解凍開始から15時間後の
翌朝8時に冷凍魚4を取り出したところ、9卵にしんの
鮮度は凍結前の状態とほとんど変わらず、表皮の飴色特
に、にしん特有のいわゆる根毛の退色がみられず、血液
の鮮紅色も良好で解凍によるドリップはほとんど発生し
ていなかった。
As a result of the above thawing and refrigeration operation, when we took out frozen fish 4 at 8am the next morning, 15 hours after the start of thawing, we found that the freshness of the herring with 9 eggs was almost the same as before freezing. There was no discoloration of the so-called root hairs, the bright red color of the blood was good, and there was almost no dripping due to thawing.

また、庫内及び冷凍魚4に腐敗を感じさせる異臭が全く
発生していなかった。
In addition, there was no abnormal odor that gave the impression of putrefaction in the refrigerator or in the frozen fish 4.

次に冷凍9卵にしんの解凍に最も重要な数の子の品質保
存についてみると、解凍後も原罪の卵核が鮮魚と同様の
状態に保存されており、従来の解凍方法では解決出来な
かった原罪の血管からの血液の汚染がみられなかった。
Next, when we look at the quality preservation of herring roe, which is the most important factor in thawing frozen 9 eggs, we find that even after thawing, the egg nucleus of the original sin is preserved in the same state as fresh fish, and the original sin that could not be solved by conventional thawing methods is preserved. No blood contamination from blood vessels was observed.

この結果、通常加工の段階で必要な商法ぎの作業が大幅
に省略され、その後の冷蔵工程が終了するまでN度低下
が生じなかったため、製品としての数の子の品質と歩留
まりが従来の解凍法より著しく改善していることが判明
した。
As a result, the commercial operations required at the normal processing stage are greatly omitted, and the N degree does not decrease until the end of the subsequent refrigeration process, resulting in significantly improved quality and yield of herring roe as a product compared to the conventional thawing method. It turned out that it was improving.

以上は冷凍9卵にしんの解凍実施例であるが、その他冷
凍jli段、鱒の解凍や冷凍さば、さんま、いか、かに
、たら等各種の冷凍魚についても同様の効果が検証され
、それぞれ鮮度、品質の保持と歩留まりの改善に極めて
有効であることが明らかとなった。
The above is an example of thawing frozen 9 eggs and herring, but similar effects have been verified for other frozen fish such as thawing trout, frozen mackerel, saury, squid, crab, and cod. It has become clear that it is extremely effective in maintaining freshness and quality and improving yield.

発明の効果 以上の如く、本発明は凍結した魚体、魚卵に対し、解凍
中の庫内温度を検知して解凍庫内に供給する洗浄、加湿
した空気の温度を制御し、庫内の被解凍品の芯温を監視
して、該芯温か緩慢解凍を必要とする最大氷結晶生成温
度帯の湿度に到達づる時点を検知し、庫内温度を所定の
低温に制御、維持すると共に該芯温か所定の解凍温度に
達した時点をもって自動的に解凍を終了させ、更に該解
凍に継続して被解凍品を低温、高湿かつ清浄な雰囲気中
で冷蔵するから、冷凍魚、冷凍魚卵あるいは凍結した畜
肉の解凍・冷蔵に極めて効果を発揮する。
Effects of the Invention As described above, the present invention detects the internal temperature of frozen fish bodies and fish roe during thawing, controls the temperature of the cleaning and humidified air supplied to the thawing chamber, and reduces the temperature of the air inside the thawing chamber. The core temperature of thawed products is monitored, and the point at which the core temperature reaches the humidity in the maximum ice crystal formation temperature range that requires slow thawing is detected, and the internal temperature is controlled and maintained at a predetermined low temperature. Thawing automatically ends when the warm temperature reaches a predetermined thawing temperature, and following thawing, the thawed product is refrigerated in a low temperature, high humidity, and clean atmosphere. Extremely effective for thawing and refrigeration of frozen meat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による解凍、冷蔵方法を実施した場合の
解凍・冷蔵庫内の温度と湿度、及び被解凍品の表面温度
と芯温が時間的に変化する様子を示した図、第2図は本
発明に使用する解凍装置の模式断面図、第3図は本発明
の第2の実施例に係る解凍装置の縦断面図、第4図は上
記解凍装置に組込まれるサイクロンの構造を示す正面図
、第5図はサイクロンの上面を覆う仕切板を示す第4図
中v−■線方向に見た図、第6図はサイクロン下方間口
部分を示す第4図中Vl−Vl線における断面図、第7
図は上記第2の実施例における温度制御装置の他の作動
状態を示す図である。 1・・・解凍・冷蔵庫、2・・・冷凍器、3・・・解凍
ファン、4・・・冷凍魚(被解凍品)、5・・・空気ダ
クト、6・・・空気洗浄塔、7・・・ターボ・ブロアー
、8・・・インバーターモーター、9・・・洗浄水タン
ク、10・・・熱交換器、11・・・温水ボイラー、1
2・・・温水ポンプ、13・・・気液分+m室、14・
・・温度検知素子、15・・・芯温センサー、16・・
・コントロール・パネル・ボックス(中央制御コニット
)、  21・・・気液混合部、22・・・圧縮部、2
3・・・サイクロン、24・・・下側圧縮部、25・・
・下側サイクロン、26・・・駆動モータ、37・・・
噴霧器、41・・・筐体、42.61・・・遠心ターボ
送風機、45・・・仕切板、46・・・開口、53・・
・開口、90・・・温度制御装置、100・・・中央制
御ユニット。 第11図 ソID 手続補正;q 昭和61年7月18日
Figure 1 is a diagram showing how the temperature and humidity inside the thawing/refrigerator and the surface temperature and core temperature of the thawed product change over time when the thawing and refrigeration method according to the present invention is implemented, and Figure 2 is a schematic sectional view of a thawing device used in the present invention, FIG. 3 is a longitudinal sectional view of a thawing device according to a second embodiment of the present invention, and FIG. 4 is a front view showing the structure of a cyclone incorporated in the thawing device. Figure 5 is a view taken along the line v-■ in Figure 4 showing the partition plate covering the top surface of the cyclone, and Figure 6 is a sectional view taken along the line Vl-Vl in Figure 4 showing the lower frontage of the cyclone. , 7th
The figure is a diagram showing another operating state of the temperature control device in the second embodiment. 1... Thawing/refrigerator, 2... Freezer, 3... Thawing fan, 4... Frozen fish (product to be thawed), 5... Air duct, 6... Air cleaning tower, 7 ...Turbo blower, 8...Inverter motor, 9...Washing water tank, 10...Heat exchanger, 11...Hot water boiler, 1
2... Hot water pump, 13... Gas-liquid + m chamber, 14...
... Temperature detection element, 15 ... Core temperature sensor, 16 ...
・Control panel box (central control unit), 21... Gas-liquid mixing section, 22... Compression section, 2
3...Cyclone, 24...Lower compression section, 25...
・Lower cyclone, 26... Drive motor, 37...
Sprayer, 41... Housing, 42.61... Centrifugal turbo blower, 45... Partition plate, 46... Opening, 53...
- Opening, 90... Temperature control device, 100... Central control unit. Figure 11 SOID procedural amendment; q July 18, 1985

Claims (1)

【特許請求の範囲】 1)低温または超低温で冷凍した品物に対し加温、加湿
した空気を吹き付けて解凍する方法において、解凍・冷
蔵庫内の空気温度を第1の温度に制御、維持して被解凍
品の表面を氷結状態のまま内部に伝熱し、被解凍品の芯
温を検知して該芯温が被解凍品組織の最大結晶生成温度
帯に達した時、該庫内温度を前記第1の温度よりも低い
第2の温度に再制御、維持して解凍を緩慢に行い、更に
該芯温が所定の解凍終温に達した時解凍を終了すること
を特徴とする冷凍品の解凍方法。 2)低温または超低温で冷凍した品物に対し加温、加湿
した空気を吹き付けて解凍する方法において、冷凍・冷
蔵庫内の空気温度を第1の温度に制御、維持して被解凍
品の表面を氷結状態のまま内部に伝熱し、被解凍品の芯
温を検知して該芯温が被解凍品組織の最大結晶生成帯に
達した時、該庫内温度を前記第1の温度よりも低い第2
の温度に角制御、維持して解凍を緩慢に行い、更に該芯
温が所定の解凍終温に達した時解凍を終了し、更に解凍
終了後、該庫内に吹き入れる空気の加熱を停止し、庫内
の温度を検知して所定の冷蔵温度に制御し、洗浄した低
温、高湿度の空気によって前記解凍品の冷蔵を行うこと
を特徴とする冷凍品の解凍及び冷蔵方法。 3)空気の加熱を停止すると共に、庫内への空気吹き入
れを停止し、この冷蔵庫内の空気温度を検知して該庫内
温度を所定の氷温域温度に制御、維持し、解凍品を氷温
域で冷蔵することを特徴とする特許請求の範囲第2項記
載の冷凍品の解凍及び冷蔵方法
[Scope of Claims] 1) A method of thawing an item frozen at a low temperature or an ultra-low temperature by blowing heated and humidified air thereon, the air temperature in the thawing/refrigerator is controlled and maintained at a first temperature. Heat is transferred to the interior of the thawed product while the surface remains frozen, and the core temperature of the thawed product is detected. When the core temperature reaches the maximum crystal formation temperature range of the tissue of the thawed product, the temperature inside the refrigerator is adjusted to the above-mentioned temperature range. Thawing of a frozen product characterized by slowly controlling and maintaining a second temperature lower than the first temperature, and further terminating the thawing when the core temperature reaches a predetermined final thawing temperature. Method. 2) In a method of thawing items frozen at low or ultra-low temperatures by blowing heated and humidified air, the air temperature inside the freezer/refrigerator is controlled and maintained at a first temperature to freeze the surface of the item to be thawed. When the core temperature of the product to be thawed is detected and the core temperature reaches the maximum crystal formation zone of the structure of the product to be thawed, the internal temperature is lowered to the first temperature lower than the first temperature. 2
Defrosting is performed slowly by controlling and maintaining the temperature at the specified temperature, and when the core temperature reaches the predetermined final defrosting temperature, defrosting is completed, and after the completion of defrosting, heating of the air blown into the refrigerator is stopped. A method for thawing and refrigerating frozen products, characterized in that the temperature inside the refrigerator is detected, the temperature is controlled to a predetermined refrigeration temperature, and the thawed products are refrigerated using cleaned, low-temperature, high-humidity air. 3) Stop heating the air, stop blowing air into the refrigerator, detect the air temperature inside the refrigerator, control and maintain the temperature inside the refrigerator at a predetermined freezing temperature range, and thaw the product. The method for thawing and refrigeration of frozen products according to claim 2, characterized in that the frozen products are refrigerated in a freezing temperature range.
JP61142721A 1986-06-20 1986-06-20 Method for thawing and refrigerating frozen food Pending JPS6312271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142721A JPS6312271A (en) 1986-06-20 1986-06-20 Method for thawing and refrigerating frozen food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142721A JPS6312271A (en) 1986-06-20 1986-06-20 Method for thawing and refrigerating frozen food

Publications (1)

Publication Number Publication Date
JPS6312271A true JPS6312271A (en) 1988-01-19

Family

ID=15322031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142721A Pending JPS6312271A (en) 1986-06-20 1986-06-20 Method for thawing and refrigerating frozen food

Country Status (1)

Country Link
JP (1) JPS6312271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523099A (en) * 1991-07-23 1993-02-02 Maintsu:Kk Method for defrosting food of bread cake or the like

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082244A (en) * 1972-12-26 1975-07-03
JPS5212939A (en) * 1975-07-21 1977-01-31 Cons Foods Corp Reconstituting method of freezeedried food by thawing
JPS5615679A (en) * 1979-07-12 1981-02-14 Matsushita Electric Ind Co Ltd Heating cooker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082244A (en) * 1972-12-26 1975-07-03
JPS5212939A (en) * 1975-07-21 1977-01-31 Cons Foods Corp Reconstituting method of freezeedried food by thawing
JPS5615679A (en) * 1979-07-12 1981-02-14 Matsushita Electric Ind Co Ltd Heating cooker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523099A (en) * 1991-07-23 1993-02-02 Maintsu:Kk Method for defrosting food of bread cake or the like

Similar Documents

Publication Publication Date Title
KR101239886B1 (en) Washing system of strawberry for refrigeration
CN104990351A (en) Steam sterilization refrigerator and control method thereof
CN107543351A (en) Refrigerator and its control method
CN208609803U (en) Low temperature and high relative humidity steam thawing equipment
CN107606843A (en) A kind of Novel frost-free refrigerator-freezer refrigerating plant with solution dehumidification
CN206531346U (en) Fully automatic network band declines jelly machine
KR100443317B1 (en) Refrigeration showcase
JPH0271077A (en) Refrigerator for container
CN109924249A (en) A kind of bored thawing apparatus of meat
JPS6312271A (en) Method for thawing and refrigerating frozen food
KR200395163Y1 (en) Apparatus for removing water drop formed on evaporator of showcase
CN106858271A (en) A kind of pump type heat low temperature and high relative humidity air thawing device
JP3969610B2 (en) Ozone ice production equipment
KR100889292B1 (en) A device for refrigerating slices of raw fish
KR200177364Y1 (en) The precooler
JP2655696B2 (en) Container refrigeration equipment
CN107883497A (en) Cold-accumulating air conditioner and its ice storage device processed
JP3606632B2 (en) Controlling fan in refrigerator such as refrigerator
USRE19973E (en) Refrigerating apparatus and process
WO2023032586A1 (en) Food storage container
JPH11164653A (en) Hybrid rapid freezing process and apparatus for soft food such as ice cream
JPS6147510B2 (en)
JPS5828892B2 (en) Humid cold air generator
RU2218527C1 (en) Device used in farms for packaged product cooling by natural cold
JPH06265254A (en) High freshness cold storage system