JPS63121732A - Cathode luminescence measuring instrument - Google Patents

Cathode luminescence measuring instrument

Info

Publication number
JPS63121732A
JPS63121732A JP26795986A JP26795986A JPS63121732A JP S63121732 A JPS63121732 A JP S63121732A JP 26795986 A JP26795986 A JP 26795986A JP 26795986 A JP26795986 A JP 26795986A JP S63121732 A JPS63121732 A JP S63121732A
Authority
JP
Japan
Prior art keywords
luminescence
sample
electron
spectra
cathodoluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26795986A
Other languages
Japanese (ja)
Inventor
Kosuke Ikeda
池田 幸介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26795986A priority Critical patent/JPS63121732A/en
Publication of JPS63121732A publication Critical patent/JPS63121732A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To satisfactorily measure the change with lapse of time in the luminescence spectra of a sample which is deteriorated by electron ray projection by detecting the spectrally split luminescence by photodiode arrays and subjecting the same to computer processing, thereby measuring spectral elements at a high speed. CONSTITUTION:The sample 6 radiates the luminescence of the intensity corresponding to impurities and lattice defects according to the projection of the electron rays by an electron gun 3 in a high vacuum vessel. The luminescence thereof is outputted through a luminescence condenser system 7 and an optical window 8 and is spectrally split to spectra by a spectroscope 9. The spectrally split luminescences are detected by the plural photodiode arrays 10, 11 and are supplied through an A/D converter 13 to a computer 14. Two kinds of the radiated luminescences changing according to the crystal state changed by the electron ray projection are measured at a high speed via two units of detectors 10, 11 and the results of the successive measurements are stored in the memory built in the computer 14. The change with lapse of time of the luminescence spectra of the sample deteriorated by the electron ray radiation is thereby satisfactory measured.

Description

【発明の詳細な説明】 (1)発明の属する分野の説明 本発明は半導体結晶に電子線を照射し、その照射によっ
て生ずる光(ルミネッセンス)のスペクトルおよびその
強度を測定し、そのスペクトルの成因である不純物、格
子欠陥およびその複合体を同定することによって半導体
結晶の品質を解析するカソードルミネッセンス測定装置
に関するものである。
Detailed Description of the Invention (1) Description of the field to which the invention pertains The present invention involves irradiating a semiconductor crystal with an electron beam, measuring the spectrum and intensity of the light (luminescence) produced by the irradiation, and determining the cause of the spectrum. The present invention relates to a cathodoluminescence measuring device that analyzes the quality of semiconductor crystals by identifying certain impurities, lattice defects, and complexes thereof.

(2)従来の技術の説明 一般に、カソードルミネッセンス装置の分光系には9回
折格子を用いた波長分散型分光器と出射側スリットの直
後に配置される検出器との組み合わせが用いられている
。第4図に回折格子を用いた代表的な分光器構成を示す
。波長分散型分光回折格子を介して特定波長の光のみを
スリット内を通過させるものであり、波長は回折格子の
回転角から一義的に決定され、波長分解能はスリット幅
から決められる。このような波長分散型分光器でスペク
トルを得るには回折格子を回転させることが必要であり
、所望のスペクトルを得るために要する時間は回折格子
の回転速度に依存する。すなわち2回折格子の回転を早
くすれば、測定時間は短くなる。しかしながら2回折格
子の回転速度には機械的な限界があり、一般に、可視領
域のスペクトルの測定に数分から数十分要するものであ
る。
(2) Description of the Prior Art In general, the spectroscopic system of a cathodoluminescence device uses a combination of a wavelength dispersive spectrometer using a nine-diffraction grating and a detector placed immediately after the exit-side slit. FIG. 4 shows a typical spectrometer configuration using a diffraction grating. Only light of a specific wavelength is passed through a slit via a wavelength-dispersive spectral diffraction grating, and the wavelength is uniquely determined from the rotation angle of the diffraction grating, and the wavelength resolution is determined from the slit width. To obtain a spectrum with such a wavelength dispersive spectrometer, it is necessary to rotate the diffraction grating, and the time required to obtain the desired spectrum depends on the rotation speed of the diffraction grating. That is, if the rotation of the two diffraction gratings is made faster, the measurement time becomes shorter. However, there is a mechanical limit to the rotation speed of the two diffraction gratings, and generally it takes several minutes to several tens of minutes to measure a spectrum in the visible region.

波長分解能を上げるためにスリット幅を狭くすると、光
量の低減を補う必要が生じるために測定時間がますます
長くなるという欠点がある。このように、従来のカソー
ドルミネッセンス装置は、スペクトルを高精度に測定す
る場合に長時間かかるという欠点をもっている。
If the slit width is narrowed in order to increase the wavelength resolution, there is a drawback that the measurement time becomes longer because it becomes necessary to compensate for the reduction in the amount of light. As described above, conventional cathodoluminescence devices have the disadvantage that it takes a long time to measure spectra with high precision.

また、カソードルミネッセンス測定は、真空中で高速に
加速された電子線を試料に照射し、その照射によって生
ずる光を検出するものであり、高速に加速された電子線
が試料の結晶性などを変える可能性がある。電子線照射
によって試料が変質する場合、従来のカソードルミネッ
センス装置ではスペクトル測定に長時間を要するために
真のスペクトルを観測出来ないという欠点がある。
In addition, cathodoluminescence measurement involves irradiating a sample with a rapidly accelerated electron beam in a vacuum and detecting the light produced by the irradiation.The highly accelerated electron beam changes the crystallinity of the sample. there is a possibility. When a sample is altered by electron beam irradiation, a conventional cathodoluminescence device has the disadvantage that it takes a long time to measure the spectrum, making it impossible to observe the true spectrum.

(3)発明の目的 本発明は、従来のカソードルミネッセンス装置のかかる
問題点を解決し、ルミネッセンスの広範なスペクトル要
素を高速に測定するとともに、電子線照射によって変質
する試料のルミネッセンススペクトルの経時変化を観測
するカソードルミネッセンス測定装置を提供することを
目的とする。
(3) Purpose of the Invention The present invention solves the problems of conventional cathodoluminescence devices, enables high-speed measurement of a wide range of luminescence spectral elements, and detects changes over time in the luminescence spectrum of samples that are altered by electron beam irradiation. The purpose of the present invention is to provide a cathodoluminescence measurement device for observation.

(4)発明の構成および作用の説明 第1図は1本発明の一実施例構成図であり、1は真空容
器、2は排気系、3は電子銃、4は電子線光学系、5は
対物レンズ、6は試料、7はルミネッセンス集光系、8
は光学用窓、9は分光器。
(4) Explanation of structure and operation of the invention FIG. 1 is a block diagram of one embodiment of the present invention, in which 1 is a vacuum vessel, 2 is an exhaust system, 3 is an electron gun, 4 is an electron beam optical system, and 5 is a block diagram of an embodiment of the present invention. Objective lens, 6 is the sample, 7 is the luminescence focusing system, 8
is an optical window, and 9 is a spectrometer.

10はホトダイオードアレイ検出器、11はホトダイオ
ードアレイ検出器、12は信号処理系、13はA/D変
換器、14はコンピュータ、15はメモリ、16はプロ
ッタである。
10 is a photodiode array detector, 11 is a photodiode array detector, 12 is a signal processing system, 13 is an A/D converter, 14 is a computer, 15 is a memory, and 16 is a plotter.

これらを動作するにあたって、真空容器1内をターボポ
ンプおよびイオンポンプなどから構成される排気系2を
用いて高真空(10−’To r r〜10−9To 
r r)にする。真空容器1内をより高真空にするため
に、真空容器1および内部はベーキング可能な構造とす
る。電子銃3から発射される電子線を電子線光学系4お
よび対物レンズ5によって集束して、試料6に照射する
To operate these, the inside of the vacuum vessel 1 is heated to a high vacuum (10-'To r r~10-9To
r r). In order to create a higher vacuum inside the vacuum container 1, the vacuum container 1 and its interior are designed to allow baking. An electron beam emitted from an electron gun 3 is focused by an electron beam optical system 4 and an objective lens 5, and is irradiated onto a sample 6.

電子線が照射された試料から発生するルミネッセンスを
ルミネッセンス集光系7および光学用窓8を介して大気
中に導出する。ここで、ルミネッセンス集光系7は回転
楕円面ミラーあるいは球面ミラーと平面ミラーの組み合
わせから構成され。
Luminescence generated from the sample irradiated with the electron beam is led out into the atmosphere via the luminescence condensing system 7 and the optical window 8. Here, the luminescence focusing system 7 is composed of a spheroidal mirror or a combination of a spherical mirror and a plane mirror.

電子線が通過しうる微細な孔を有している。It has fine holes through which electron beams can pass.

ルミネッセンスを分光器9に入射し、スペクトルに分解
されたルミネッセンスをスリットを介さず、直接、ホト
ダイオードアレイ検出器10.11に入れて可視領域ル
ミネッセンスおよび近赤外領域ルミネッセンスの所望の
スペクトル要素を一括して検出する。ここで、検出器1
0と検出器11とは、いずれも分光器9の焦点位置にあ
り、独立に焦点位置上の移動が可能なものである。それ
ぞれの検出器の出力を増幅する信号処理系12およびア
ナログ信号である各スペクトル要素のルミネッセンス強
度をディジタル信号に変換するA/D変換器13を介し
てコンピュータ14でルミネッセンス信号を測定し、デ
ータの演算処理を行う。
Luminescence is incident on a spectroscope 9, and the luminescence that has been decomposed into spectra is directly input into a photodiode array detector 10.11 without going through a slit, and desired spectral elements of visible region luminescence and near-infrared region luminescence are collectively collected. Detect. Here, detector 1
0 and the detector 11 are both located at the focal position of the spectroscope 9 and can be independently moved above the focal position. The computer 14 measures the luminescence signal through a signal processing system 12 that amplifies the output of each detector and an A/D converter 13 that converts the luminescence intensity of each spectral element, which is an analog signal, into a digital signal. Performs calculation processing.

このデータをメモリ15に記憶し、プロッタ16でデー
タの出力を行う。
This data is stored in the memory 15, and the plotter 16 outputs the data.

第2図に、出射スリットを取り除いた分光器と2台のホ
トダイオードアレイ検出器とについての詳細な配置を示
す。所望のスペクトルを得るために、検出器の中心位置
を波長λ1あるいは波長λ3にあわせる。
FIG. 2 shows the detailed arrangement of the spectrometer with the exit slit removed and the two photodiode array detectors. In order to obtain a desired spectrum, the center position of the detector is adjusted to wavelength λ1 or wavelength λ3.

(5)効果の説明 一般的なホトダイオードアレイ検出器の仕様は。(5) Explanation of effects What are the specifications of a typical photodiode array detector?

例えば、検出領域が200nm〜1l100n、ホトダ
イオード素子数が1024チヤンネル、素子の大きさが
2Qmm、応答速度が数μsである。
For example, the detection area is 200 nm to 11100 nm, the number of photodiode elements is 1024 channels, the element size is 2Q mm, and the response speed is several μs.

カソードルミネッセンスの測定に際してホトダイオード
1素子に対してlnmの分解能をあたえれば、200n
m〜1l100nのルミネッセンスを一括して測定する
ことができる。また、ホトダイオード1素子に対してQ
、lnmの分解能をあたえれば、  1100n程度の
領域のルミネッセンスを短時間に測定することができる
。ホトダイオード1素子に対する分解能は2分光器の回
折格子を交換することによって容易に変更できる。具体
的には。
When measuring cathodoluminescence, if a resolution of lnm is given to one photodiode element, the resolution is 200nm.
Luminescence of m to 1l100n can be measured at once. Also, Q for one photodiode element is
, lnm resolution, it is possible to measure luminescence in a region of about 1100 nm in a short time. The resolution for one photodiode element can be easily changed by exchanging the diffraction gratings of the two spectrometers. in particular.

600本/ m mの回折格子で焦点距離が25cmの
分光器の場合、波長分散は5.5nm〜6.5nm/m
mとなり、  110nm〜130nmの領域のルミネ
ッセンスを検出できる。回折格子の溝の本数を減らせば
、より広範囲な領域のルミネッセンスを検出できる。
For a spectrometer with a focal length of 25 cm and a diffraction grating of 600 lines/mm, the wavelength dispersion is 5.5 nm to 6.5 nm/m.
m, and luminescence in the range of 110 nm to 130 nm can be detected. By reducing the number of grooves in the diffraction grating, luminescence can be detected over a wider range.

以上説明したように2本発明においては可視および近赤
外領域のカソードルミネッセンスの測定に際して、ホト
ダイオードアレイ検出器を備えた分光器を配置するもの
であるから、lnm程度の分解能の場合、カソードルミ
ネッセンスの可視および近赤外領域の全スペクトル要素
を一括して。
As explained above, in the present invention, when measuring cathodoluminescence in the visible and near-infrared regions, a spectrometer equipped with a photodiode array detector is arranged. All spectral elements in the visible and near-infrared regions at once.

かつ短時間に測定できるという利点がある。It also has the advantage of being able to be measured in a short time.

また、ホトダイオードアレイ検出器を2台配置すること
から、高分解能の状態で2種類の任意のルミネソセンス
スピークを一括して、かつ、数msのオーダで短時間に
測定することができる利点がある。
In addition, by arranging two photodiode array detectors, it has the advantage of being able to measure two arbitrary luminescence peaks at once with high resolution and in a short time on the order of several milliseconds. be.

電子線照射によって試料が変質する場合には。If the sample changes in quality due to electron beam irradiation.

本発明による装置を用いることによって初めて真のカソ
ードルミネッセンススペクトルが得られるとともに、試
料の劣化プロセスをmsオーダでリアルタイムに解析で
きる利点がある。
By using the apparatus according to the present invention, a true cathodoluminescence spectrum can be obtained for the first time, and there is an advantage that the deterioration process of a sample can be analyzed in real time on the order of milliseconds.

具体的な効果を第3図のスペクトル模式図をもちいて説
明する。第3図(a)と(b)はそれぞれ電子線照射後
の時刻T1とT2における真のカソードルミネッセンス
スペクトルである。波長A。
The specific effects will be explained using the schematic spectrum diagram shown in FIG. FIGS. 3(a) and 3(b) are true cathodoluminescence spectra at times T1 and T2 after electron beam irradiation, respectively. Wavelength A.

B、およびCにルミネッセンス強度のピークを示し、そ
れぞれのルミネッセンス強度は時間経過とともに減少あ
るいは増加するものである。第3図(C)は従来の出射
スリット付の分光器を用いて低波長から高波長に波長掃
引して上記のようなルミネッセンスを測定した場合のス
ペクトルである。
The peaks of luminescence intensity are shown in B and C, and each luminescence intensity decreases or increases over time. FIG. 3(C) is a spectrum obtained by measuring luminescence as described above by sweeping the wavelength from a low wavelength to a high wavelength using a conventional spectroscope with an exit slit.

従来の方法では、測定に数分から数10分を要するため
に、真のスペクトルを得ることが出来ない。
Conventional methods require several minutes to several tens of minutes for measurement, making it impossible to obtain a true spectrum.

第3図(d)は2本発明で2台の検出器をそれぞれ波長
Aと波長Cのルミネッセンスを検出できるように配置し
て、第3図(a)と(b)の時刻T1とT2におけるル
ミネッセンスを測定した場合のスペクトルである。ホト
ダイオードアレイ検出器を例えば2台配置する本発明に
よる装置を用いることにより、高分解能の状態で2種類
の任意のルミネソセンススビークを一括して、かつ、各
時刻における真のスペクトルを得ることが出来る。
FIG. 3(d) shows two detectors according to the present invention arranged so as to be able to detect luminescence of wavelength A and wavelength C, respectively, at times T1 and T2 in FIG. 3(a) and (b). This is a spectrum obtained when measuring luminescence. By using the apparatus according to the present invention in which two photodiode array detectors are arranged, for example, it is possible to obtain two types of arbitrary luminescence peaks at once in a high resolution state and to obtain the true spectrum at each time. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例構成、第2図は分光器とホト
ダイオードアレイ検出器との個所の要部構成、第3図は
スペクトル模式図、第4図は従来の構成を示す。 1:真空容器、2:排気系、3:電子銃、4:電子線光
学系、5:対物レンズ、6:試料、7:ルミネツセンス
集光系、8:光学用窓、9:分光器、10:ホトダイオ
ードアレイ検出器、11:ホトダイオードアレイ検出器
、12:信号処理系。 13 : A/D変換器、14:コンピュータ、15:
メモリ、16:プロノタ。
FIG. 1 shows the configuration of an embodiment of the present invention, FIG. 2 shows the configuration of essential parts of a spectrometer and a photodiode array detector, FIG. 3 shows a schematic diagram of a spectrum, and FIG. 4 shows a conventional configuration. 1: Vacuum container, 2: Exhaust system, 3: Electron gun, 4: Electron beam optical system, 5: Objective lens, 6: Sample, 7: Luminescence focusing system, 8: Optical window, 9: Spectrometer, 10 : Photodiode array detector, 11: Photodiode array detector, 12: Signal processing system. 13: A/D converter, 14: computer, 15:
Memory, 16: Pronota.

Claims (1)

【特許請求の範囲】 高真空容器内部に試料と、該試料表面に電子線を照射す
る電子銃と、該電子銃から発射された電子線を集光する
電子線光学系および対物レンズと、集光電子線が照射さ
れる所から発生するカソードルミネッセンスを集光する
ルミネッセンス集光系と、該集光ルミネッセンスを真空
容器外に導く窓と、該ルミネッセンスをスペクトルに分
解する分光器とを有するカソードルミネッセンス装置に
おいて、 該分光スペクトル強度を測定するホトダイオードアレイ
からなる複数台の設置位置の移動が可能な検出器と、ス
ペクトル強度信号を電気的に処理するアナログ信号処理
系と、該アナログ信号をデジタル信号に変換するA/D
変換器と、該デジタル信号を記憶し、処理するコンピュ
ータとで構成することを特徴とするカソードルミネッセ
ンス測定装置。
[Scope of Claims] A sample is placed inside a high vacuum container, an electron gun that irradiates the surface of the sample with an electron beam, an electron beam optical system and an objective lens that converges the electron beam emitted from the electron gun. A cathodoluminescence device having a luminescence collection system that collects cathodoluminescence generated from a location irradiated with a photoelectron beam, a window that guides the collected luminescence to the outside of the vacuum container, and a spectrometer that decomposes the luminescence into spectra. , a movable detector consisting of a plurality of photodiode arrays that measure the spectral intensity, an analog signal processing system that electrically processes the spectral intensity signal, and a converter that converts the analog signal into a digital signal. A/D
A cathodoluminescence measuring device comprising a converter and a computer that stores and processes the digital signal.
JP26795986A 1986-11-11 1986-11-11 Cathode luminescence measuring instrument Pending JPS63121732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26795986A JPS63121732A (en) 1986-11-11 1986-11-11 Cathode luminescence measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26795986A JPS63121732A (en) 1986-11-11 1986-11-11 Cathode luminescence measuring instrument

Publications (1)

Publication Number Publication Date
JPS63121732A true JPS63121732A (en) 1988-05-25

Family

ID=17451971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26795986A Pending JPS63121732A (en) 1986-11-11 1986-11-11 Cathode luminescence measuring instrument

Country Status (1)

Country Link
JP (1) JPS63121732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126054A (en) * 2004-10-29 2006-05-18 Jeol Ltd Cathode luminescence analyzing method and cathode luminescence analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880089A (en) * 1972-01-31 1973-10-26
JPS5796241A (en) * 1980-12-08 1982-06-15 Fujitsu Ltd Method and device for measuring density of impurity in semiconductor
JPS6121397A (en) * 1984-07-09 1986-01-30 株式会社タツノ・メカトロニクス Lubricating machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880089A (en) * 1972-01-31 1973-10-26
JPS5796241A (en) * 1980-12-08 1982-06-15 Fujitsu Ltd Method and device for measuring density of impurity in semiconductor
JPS6121397A (en) * 1984-07-09 1986-01-30 株式会社タツノ・メカトロニクス Lubricating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126054A (en) * 2004-10-29 2006-05-18 Jeol Ltd Cathode luminescence analyzing method and cathode luminescence analyzer

Similar Documents

Publication Publication Date Title
EP1983332B1 (en) A spectroscopic imaging method and system for exploring the surface of a sample
US5329352A (en) Spectroscopically correlated light scanning microscopy
WO1995033189A1 (en) Raman spectrometry apparatus and method
CA1229897A (en) Optics system for emission spectrometer
US2823577A (en) Multiple slit spectrograph for direct reading spectrographic analysis
JP7416900B2 (en) Apparatus and method for wavelength-resolved and angle-resolved cathodoluminescence
JPS58120154A (en) Monitoring method for distribution of plasma
US6208413B1 (en) Hadamard spectrometer
JP3511826B2 (en) X-ray fluorescence analyzer
US3936190A (en) Fluorescence spectrophotometer for absorption spectrum analysis
US3817633A (en) Spectroradiometric apparatus and method for measuring radiation
EP0296259A1 (en) Spectrometer with combined visible and ultraviolet sample illumination
US7321423B2 (en) Real-time goniospectrophotometer
CN113295655A (en) Large-dynamic-range spectral transmittance measuring device and calibration and measurement method thereof
SU953997A3 (en) Method and device for measuring concentration of contaminating gases
US3658423A (en) Echelle spectrometer
JP3316012B2 (en) Temperature measuring device using a micro-Raman spectrophotometer
US20230296434A1 (en) Optical technique for material characterization
WO1993007470A1 (en) Analyzer
US2879393A (en) Wide-range spectrophotometer
JPS63121732A (en) Cathode luminescence measuring instrument
CN113390507B (en) Spectrum information acquisition method and spectrum detection device
JPH11190695A (en) Semiconductor stress measuring raman spectrophotometer
JP2540430B2 (en) Laser beam condensing characteristics measuring device
JP2968460B2 (en) X-ray analysis method