JPS63121536A - Control method for continuously variable transmission with direct coupling mechanism - Google Patents

Control method for continuously variable transmission with direct coupling mechanism

Info

Publication number
JPS63121536A
JPS63121536A JP61266368A JP26636886A JPS63121536A JP S63121536 A JPS63121536 A JP S63121536A JP 61266368 A JP61266368 A JP 61266368A JP 26636886 A JP26636886 A JP 26636886A JP S63121536 A JPS63121536 A JP S63121536A
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
drive
direct coupling
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61266368A
Other languages
Japanese (ja)
Inventor
Mamoru Hamano
浜野 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP61266368A priority Critical patent/JPS63121536A/en
Publication of JPS63121536A publication Critical patent/JPS63121536A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing

Abstract

PURPOSE:To enable the deletion of a changeover shock by changing a continuously variable transmission to a target gear ratio only when the number of revolutions of an output shaft is over a predetermined value at the time of changeover from CVT drive to direct coupling drive. CONSTITUTION:Discrimination is made the operation or the non-operation of a direct coupling drive, depending upon whether a solenoid 48 for direct coupling control is turned ON or a solenoid 46 for start control turned OFF. When the direct coupling drive is under way, a car speed corresponding thereto is compared with a predetermined car speed V0. If V<V0, a continuously variable transmission 10 is maintained in the neighborhood of a direct coupling transmission ratio iD, and a process is returned to a start point. On the other hand, if V>=V0, the probability of changeover to a CVT drive is low and therefore said transmission 10 is changed over to an intermediate gear change ratio imid.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は直結機構付無段変速機の制御方法、特に直結駆
動中における無段変速装置の変速比制御方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for controlling a continuously variable transmission with a direct coupling mechanism, and more particularly to a method for controlling the gear ratio of a continuously variable transmission during direct coupling drive.

従来技術とその問題点 従来、■ベルト式無段変速機において、高速走行時の伝
達効率を高めるために入、出力軸間に固定伝達比を有す
る直結駆動経路と無段変速装置を有する無段変速経路と
を並列に設けたものが、例えば特公昭57−23136
号公報に記載されている。
Conventional technology and its problems Conventionally, in belt-type continuously variable transmissions, in order to improve transmission efficiency during high-speed running, a continuously variable transmission has a direct drive path with a fixed transmission ratio between the input and output shafts, and a continuously variable transmission device. For example, the one provided in parallel with the speed change path is
It is stated in the No.

ところが、上記の直結機構付無段変速機の場合には、直
結駆動中、無段変速装置を停止させているため、直結駆
動から無段変速駆動へ切り換えた時に無段変速装置が急
激に始動され、極めて大きなショックを伴うとともにベ
ルトの破損などの問題を招くおそれがある。この問題は
、直結駆動中無段変速装置と入力軸又は出力軸との間を
遮断し、無段変速装置を直結伝達比(最高速比)近傍に
保って空転させれば解決できる。つまり、無段変速装置
が直結駆動中音に空転しているので、直結駆動から無段
変速駆動へ急激に切り換えてもショックを伴わず、ベル
トが破損するおそれもない。
However, in the case of the above-mentioned continuously variable transmission with a direct coupling mechanism, the continuously variable transmission is stopped during direct coupling drive, so when switching from direct coupling drive to continuously variable transmission drive, the continuously variable transmission suddenly starts. This causes an extremely large shock and may lead to problems such as belt damage. This problem can be solved by cutting off the connection between the continuously variable transmission and the input shaft or the output shaft during direct drive, and by keeping the continuously variable transmission close to the direct drive transmission ratio (maximum speed ratio) and allowing it to idle. In other words, since the continuously variable transmission idles during direct drive, there is no shock and there is no risk of belt damage even if the drive is abruptly switched from direct drive to continuously variable drive.

しかしながら、直結駆動中、無段変速装置を最高速比近
傍で空転させると、直結駆動時間は全走行時間の大部分
を占めるため、空転時の無段変速装置の損失トルクが無
視できなくなり、燃費が悪くなる。特に、無段変速装置
は最高速比のとき損失トルクが最も大きくなる傾向があ
る。
However, if the continuously variable transmission is idle near the maximum speed ratio during direct drive, the direct drive time will occupy a large portion of the total driving time, so the torque loss of the continuously variable transmission during idle cannot be ignored, resulting in fuel efficiency. becomes worse. In particular, continuously variable transmissions tend to have the largest torque loss at the highest speed ratio.

この問題を解決するため、本出願人は、直結駆動中、無
段変速装置を直結伝達比より低速比側の目標変速比、例
えば中間変速比(変速比′、1)に制御して空転させる
ことにより、空転時の無段変速装置の損失トルクを低減
する方法を提案したく特願昭61−63801号)。と
ころが、上記の制御方法を実行すると、次のような問題
が発生するおそれがある。すなれち、市街地のように比
較的低車速ぞ走行する場合にはスロットル開度を頻繁に
変化させることが多く、そのため無段変速駆動から直結
駆動へ切り換えても、その直後に無段変速駆動へ再び切
り換える事態になることがあり、頻繁な切り換えを余儀
無くされる。特に、上記方法のように直結駆動中、無段
変速装置を中間変速比へ制御して空転させる場合には、
直結駆動から無段変速駆動への切換時に直結駆動経路と
無段変速経路との変速比が必ず相違しているので、頻繁
な直結切換の度に切換ショックを伴い、走行フィーリン
グを損うとともに、直結駆動へ切り換わる度に中間変速
比べ変速されるため、頻繁なベルト比の変化と衝撃荷重
のためにVベルトの劣化を早めるといった問題が発生す
る。
In order to solve this problem, the present applicant controlled the continuously variable transmission to a target gear ratio lower than the direct coupling transmission ratio, for example, an intermediate gear ratio (gear ratio ', 1) during direct drive, and caused it to idle. Therefore, we would like to propose a method for reducing the loss torque of a continuously variable transmission during idling (Japanese Patent Application No. 61-63801). However, when the above control method is executed, the following problems may occur. In other words, when driving at relatively low speeds such as in urban areas, the throttle opening degree often changes frequently, so even if you switch from continuously variable transmission drive to direct drive, it will immediately switch back to continuously variable transmission drive. This may lead to a situation in which the system has to switch again, forcing frequent switching. In particular, when controlling the continuously variable transmission to an intermediate gear ratio and idling during direct drive as in the above method,
When switching from direct drive to continuously variable speed drive, the gear ratios of the direct drive path and continuously variable speed path are always different, so frequent direct drive changes cause a switching shock, which impairs driving feeling. Since the speed is changed compared to the intermediate speed every time the drive is switched to direct drive, problems arise in that the V-belt deteriorates more quickly due to frequent belt ratio changes and impact loads.

発明の目的 本発明は上記問題点に鑑みてなされたもので、その目的
は、直結駆動時の損失トルクを低減するべく無段変速装
置を目標変速比へ制御して空転させるものにおいて、低
車速域における頻繁な直結切換による切換ショックを解
消し、不必要な変速制御を防止し得る直結機構付無段変
速機の制御方法を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems.The purpose of the present invention is to control a continuously variable transmission to a target gear ratio and idle it in order to reduce torque loss during direct drive. It is an object of the present invention to provide a control method for a continuously variable transmission with a direct coupling mechanism, which can eliminate switching shock caused by frequent direct coupling switching in the range and prevent unnecessary shift control.

発明の構成 上記目的を達成するために、本発凹は、入、出力軸間に
、固定伝達比を有する直結駆動経路と無段変速装置を有
する無段変速経路とを並列に設け、直結駆動中、無段変
速装置を空転させるようにした直結機構付無段変速機に
おいて、無段変速駆動から直結駆動へ切り換わった時、
出力軸回転数が設定回転数以上の場合に無段変速装置を
直結駆動への切換時における最終変速比より低速比側の
目標変速比に制御するものである。
Composition of the Invention In order to achieve the above object, the present invention provides a direct drive path having a fixed transmission ratio and a continuously variable transmission path having a continuously variable transmission device in parallel between the input and output shafts. In a continuously variable transmission with a direct coupling mechanism that allows the continuously variable transmission to idle, when switching from continuously variable transmission drive to direct coupling drive,
When the output shaft rotational speed is equal to or higher than the set rotational speed, the continuously variable transmission is controlled to a target speed ratio that is lower than the final speed ratio when switching to direct drive.

すなわち、空転中の無段変速装置を目標変速比へ制御し
て効果があるのは、直結状態が長時間維持された時であ
り、直結駆動と無段変速!M!13の切換が頻繁に行わ
れる低車速域(出力軸回転数小)においては、目標変速
比への制御は不必要であるだけでなく却って不具合を伴
う。そのため、低車速域ではたとえ直結駆動へ切り換わ
っても目標変速比への制御を行わず、頻繁な変速と切換
ショックとを防止したものである。
In other words, controlling the idling continuously variable transmission to the target gear ratio is effective only when the direct coupling state is maintained for a long time. M! In a low vehicle speed range (low output shaft rotational speed) where switching of 13 is frequently performed, control to the target gear ratio is not only unnecessary but also causes problems. Therefore, in a low vehicle speed range, even if switching to direct drive, control to the target gear ratio is not performed, thereby preventing frequent gear changes and switching shocks.

実施例の説明 第1図は本発明の一例である直結機構付Vベルト式無段
変速機を示し、エンジン1のクランク軸2はダンパ機構
3を介して入力軸4に接続されている。入力軸4上には
湿式多板クラッチからなる直結クラッチ5と、回転自在
な直結駆動ギヤ6とが設けられており、直結クラッチ5
は後述する直結制御弁47によって直結駆動時に直結駆
動ギヤ6を入力軸4に対して連結するようになっている
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows a V-belt continuously variable transmission with a direct coupling mechanism, which is an example of the present invention, in which a crankshaft 2 of an engine 1 is connected to an input shaft 4 via a damper mechanism 3. A direct coupling clutch 5 consisting of a wet multi-plate clutch and a rotatable direct coupling drive gear 6 are provided on the input shaft 4.
The direct-coupling drive gear 6 is connected to the input shaft 4 during direct-coupling drive by a direct-coupling control valve 47, which will be described later.

入力軸4の端部には外歯ギヤ7が固定されており、この
外歯ギヤ7は無段変速装置10の駆動軸11に固定され
た内歯ギヤ8と噛み合い、入力軸4の動力を減速して駆
動軸11に伝達している。
An external gear 7 is fixed to the end of the input shaft 4 , and this external gear 7 meshes with an internal gear 8 fixed to the drive shaft 11 of the continuously variable transmission 10 to transfer the power of the input shaft 4 . The speed is decelerated and transmitted to the drive shaft 11.

無段変速装置10は駆動軸11に設けた駆動側プーリ1
2と、従動軸13に設けた従動側プーリ14と、両プー
リ間に巻き掛けたVベルト15とで構成されている。駆
動側プーリ12は固定シーブ’2aと可動シーブ12b
とを有しており、可動シーブ12bの背後にはトルクカ
ム装Wt16と圧縮スプリング17とが設けられている
。上記トルクカム装置16は入力トルクに比例した推力
を発生し、圧縮スプリング17はVベルト15が弛まな
いだけの初期推力を発生し、これら推力によりVベルト
15にトルク伝達に必要なベルト張力を付与している。
The continuously variable transmission 10 includes a drive pulley 1 provided on a drive shaft 11.
2, a driven pulley 14 provided on the driven shaft 13, and a V-belt 15 wound between both pulleys. The drive pulley 12 has a fixed sheave '2a and a movable sheave 12b.
A torque cam device Wt16 and a compression spring 17 are provided behind the movable sheave 12b. The torque cam device 16 generates a thrust proportional to the input torque, and the compression spring 17 generates an initial thrust sufficient to prevent the V-belt 15 from loosening, and these thrusts provide the V-belt 15 with belt tension necessary for torque transmission. ing.

一方、従動側プーリ14も駆動側ブーIJ12と同様に
、固定シーブ14aと可動シーブ14bとを有しており
、可動シーブ14bの背後には変速比制御用の油圧室1
8が設けられている。この油圧室18への油圧は後述す
るプーリ制御弁43にて制御される。
On the other hand, the driven pulley 14 also has a fixed sheave 14a and a movable sheave 14b, similar to the drive side boolean IJ12, and behind the movable sheave 14b is a hydraulic chamber 1 for controlling the gear ratio.
8 is provided. The hydraulic pressure to this hydraulic chamber 18 is controlled by a pulley control valve 43, which will be described later.

従動軸13の外周には中空軸19が回転自在に支持され
ており、従動軸13と中空軸19とは湿式多板クラッチ
からなる発進クラッチ20によって断続される。上記発
進クラッチ20への油圧は後述する発進制御弁45によ
って制御される。中空軸19には前進用ギヤ2工と後進
用ギヤ22とが回転自在に支持されており、前後進切換
用ドッグクラッチ23によって前進用ギヤ21又は後進
用ギヤ22のいずれか一方を中空軸19と連結するよう
になっている。後進用アイドラ軸24には後進用ギヤ2
2に噛み合う後進用アイドラギヤ25と、別の後進用ア
イドラギヤ26とが固定されている。また、カウンタ軸
27には上記直結駆動ギヤ6と前進用ギヤ21と後進用
アイドラギヤ26とに同時に噛み合うカウンタギヤ28
と、終減速ギヤ29とが固定されており、終減速ギヤ2
9はディファレンシャル装置30のリングギヤ31に噛
み合い、動力を出力軸32に伝達している。
A hollow shaft 19 is rotatably supported on the outer periphery of the driven shaft 13, and the driven shaft 13 and the hollow shaft 19 are connected and connected by a starting clutch 20 consisting of a wet multi-disc clutch. The hydraulic pressure applied to the starting clutch 20 is controlled by a starting control valve 45, which will be described later. A forward gear 2 and a reverse gear 22 are rotatably supported on the hollow shaft 19, and a forward/reverse switching dog clutch 23 connects either the forward gear 21 or the reverse gear 22 to the hollow shaft 19. It is designed to be connected to The reverse gear 2 is attached to the reverse idler shaft 24.
A reverse idler gear 25 meshing with the reverse idler gear 26 and another reverse idler gear 26 are fixed. Further, the counter shaft 27 has a counter gear 28 that meshes with the direct drive gear 6, the forward gear 21, and the reverse idler gear 26 at the same time.
and the final reduction gear 29 are fixed, and the final reduction gear 2
9 meshes with the ring gear 31 of the differential device 30 and transmits power to the output shaft 32.

上記構造の無段変速機において、直結クラッチ5、直結
駆動ギヤ6、カウンタギヤ28、終減速ギヤ29、ディ
ファレンシャル装置3oは直結駆動経路を構成し、外歯
ギヤ7、内歯ギヤ8、無段変速装置10、発進クラッチ
20、前進用ギヤ21、カウンタギヤ28、終減速ギヤ
29、ディファレンシャル装置30は無段変速経路(前
進時)を構成している。そして、直結駆動経路における
入力軸4と出力軸32間の直結伝達比i。は、無段変速
経路における入力軸4と出力軸32間の最高速比1oi
nに比べてやや低速比側に設定されている。
In the continuously variable transmission having the above structure, the direct coupling clutch 5, the direct coupling drive gear 6, the counter gear 28, the final reduction gear 29, and the differential device 3o constitute a direct coupling drive path, and the external gear 7, the internal gear 8, the continuously variable transmission The transmission 10, the starting clutch 20, the forward gear 21, the counter gear 28, the final reduction gear 29, and the differential device 30 constitute a continuously variable transmission path (at the time of forward movement). And the direct coupling transmission ratio i between the input shaft 4 and the output shaft 32 in the direct coupling drive path. is the maximum speed ratio 1oi between the input shaft 4 and the output shaft 32 in the continuously variable transmission path
The speed ratio is set slightly lower than n.

調圧弁40は油溜41からオイルポンプ42によって吐
出された油圧を調圧し、ライン圧としてプーリ制御弁4
31発進制御弁45及び直結制御弁47に出力している
。プーリ制御弁432発進制御弁45及び直結制御弁4
7はそれぞれソレノイド44,46.48を有しており
、電子制御装置60から各ソレノイドに入力される制御
信号によりライン圧を制御し、それぞれ従動側プーリ1
4の油圧室1日と発進クラッチ20と直結クラッチ5と
に制御油圧を出力している。
The pressure regulating valve 40 regulates the hydraulic pressure discharged from the oil reservoir 41 by the oil pump 42, and outputs it as line pressure to the pulley control valve 4.
31 is outputted to a start control valve 45 and a direct connection control valve 47. Pulley control valve 432 Start control valve 45 and direct control valve 4
7 has solenoids 44, 46, and 48, respectively, and the line pressure is controlled by a control signal input to each solenoid from the electronic control device 60, and the driven pulley 1
Control hydraulic pressure is output to the hydraulic chamber 4, the starting clutch 20, and the direct coupling clutch 5.

上記制御弁43.45.47の具体的構造は、例えば第
2図に示すようにスプール弁49と電磁弁50とを組合
せたものでもよく、あるいは第3図に示すようにボール
状弁体51で入力ボート52とドレンボート53とを選
択的に開閉し、出力ボート54の出力油圧を制御する3
ボ一ト式電磁弁単体で構成してもよい。いずれの場合も
、制御弁43.45.47をデユーティ制御すれば、デ
ユーティ比に比例した制御油圧を出力できるので、無段
変速装置10の変速制御、発進クラッチ20の発進制御
、直結クラッチ5の直結制御を自在に行うことができる
。なお、直結クラッチ5は単なる断続制御のみであるか
ら、デユーティ制御を行う必要はなく、0N10FF制
御のみでもよい。
The specific structure of the control valves 43, 45, 47 may be, for example, a combination of a spool valve 49 and a solenoid valve 50 as shown in FIG. 2, or a ball-shaped valve body 51 as shown in FIG. 3 which selectively opens and closes the input boat 52 and the drain boat 53 and controls the output hydraulic pressure of the output boat 54.
It may be constructed with a single bolt type solenoid valve. In either case, if the control valves 43, 45, 47 are subjected to duty control, a control oil pressure proportional to the duty ratio can be output, so that the control valves 43, 45, 47 can output control oil pressure proportional to the duty ratio. Direct connection control can be performed freely. Note that since the direct coupling clutch 5 only performs on-off control, there is no need to perform duty control, and only 0N10FF control may be used.

第4図は電子制御装置60のブロック図を示し、図中、
61はエンジン回転数(入力軸4の回転数)を検出する
センサ、62は車速(出力軸32の回転数)を検出する
センサ、63は従動軸13の回転数を検出するセンサ、
64はP、R,N、D、Lの各シフト位置を検出するセ
ンサ、65はスロットル開度を検出するセンサであり、
上記エンジン回転数センサ61.車速センサ62.従動
軸回転数センサ63.シフト位置センサ64の各信号は
入力インターフェース66に入力され、スロットル開度
センサ65の信号はA/D変換器67でデジタル信号に
変換される。
FIG. 4 shows a block diagram of the electronic control device 60, and in the figure,
61 is a sensor that detects the engine rotation speed (the rotation speed of the input shaft 4), 62 is a sensor that detects the vehicle speed (the rotation speed of the output shaft 32), 63 is a sensor that detects the rotation speed of the driven shaft 13,
64 is a sensor that detects each shift position of P, R, N, D, L, 65 is a sensor that detects the throttle opening,
The engine speed sensor 61. Vehicle speed sensor 62. Driven shaft rotation speed sensor 63. Each signal from the shift position sensor 64 is input to an input interface 66, and the signal from the throttle opening sensor 65 is converted into a digital signal by an A/D converter 67.

68は中央演算処理装置(CPU)、69はプーリ制御
弁439発進制御弁45および直結制御弁47を制御す
るためのプログラムやデータが格納されたり一ドオンリ
メモリ (ROM)、70は各センサがら送られた信号
やパラメータを一時的に格納するランダムアクセスメモ
リ (RAM) 、71は出力インターフェースであり
、これらCPU68、ROM69、RAM70、出力イ
ンターフェース71、上記入力インターフェース66゛
、上記A/D変換器67はバス72によって相互に連絡
されている。出力インターフェース71の出力は出力ド
ライバフ3を介して上記プーリ制御用ソレノイド4罎2 46および直結制御用ソレノイド48にデユーティ制御
信号として出力されている。
68 is a central processing unit (CPU), 69 is a one-drive only memory (ROM) in which programs and data for controlling the pulley control valve 439, the starting control valve 45 and the direct connection control valve 47 are stored, and 70 is a memory that is sent from each sensor. Random access memory (RAM) 71 is an output interface for temporarily storing signals and parameters, and these CPU 68, ROM 69, RAM 70, output interface 71, input interface 66', and A/D converter 67 are connected to a bus. They are mutually connected by 72. The output of the output interface 71 is output as a duty control signal to the pulley control solenoid 4246 and the direct connection control solenoid 48 via the output driver buffer 3.

第5図は電子制御装置60内に設定された変速線図を示
し、図中i rsaxは最低速比、i minは最高速
比、10は直結伝達比である。ここで、発進状態から走
行状態に移行するまでの動作を第5図について説明する
。まずスロットル開度を一定として発進する場合には、
エンジン回転数が目標値(A点)に達するまでは発進ク
ラッチ20を遮断し、A点に達した後は発進クラッチ2
0をすべり制御しつつ徐々に係合させ、B点に到達する
と発進クラッチ20を完全係合させて発進制御から変速
制御へ移行する。変速制御においては、まず最低速比1
IIlaxの直線に沿って加速し、エンジン回転数がそ
の時のスロットル開度に応じた目標エンジン回転数N、
の0点に到達すると、変速領域に移行し、目標エンジン
回転数を保持しながら高速比側へ変速する。無段変速経
路の変速比が直結伝達比i。
FIG. 5 shows a transmission diagram set in the electronic control device 60, in which i rsax is the lowest speed ratio, i min is the highest speed ratio, and 10 is the direct transmission ratio. Here, the operation from the start state to the running state will be explained with reference to FIG. First, when starting with a constant throttle opening,
The starting clutch 20 is disconnected until the engine speed reaches the target value (point A), and after reaching the point A, the starting clutch 2
0 is gradually engaged while performing slip control, and when reaching point B, the starting clutch 20 is fully engaged and the starting control shifts to shift control. In speed change control, first the lowest speed ratio 1
Accelerate along the straight line IIlax, and the engine speed is the target engine speed N according to the throttle opening at that time,
When the 0 point is reached, the engine shifts to a shift region and shifts toward a high speed ratio while maintaining the target engine speed. The gear ratio of the continuously variable transmission path is the direct transmission ratio i.

(D点)の近傍範囲に入ると、発進クラッチ20を遮断
するとともに直結クラッチ5を結合して直結駆動へ切り
換え、以後直結伝達比10の直線に沿って走行する。
When the vehicle enters the vicinity of (point D), the starting clutch 20 is disconnected and the direct coupling clutch 5 is engaged to switch to direct coupling drive, and thereafter the vehicle travels along a straight line with a direct coupling transmission ratio of 10.

直結駆動中、無段変速装置10は無負荷状態で空転を続
けるが、空転時のベルト屈曲損失は最高速比及び最低速
比で大きく、かつこの屈曲損失と変速比との兼ね合いに
よって、無段変速装置10の空転時の損失トルクは第6
図のように最高速比で最も大きく、低速比側へ移行する
につれて小さくなるという特性を示す、そこで、直結駆
動中は無段変速装置10を第5図に示すように最高速比
より低速比側の目標変速比、例えば中間変速比1m1d
  (i +*id = 1.0)へ制御して空転させ
、損失トルクを低減している。なお、空転時における無
段変速装置10の変速比制御は、無段変速駆動時と同様
にブーり制御弁43をデエーテイ制御してもよいが、さ
ほど精度を必要としないので単なる0N10FF制御で
あってもよい。
During direct drive, the continuously variable transmission 10 continues idling under no load, but the belt bending loss during idling is large at the highest and lowest speed ratios, and due to the balance between this bending loss and the gear ratio, the continuously variable transmission 10 continues to idle under no load. The loss torque when the transmission 10 is idling is the sixth
As shown in FIG. side target gear ratio, for example, intermediate gear ratio 1m1d
(i + * id = 1.0) and idle rotation to reduce torque loss. Note that the gear ratio control of the continuously variable transmission 10 during idling may be carried out by variable control of the boolean control valve 43 as in the case of continuously variable transmission driving, but since great precision is not required, it may be simply 0N10FF control. It's okay.

直結駆動中にエンジン回転数がスロットル開度に応じた
目標エンジン回転数より一定値以上降下したとき、ある
いはスロットル開度と車速とによって決定される目標変
速比と直結伝達比とが一定値以上離れた時には、直結ク
ラッチ5を遮断するとともに、発進クラッチ20を結合
し、無段変速駆動へ切り換えることになる。
During direct drive, when the engine speed drops by more than a certain value than the target engine speed corresponding to the throttle opening, or when the target gear ratio determined by the throttle opening and vehicle speed deviates by more than a certain value. When this occurs, the direct coupling clutch 5 is disengaged, the starting clutch 20 is engaged, and the drive is switched to continuously variable speed drive.

上記動作において、無段変速経路の変速比が直結伝達比
ioの近傍範囲に入ると、直結駆動へ切り換えられるが
、直結駆動への切換と同時に無段変速装置10を中間変
速比i midへ変速を開始すると、次のような問題が
発生することがある。すなわち、市街地を走行中のよう
に比較的低車速で走行する場合にはスロットル開度を頻
繁に変化させることが多いので、直結駆動へ切り換わっ
ても、その直後に再び無段変速駆動へ切り換えるべき事
態となることが多い。ところが、上記のように直結駆動
への切換と同時に無段変速装置10の中間変速比i m
idへの変速を開始すると、再び無段変速駆動へ切り換
わった時に直結駆動経路と無段変速経路との変速比が相
違するため大きな切換ショックを伴うとともに、頻繁な
ベルト比の変化を余儀無くされるため、■ベルト15の
耐久性を損うことになる。
In the above operation, when the gear ratio of the continuously variable transmission path enters a range close to the direct coupling transmission ratio io, the switch is made to the direct coupling drive, but at the same time as switching to the direct coupling drive, the continuously variable transmission 10 is shifted to the intermediate gear ratio i mid. When starting, you may encounter the following problems: In other words, when driving at relatively low speeds such as when driving around town, the throttle opening degree is often changed, so even if the vehicle switches to direct drive, it will immediately switch back to continuously variable speed drive. This is often the case. However, as described above, at the same time as switching to direct drive, the intermediate gear ratio i m of the continuously variable transmission 10
When shifting to ID is started, when switching again to continuously variable transmission drive, the gear ratios between the direct drive path and the continuously variable transmission path are different, causing a large switching shock and forcing frequent changes in the belt ratio. (2) The durability of the belt 15 will be impaired.

本発明ではこのような問題を解決するために、無段変速
駆動から直結駆動へ切り換わった時、その時の車速(出
力軸回転速度)が設定車速(設定回転数)以下の低車速
域では無段変速装置10を中間変速比i midへ変速
せずに直結伝達比iD近傍に維持し、逆に車速か設定車
速以上の高車速域では無段変速装置10を即座に中間変
速比i midへ変速するようにしたものである。この
ようにすれば、低車速域において直結駆動へ切り換わっ
た直後に無段変速駆動へ切り換えるべき事態となっても
、その時は依然として無段変速装置10の変速比が直結
伝達比10の近傍に維持されているので、無段変速駆動
へ切り換わっても何ら切換ショックがなく、走行フィー
リングを損なわずに済むとともに、不必要な変速が防止
されるため、■ベルト15の耐久性を損なわない。
In the present invention, in order to solve this problem, when switching from continuously variable transmission drive to direct drive, the vehicle speed (output shaft rotation speed) at that time is disabled in the low vehicle speed range where the vehicle speed (output shaft rotation speed) is below the set vehicle speed (set rotation speed). The continuously variable transmission 10 is maintained near the direct transmission ratio iD without shifting to the intermediate gear ratio i mid, and conversely, in a high vehicle speed range above the vehicle speed setting, the continuously variable transmission 10 is immediately shifted to the intermediate gear ratio i mid. It is designed to change gears. In this way, even if a situation arises in which it is necessary to switch to continuously variable transmission drive immediately after switching to direct transmission drive in a low vehicle speed range, the gear ratio of continuously variable transmission 10 will still be in the vicinity of direct transmission ratio 10. Since the speed is maintained, there is no switching shock even when switching to continuously variable speed drive, and the running feeling is not impaired, and unnecessary speed changes are prevented, so ■ The durability of the belt 15 is not impaired. .

第7図は本発明の制御方法の具体的−例を示すフローチ
ャートであり、以下この制御方法について具体的に説明
する。
FIG. 7 is a flowchart showing a specific example of the control method of the present invention, and this control method will be specifically explained below.

まず制御がスタートすると、最初に直結駆動中であるか
否かを判別する(80)、この判別は、具体的には直結
制御用ソレノイド48がONL、ているか、あるいは発
進制御用ソレノイド46がOFFしているか等で判別で
きる。直結駆動中でなければ無段変速駆動中であること
を意味するので、そのままリターンさせる。一方、直結
駆動中であれば、次にその時の車速Vを設定車速V。(
例えば40km/h)と比較する(81)。V<Voで
あれば低車速域で走行していることを意味し、この場合
には即座に無段変速駆動へ切り換わる確率が高いので、
無段変速装置10を切換直前の変速比、即ち直結伝達比
i。の近傍に維持しく82)、リターンさせる。−方、
V≧v0であれば高車速域で走行していることを意味し
、この場合には即座に無段変速駆動へ切り換わる確率が
低いので、無段変速装置10を中間変速比in+idへ
変速する(83)。
First, when the control starts, it is first determined whether or not direct drive is in progress (80). Specifically, this determination is made whether the direct drive control solenoid 48 is ONL or the start control solenoid 46 is OFF. You can tell by whether or not you are doing so. If it is not in direct drive, it means that it is in continuously variable speed drive, so it is returned as is. On the other hand, if direct drive is in progress, then the vehicle speed V at that time is the set vehicle speed V. (
For example, 40 km/h) (81). If V<Vo, it means that the vehicle is running in a low speed range, and in this case, there is a high probability that it will immediately switch to continuously variable transmission drive.
The gear ratio immediately before switching the continuously variable transmission 10, that is, the direct transmission ratio i. 82) and return it. - way,
If V≧v0, it means that the vehicle is running in a high speed range, and in this case, the probability of immediately switching to continuously variable transmission drive is low, so the continuously variable transmission 10 is shifted to the intermediate gear ratio in+id. (83).

なお、本発明において、空転中の無段変速装置の目標変
速比としては、実施例のような中間変速比1m1d  
(isid =1)に限らず、他の一定変速比としても
よく、あるいは目標変速比を車速、スロットル開度など
の諸因子によって変化させてもよい。
In the present invention, the target gear ratio of the continuously variable transmission during idling is an intermediate gear ratio of 1 m1d as in the embodiment.
The target speed ratio is not limited to (isid = 1), but may be set to another constant speed ratio, or the target speed ratio may be changed depending on various factors such as vehicle speed and throttle opening.

また、無段変速駆動と直結駆動との切換クラッチは実施
例のような湿式クラッチに限らず、乾式クラッチ、電磁
クラッチあるいはドッグクラッチでも使用可能である。
Furthermore, the switching clutch between the continuously variable speed drive and the direct drive is not limited to the wet type clutch as in the embodiment, but may also be used as a dry type clutch, an electromagnetic clutch, or a dog clutch.

さらに、無段変速装置はVベルト式無段変速装置に限ら
ず、他の形式の無段変速装置、例えばトラクション駆動
式無段変速装置も使用できる。直結機構もギヤ機構に限
らず、チェーン機構であってもよい。
Furthermore, the continuously variable transmission is not limited to the V-belt type continuously variable transmission, and other types of continuously variable transmissions, such as traction drive type continuously variable transmissions, can also be used. The direct coupling mechanism is not limited to a gear mechanism, but may also be a chain mechanism.

発明の効果 以上の説明で明らかなように、本発明によれば無段変速
駆動から直結駆動へ切り換えた時、その時の出力軸回転
数が設定回転数以上である場合にのみ無段変速装置を目
標変速比へと変速するようにしたので、低車速域のよう
に直結駆動への切換直後に無段変速駆動へ再度切り換え
るべき事態となっても、頻繁な変速が防止され、無段変
速装置の劣化を防止できるとともに、直結駆動経路と無
段変速経路の変速比の相違にもとづく切換ショックを解
消できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, when switching from continuously variable transmission drive to direct drive, the continuously variable transmission is activated only when the output shaft rotational speed at that time is equal to or higher than the set rotational speed. Since the gear ratio is changed to the target gear ratio, even if it is necessary to switch to continuously variable transmission drive again immediately after switching to direct drive, such as in a low vehicle speed range, frequent gear changes are prevented and the continuously variable transmission It is possible to prevent deterioration of the transmission system, and also eliminate switching shock caused by the difference in gear ratio between the direct drive path and the continuously variable transmission path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が通用される直結機構付無段変速機の一
例の概略構成図、第2図、第3図は制御弁の具体的構造
図、第4図は電子制御装置のブロック図、第5図は変速
線図、第6図は無段変速装置の空転時の損失トルク特性
図、第7図は本発明の制御方法の一例のフローチャート
図である。 ■・・・エンジン、4・・・入力軸、5・・・直結クラ
ッチ、6・・・直結駆動ギヤ、10・・・無段変速装置
、18・・・油圧室、20・・・発進クラッチ、32・
・・出力軸、43・・・プーリ11i1J御弁、45・
・・発進制御弁、47・・・直結制御弁、60・・・電
子制御装置。 出 願 人  ダイハツ工業株式会社 代 理 人  弁理士 筒井 秀隆 第1図 第2図         第3図 第4図 b/          /l        Ir第
5図 第6図 麦&l:t。 第7図
Fig. 1 is a schematic configuration diagram of an example of a continuously variable transmission with a direct coupling mechanism to which the present invention is applicable, Figs. 2 and 3 are specific structural diagrams of a control valve, and Fig. 4 is a block diagram of an electronic control device. , FIG. 5 is a shift diagram, FIG. 6 is a loss torque characteristic diagram when the continuously variable transmission is idling, and FIG. 7 is a flowchart of an example of the control method of the present invention. ■... Engine, 4... Input shaft, 5... Directly coupled clutch, 6... Directly coupled drive gear, 10... Continuously variable transmission, 18... Hydraulic chamber, 20... Starting clutch , 32・
...Output shaft, 43...Pulley 11i1J control valve, 45.
...Start control valve, 47...Direct connection control valve, 60...Electronic control device. Applicant Daihatsu Motor Co., Ltd. Agent Patent Attorney Hidetaka Tsutsui Figure 1 Figure 2 Figure 3 Figure 4 b//l Ir Figure 5 Figure 6 Mugi&l:t. Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)入、出力軸間に、固定伝達比を有する直結駆動経
路と無段変速装置を有する無段変速経路とを並列に設け
、直結駆動中、無段変速装置を空転させるようにした直
結機構付無段変速機において、無段変速駆動から直結駆
動へ切り換わった時、出力軸回転数が設定回転数以上の
場合に無段変速装置を直結駆動への切換時における最終
変速比より低速比側の目標変速比に制御することを特徴
とする直結機構付無段変速機の制御方法。
(1) A direct drive path with a fixed transmission ratio and a continuously variable transmission path with a continuously variable transmission are provided in parallel between the input and output shafts, and the continuously variable transmission is idled during direct drive. In a continuously variable transmission with a mechanism, when switching from continuously variable speed drive to direct drive, if the output shaft rotation speed is higher than the set rotation speed, the continuously variable transmission will be lower than the final gear ratio at the time of switching to direct drive. A control method for a continuously variable transmission with a direct coupling mechanism, characterized by controlling to a target gear ratio on the ratio side.
JP61266368A 1986-11-08 1986-11-08 Control method for continuously variable transmission with direct coupling mechanism Pending JPS63121536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266368A JPS63121536A (en) 1986-11-08 1986-11-08 Control method for continuously variable transmission with direct coupling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266368A JPS63121536A (en) 1986-11-08 1986-11-08 Control method for continuously variable transmission with direct coupling mechanism

Publications (1)

Publication Number Publication Date
JPS63121536A true JPS63121536A (en) 1988-05-25

Family

ID=17429973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266368A Pending JPS63121536A (en) 1986-11-08 1986-11-08 Control method for continuously variable transmission with direct coupling mechanism

Country Status (1)

Country Link
JP (1) JPS63121536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361762A (en) * 1989-07-27 1991-03-18 Nissan Motor Co Ltd Control device for transmission
JP2017036783A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Control device of power transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361762A (en) * 1989-07-27 1991-03-18 Nissan Motor Co Ltd Control device for transmission
JP2017036783A (en) * 2015-08-07 2017-02-16 トヨタ自動車株式会社 Control device of power transmission device

Similar Documents

Publication Publication Date Title
US6500090B2 (en) Control apparatus for an automotive continuously variable transmission
JPH0543897B2 (en)
JP3512724B2 (en) Hydraulic control device for automatic transmission for vehicles
JPS63121536A (en) Control method for continuously variable transmission with direct coupling mechanism
JPS63121535A (en) Control method for continuously variable transmission with direct coupling mechanism
US5792019A (en) Continuously variable transmission with torque converter for a vehicle and hydraulic control system for controlling the same
JPS6338759A (en) Method of controlling continuous variable transmission provided with direct-coupling mechanism
JPH05180302A (en) Backward movement preventing device for vehicle provided with auxiliary transmission and belt type continuously variable transmission
JPS63240436A (en) Reverse movement preventing device for vehicle
JPS6364837A (en) Controlling method for continuously variable transmission
JPH0356762A (en) Continuously variable transmission
JPH01141271A (en) Switching control method for continuously variable transmission provided with direct-coupling mechanism
JPS62237166A (en) Creep force control method for continuous variable transmission
JPS63110045A (en) Switching control of continuously variable transmission equipped with direct connection mechanism
JP3505895B2 (en) Control device for continuously variable transmission
JP3226625B2 (en) Hydraulic control device for hydraulically operated transmission
JPS63121534A (en) Changeover control method for continuously variable transmission with direct coupling mechanism
JPS63297129A (en) Control for continuously variable transmission for vehicle
JP2699338B2 (en) Control method for continuously variable transmission for vehicle
JPS63154434A (en) V-belt type continuously variable transmission for vehicle
JPS6252268A (en) Shift-down control for v belt type continuously variable transmission
JPS6338043A (en) Starting clutch controlling method for automatic transmission
JP2906565B2 (en) Gear ratio control device for continuously variable transmission for vehicles
JPS62292534A (en) Controller for automatic transmission
JPS6390443A (en) Method of controlling start clutch for vehicle automatic transmission