JPS6252268A - Shift-down control for v belt type continuously variable transmission - Google Patents

Shift-down control for v belt type continuously variable transmission

Info

Publication number
JPS6252268A
JPS6252268A JP19224685A JP19224685A JPS6252268A JP S6252268 A JPS6252268 A JP S6252268A JP 19224685 A JP19224685 A JP 19224685A JP 19224685 A JP19224685 A JP 19224685A JP S6252268 A JPS6252268 A JP S6252268A
Authority
JP
Japan
Prior art keywords
pulley
belt
pulley ratio
clutch
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19224685A
Other languages
Japanese (ja)
Inventor
Takumi Honda
匠 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP19224685A priority Critical patent/JPS6252268A/en
Publication of JPS6252268A publication Critical patent/JPS6252268A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a smooth shift-down to be carried out by providing a power connect/disconnect clutch in an output shaft system, and disconnecting the clutch if the pulley ratio is on the higher side than the allowable pulley ratio when a vehicle is stopped. CONSTITUTION:Since the restarting is impossible when the pulley ratio i is smaller (on the high side) than the allowable pulley ratio i', the 2nd solenoid valve 61 is turned ON, and a clutch 16 is disconnected, while at the same time the 1st solenoid value 60 is turned ON, and the effective diameter of a driven side pulley 12 is shifted to the larger diameter side. Since the clutch 16 is disconnected at this time. The V-belt transmission 6 is caused to perform an idle running by an engine, and is shifted to a low pulley ratio. Thus, prompt shift into a lower side can be enabled without applying an excessive side pressure to the V-belt.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はVベルト式無段変速機のシフトダウン制御方法
、特に車両停止時にVベルト式無段変速機のプーリ比を
ロー側に移行させるための制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a downshift control method for a V-belt continuously variable transmission, particularly a method for shifting the pulley ratio of a V-belt continuously variable transmission to the low side when the vehicle is stopped. This relates to a control method.

従来技術とその問題点 従来、駆動側プーリと従動側プーリとにそれぞれ油圧室
を設け、一方の油圧室にはライン圧を導き、他方の油圧
室には油圧制御バルブにより制御される油圧を導くこと
により、両プーリの有効径を変化させ、プーリ比(変速
比)を無段階に変化させることができるVベルト式無段
変速機が、例えば特開昭58−42862号公報に示さ
れている。
Conventional technology and its problems Conventionally, hydraulic chambers were provided for each of the driving pulley and the driven pulley, line pressure was introduced into one hydraulic chamber, and hydraulic pressure controlled by a hydraulic control valve was introduced into the other hydraulic chamber. A V-belt type continuously variable transmission capable of steplessly changing the pulley ratio (speed ratio) by changing the effective diameter of both pulleys is disclosed, for example, in JP-A-58-42862. .

この種のVベルト式無段変速機の場合、高速走行中はプ
ーリ比がハイ状態となるように油圧制御されており、こ
の状態からゆっくりと減速を行うと、所定の入力回転数
を維持しなからハイ側からロー側へ移行し、車両が停止
した状態では再発進可能なローブ−り比に戻っている。
In the case of this type of V-belt continuously variable transmission, the pulley ratio is hydraulically controlled to be in a high state during high-speed running, and when decelerating slowly from this state, the predetermined input rotation speed is maintained. The ratio shifts from the high side to the low side, and when the vehicle is stopped, it returns to a low ratio that allows it to restart.

ところが、高速走行状態から急減速を行った場合には、
車速の低下に比べてプーリ比のロー側への戻りが遅れて
しまい、車両が停止した時にプーリ比がロープーリ比に
戻っておらず、再発進ができないという事態が生じるお
それがあった。
However, when the vehicle suddenly decelerates from high-speed driving,
The return of the pulley ratio to the low side is delayed compared to the decrease in vehicle speed, and when the vehicle comes to a stop, the pulley ratio does not return to the low pulley ratio and there is a risk that the vehicle will not be able to restart.

発明の目的 本発明はかかる従来の問題点に鑑みてなされたもので、
その目的は、停止時にプーリ比が再発進可能なロープー
リ比に戻っていない場合に、過大なプーリ推力を加えな
くても容易にロープーリ比へ移行させることができるV
ベルト式無段変速機のシフトダウン制御方法を提供する
ことにある。
Purpose of the Invention The present invention has been made in view of such conventional problems.
The purpose of this is to make it possible to easily shift to a low pulley ratio without applying excessive pulley thrust if the pulley ratio has not returned to a low pulley ratio that allows restart when stopped.
An object of the present invention is to provide a downshift control method for a belt type continuously variable transmission.

発明の構成 上記目的を達成するために、本発明は、入力軸がVベル
ト変速装置の一次軸に接続され、Vベルト変速装置の二
次軸が動力断続クラッチを介して出力軸と接続されたV
ベルト式無段変速機において、出力軸が停止状態にあっ
て、かつVベルト変速装置のプーリ比が許容プーリ比よ
りハイ側にあるとき、上記動力断続クラッチを切り、V
ベルト変速装置を空転させながらプーリ比をロー側に移
行させるものである。
Structure of the Invention In order to achieve the above object, the present invention has an input shaft connected to a primary shaft of a V-belt transmission, and a secondary shaft of the V-belt transmission connected to an output shaft via a power intermittent clutch. V
In a belt type continuously variable transmission, when the output shaft is in a stopped state and the pulley ratio of the V-belt transmission is higher than the allowable pulley ratio, the power intermittent clutch is disengaged and the V
The pulley ratio is shifted to the low side while the belt transmission is idling.

すなわち、車両停止時に再発進不能の状態にあるとき、
動力断続クラッチを切ってVベルト変速装置の出力軸系
の動力伝達を断ち、Vベルト変速装置を空転させながら
プーリ比をロー側に移行させることにより、■ベルトに
過大な推力を加えずに容易に再発進可能なロープーリ比
へ移行させることができる。
In other words, when the vehicle is stopped and unable to restart,
By disengaging the power intermittent clutch to cut off the power transmission from the output shaft system of the V-belt transmission, and shifting the pulley ratio to the low side while the V-belt transmission is idling, ■Easy transmission without applying excessive thrust to the belt. It is possible to shift to a low pulley ratio that allows restarting.

実施例の説明 第1図は本発明にがかるVベルト式無段変速機の一例を
示し、エンジン1の動力は流体継手2を介して入力軸3
に伝達されており、この入力軸3は減速ギヤ4.5を介
してVベルト変速装置6の一次軸7に接続されている。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of a V-belt type continuously variable transmission according to the present invention, in which the power of an engine 1 is transmitted to an input shaft 3 via a fluid coupling 2.
This input shaft 3 is connected to a primary shaft 7 of a V-belt transmission 6 via a reduction gear 4.5.

Vベルト変速装置6は、−次軸7に設けた駆動側プーリ
8と、二次軸11に設けた従動側プーリ12と、両プー
リ間に巻き掛けたVベルト14とを有している。駆動側
プーリ8は固定シーブ8aと可動シーブ8bとを有し、
可動シーブ8bの背後に設けた推力発生用のトルクカム
9とトーションスプリング10とによって、可動シーブ
8bに入力トルクに見合った推力を加えている。一方、
従動側プーリ12も駆動側プーリ8と同様に、固定シー
ブ12aと可動シーブ12bとを有し、可動シーブ12
bの背後には油圧によって可動シーブ12bを軸方向に
作動させる油圧室13が設けられている。この油圧室1
3への油圧は、後述する油圧制御装置によって制御され
る。
The V-belt transmission device 6 includes a drive-side pulley 8 provided on the secondary shaft 7, a driven-side pulley 12 provided on the secondary shaft 11, and a V-belt 14 wound between both pulleys. The drive pulley 8 has a fixed sheave 8a and a movable sheave 8b,
A thrust force commensurate with the input torque is applied to the movable sheave 8b by a thrust generating torque cam 9 and a torsion spring 10 provided behind the movable sheave 8b. on the other hand,
Similarly to the driving pulley 8, the driven pulley 12 also has a fixed sheave 12a and a movable sheave 12b.
A hydraulic chamber 13 that operates the movable sheave 12b in the axial direction by hydraulic pressure is provided behind the movable sheave 12b. This hydraulic chamber 1
The hydraulic pressure to the pump 3 is controlled by a hydraulic control device which will be described later.

二次軸11の外周には従動軸15が回転自在に外挿され
ており、二次軸11と従動軸15とは動力断続クラッチ
16によって断続される。このクラッチ16の断続も後
述する油圧制御装置によって制御される。従動軸15に
は前進用ギヤ17と後進用ギヤ18とが回転自在に外挿
され、前後進切換装置19によって前進用ギヤ17ある
いは後進用ギヤ18のいずれか一方を従動軸15と連結
するようになっている。
A driven shaft 15 is rotatably inserted around the outer periphery of the secondary shaft 11, and the secondary shaft 11 and the driven shaft 15 are connected to each other by a power intermittent clutch 16. The engagement and engagement of this clutch 16 is also controlled by a hydraulic control device, which will be described later. A forward gear 17 and a reverse gear 18 are rotatably fitted onto the driven shaft 15, and either the forward gear 17 or the reverse gear 18 is connected to the driven shaft 15 by a forward/reverse switching device 19. It has become.

後進用アイドル軸20は従動軸15と平行に配置されて
おり、この軸20には後進用ギヤ18に噛み合う後進用
アイドルギヤ21と、別の後進用アイドルギヤ22とが
固定されている。
The reverse idle shaft 20 is arranged parallel to the driven shaft 15, and a reverse idle gear 21 that meshes with the reverse gear 18 and another reverse idle gear 22 are fixed to this shaft 20.

カウンタ軸23も従動軸15と平行に配置されており、
このカウンタ軸23には上記前進用ギヤ17と後進用ア
イドルギヤ22とに同時に噛み合うカウンタギヤ24と
、終減速ギヤ25とが固定されており、終減速ギヤ25
はディファレンシャル装置26のリングギヤ27に噛み
合い、動力を出力軸28に伝達するようになっている。
The counter shaft 23 is also arranged parallel to the driven shaft 15,
A counter gear 24 that simultaneously meshes with the forward gear 17 and the reverse idle gear 22 and a final reduction gear 25 are fixed to the counter shaft 23.
meshes with the ring gear 27 of the differential device 26 to transmit power to the output shaft 28.

第2図はシフトダウン制御時における油圧制御装置を示
し、30はプーリ制御バルブ、40はシフトタウン制御
バルブ、50はクラッチ制御バルブ、60は第1ソレノ
イドバルブ、61は第2ソレノイドバルブ、62は油圧
源からライン圧が導かれた油路、70はマイクロコンピ
ュータなどの制御回路である。
FIG. 2 shows the hydraulic control device during downshift control, where 30 is a pulley control valve, 40 is a shift town control valve, 50 is a clutch control valve, 60 is a first solenoid valve, 61 is a second solenoid valve, and 62 is a An oil path 70 is a control circuit such as a microcomputer, and a line pressure is introduced from a hydraulic source.

プーリ制御バルブ30はスプリング31によって左方へ
付勢されたスプール32を有しており、スプリング31
を収容した右端室33には第1ソレノイドバルブ60の
ON、OFFによって制御される油圧(ソレノイド圧)
が作用している。従動側プーリ12の油圧室13と連通
したポート34の両側には、ライン圧が導かれるポート
35とドレーンポート36とが形成されている。上記油
圧室13と連通したポート34は、スプール32の内部
に形成した連通孔32aを介して左端室37に連通して
おり、これにより油圧室13の油圧は、第1ソレノイド
バルブ60がOFF (ソレノイド圧が0FF)した時
にはスプリング31のばね力と釣り合った低い油圧に制
御され、第1ソレノイドバルブ60がON(ソレノイド
圧がON)した時にはスプリング31のばね力とソレノ
イド圧との和と釣り合った高い油圧に制御される。
The pulley control valve 30 has a spool 32 biased leftward by a spring 31.
Hydraulic pressure (solenoid pressure) controlled by turning on and off the first solenoid valve 60 is in the right end chamber 33 that accommodates the
is working. A port 35 to which line pressure is introduced and a drain port 36 are formed on both sides of a port 34 communicating with the hydraulic chamber 13 of the driven pulley 12. The port 34 communicating with the hydraulic chamber 13 communicates with the left end chamber 37 via a communication hole 32a formed inside the spool 32, so that the hydraulic pressure in the hydraulic chamber 13 is controlled when the first solenoid valve 60 is turned off ( When the solenoid pressure is 0FF), the hydraulic pressure is controlled to be low enough to balance the spring force of the spring 31, and when the first solenoid valve 60 is turned ON (the solenoid pressure is ON), the hydraulic pressure is balanced with the sum of the spring force of the spring 31 and the solenoid pressure. Controlled by high oil pressure.

シフトダウン制御バルブ40はスプリング41によって
左方へ付勢されたスプール42を有しており、左端室4
3には第2ソレノイドハルプロ1のON、OFFによっ
て制御される油圧(ソレノイド圧)が導かれている。シ
フトダウン制御バルブ40には、上記プーリ制御バルブ
30のボー+−35と連通ずるボート44と、ライン圧
が導かれるボート45と、クラッチ制御バルブ50と連
通するボート46と、ドレーンボート47とを備えてお
り、第2ソレノイドハルプロ1がOFF (ソレノイド
圧が0FF)した時にはスプール42が左端位置にあり
、ボート45と46とが連通ずるとともにドレーンポー
1・47が閉じられ、ライン圧をクラッチ制御バルブ5
0に作用させる。なお、このときプーリ制御バルブ30
に通じるボート44とボート45との連通が遮断される
が、ライン圧はオリフィス48を介してプーリ制御バル
ブ30のボート35に作用しているので、油圧室13の
油圧が零になることはない。一方、第2ソレノイドハル
プロ1がON(ソレノイド圧がON)すると、スプール
42が図示するように右方へ移動し、ボート44と45
とが連通してライン圧をそのままブーり制御バルブ30
に供給し、一方ボート46はドレーンボート47と連通
し、クラッチ制御バルブ30への油圧がドレーンされる
The downshift control valve 40 has a spool 42 biased leftward by a spring 41, and the left end chamber 4
Hydraulic pressure (solenoid pressure) controlled by turning ON and OFF the second solenoid HALPRO 1 is led to 3. The downshift control valve 40 includes a boat 44 communicating with the bow +-35 of the pulley control valve 30, a boat 45 to which line pressure is introduced, a boat 46 communicating with the clutch control valve 50, and a drain boat 47. When the second solenoid HALPRO 1 is OFF (solenoid pressure is OFF), the spool 42 is at the left end position, the boats 45 and 46 are communicated, the drain ports 1 and 47 are closed, and the line pressure is controlled by the clutch. valve 5
0. In addition, at this time, the pulley control valve 30
Communication between the boats 44 and 45 leading to the pump is cut off, but the line pressure is acting on the boat 35 of the pulley control valve 30 through the orifice 48, so the oil pressure in the hydraulic chamber 13 does not become zero. . On the other hand, when the second solenoid HALPRO 1 is turned on (the solenoid pressure is turned on), the spool 42 moves to the right as shown in the figure, and the boats 44 and 45
The line pressure is communicated with the boolean control valve 30.
while the boat 46 communicates with a drain boat 47 to drain hydraulic pressure to the clutch control valve 30.

クラッチ制御バルブ50は、右端部にシフトダウン制御
バルブ40のボート46と連通するボート51を有し、
このボート51に作用する油圧によってスプール52が
スプリング53に抗して左方へ移動し、ライン圧が供給
されるボート54と、クラッチ16へ通じるボート55
と、ドレーンボート56とを選択的に切り換えるように
なっている。すなわち、右端のボート51に油圧が作用
しない時には、図示するようにスプール52は右端位置
にあり、ボート54が閉じられるとともに、ボート55
とドレーンポート56とがスプール52の連通孔52a
を介して連通し、クラッチ16の油圧がドレーンされて
クラッチ16が切れている。一方、右端のボート51に
油圧が作用すると、スプール52は左方へ移動してボー
ト54と55とが連通し、クラッチ16へ油圧が導かれ
てクラッチ16がつながる仕組みとなっている。したが
って、クラッチ16が切れるのは、第2図に示すように
第2ソレノイドバルブ61がONしたときのみに限られ
る。
The clutch control valve 50 has a boat 51 at the right end that communicates with the boat 46 of the downshift control valve 40,
The spool 52 moves to the left against the spring 53 due to the hydraulic pressure acting on the boat 51, and the boat 54 is connected to the boat 54 to which line pressure is supplied and the boat 55 is connected to the clutch 16.
and the drain boat 56 are selectively switched. That is, when hydraulic pressure is not applied to the rightmost boat 51, the spool 52 is at the rightmost position as shown in the figure, and the boat 54 is closed and the boat 55 is closed.
and the drain port 56 are connected to the communication hole 52a of the spool 52.
The hydraulic pressure of the clutch 16 is drained and the clutch 16 is disengaged. On the other hand, when hydraulic pressure is applied to the boat 51 on the right end, the spool 52 moves to the left and the boats 54 and 55 communicate with each other, and the hydraulic pressure is introduced to the clutch 16, so that the clutch 16 is connected. Therefore, the clutch 16 is disengaged only when the second solenoid valve 61 is turned on, as shown in FIG.

制御回路70には、−次軸7の入力回転数N3、二次軸
11の出力回転数N。、車速V(又は出力軸28の回転
速度)、フートブレーキのブレーキ信号などが電気信号
として入力され、走行状態に応じて第1ソレノイドバル
ブ60および第2ソレノイドバルブ61をON、OFF
させる。なお、制御回路70には、入力回転数、出力回
転数。
The control circuit 70 has an input rotation speed N3 of the negative secondary shaft 7 and an output rotation speed N of the secondary shaft 11. , vehicle speed V (or rotational speed of the output shaft 28), foot brake brake signal, etc. are input as electrical signals, and the first solenoid valve 60 and the second solenoid valve 61 are turned on and off depending on the driving condition.
let Note that the control circuit 70 has an input rotation speed and an output rotation speed.

車速信号、ブレーキ信号の他、シフトポジシジン信号や
スロットル開度信号などを入力して、走行状態を総合的
に判断するようにしてもよい。また、第1ソレノイドバ
ルブ60は単なるON、OFF制御を行う場合に限らず
、ON時間とOFF時間とを含む一定周期のパルス信号
を与え、ON時間の周期に対する比(デユーティ比)を
変化させることにより、デユーティ比に略比例したソレ
ノイド圧を発生させる所謂デユーティ制御を行ってもよ
い。
In addition to the vehicle speed signal and the brake signal, a shift position signal, a throttle opening signal, and the like may be input to comprehensively judge the driving state. In addition, the first solenoid valve 60 is not limited to simple ON/OFF control, but can also provide a pulse signal with a constant cycle including ON time and OFF time, and change the ratio of ON time to the cycle (duty ratio). Thus, so-called duty control may be performed in which solenoid pressure is generated approximately proportional to the duty ratio.

ここで、制御回路70による本発明の制御の一例を第3
図に従って説明する。
Here, an example of the control of the present invention by the control circuit 70 will be explained in the third example.
This will be explained according to the diagram.

まず動作がスタートすると、入力回転数N、の入力(8
0)、出力回転数N。の入力(81)、車速■の入力(
82)、ブレーキ信号の入力(83)を順次行う。つぎ
に、車速Vが0、すなわち車両が停止状態にあるか否か
を判別しく84)、■≠0であれば走行中であると判断
して通常の変速制御に移行させる(85)。通常の変速
制御(85)では第2ソレノイドバルブ61はOFFし
ているので、クラッチ16は結合状態を維持する。一方
、V=Oであれば車両が停止状態にあるため、このとき
ブレーキ信号がON(フートブレーキが踏まれた)か否
かを判別(86)L、ブレーキ信号がOFFの場合には
、通常の変速制御(85)へ移行させ、ブレーキ信号が
ONの場合には、実際のプーリ比iと予め制御回路70
に記憶された許容プーリ比i′とを比較する(87)。
First, when the operation starts, the input rotation speed N is input (8
0), output rotation speed N. Input (81), input vehicle speed (
82) and inputting a brake signal (83) in sequence. Next, it is determined whether the vehicle speed V is 0, that is, the vehicle is in a stopped state (84), and if ■≠0, it is determined that the vehicle is running, and normal shift control is performed (85). In normal speed change control (85), the second solenoid valve 61 is OFF, so the clutch 16 maintains the engaged state. On the other hand, if V=O, the vehicle is in a stopped state, so it is determined whether the brake signal is ON (the foot brake is stepped on) at this time (86)L, and if the brake signal is OFF, the normal When the brake signal is ON, the actual pulley ratio i and the control circuit 70
and the allowable pulley ratio i' stored in (87).

プーリ比iは上記入力された入力回転数N、と出力回転
数N。との比(i =Nt /No )で与えられ、許
容プーリ比i′は、車両が上り坂で停車したときに再発
進できる最少プーリ比(最もハイ側のプーリ比)を基準
として設定され、例えば一般の有段変速機の第2速相当
程度に設定されている。
The pulley ratio i is the input rotation speed N input above and the output rotation speed N. (i = Nt /No), and the allowable pulley ratio i' is set based on the minimum pulley ratio (the highest pulley ratio) that allows the vehicle to restart when it stops on an uphill slope, For example, the speed is set to be equivalent to the second speed of a general stepped transmission.

プーリ比iが許容プーリ比i′より大(ロー側)であれ
ば、本発明のシフトダウン制御を実行しなくても再発進
が可能であるので、通常の変速制御(85)に移行させ
、クラッチ16を切らない。
If the pulley ratio i is larger than the allowable pulley ratio i' (on the low side), it is possible to restart the vehicle without executing the downshift control of the present invention, so the normal shift control (85) is performed. Do not disengage clutch 16.

また、プーリ比iが許容プーリ比i′より小(ハイ側)
のときには再発進が不可能であるので、第2ソレノイド
バルブ61をONL (88) 、クラッチ16を切る
とともに、第1ソレノイドバルブ60をONL (89
) 、油圧室13に大きな油圧を供給して従動側プーリ
12の有効径を大径側、即ちプーリ比をロー側に強制的
に移行させる。このとき、クラッチ16が切れているの
で、Vベルト変速装置6は無負荷状態のままエンジン1
により空転せしめられ、Vベルト14に無理な側圧を加
えることなく迅速にロープーリ比に移行させることがで
きる。
Also, the pulley ratio i is smaller than the allowable pulley ratio i' (high side)
Since restarting is not possible when
), a large hydraulic pressure is supplied to the hydraulic chamber 13 to forcibly shift the effective diameter of the driven pulley 12 to the large diameter side, that is, the pulley ratio to the low side. At this time, since the clutch 16 is disengaged, the V-belt transmission 6 remains in an unloaded state and the engine 1
This allows the V-belt 14 to idle and quickly shift to a low pulley ratio without applying excessive side pressure to the V-belt 14.

上記のようにVベルト変速装置6を空転させながらロー
プーリ比に移行させる理由は次の通りである。例えばV
ベルトが金属製ベルトの場合には、プーリとベルトとの
間に油膜が介在しているために、Vベルト変速装置が停
止した状態で油圧室13に大きな油圧をかければロー側
に移行させることは可能であるが、非常に大きな油圧が
必要になるとともに、ロー側への移行が遅いという問題
がある。また、Vベルトがゴム製または樹脂製ベルトの
場合には、プーリとベルトとが摩擦接触しているために
、Vベルト変速装置が停止した状態で油圧室13に大き
な油圧をかけてもロー側へ移行させることは不可能であ
り、しかもベルトが大きな側圧を受けて寿命が損なわれ
るため重大な問題となる。本発明では、Vベルト変速装
置6を空転させながら油圧室13に油圧をかけるので、
Vベルトがプーリ面を転動しながらロー側へ移行し、油
圧室13に過大な油圧をかけなくてもロープーリ比に迅
速に移行させることができ、またVベルトに加わる側圧
を低減できるのでVベルトの寿命を向上させることがで
きる。
The reason why the V-belt transmission 6 is shifted to the low pulley ratio while idling as described above is as follows. For example, V
If the belt is a metal belt, there is an oil film between the pulley and the belt, so if a large amount of oil pressure is applied to the hydraulic chamber 13 while the V-belt transmission is stopped, it will shift to the low side. is possible, but it requires a very large amount of oil pressure and has the problem of slow transition to the low side. In addition, if the V-belt is a rubber or resin belt, the pulleys and the belt are in frictional contact, so even if a large amount of hydraulic pressure is applied to the hydraulic chamber 13 when the V-belt transmission is stopped, the low side It is impossible to make the transition to 1, and this is a serious problem because the belt is subjected to large lateral pressure, which impairs the service life of the belt. In the present invention, since hydraulic pressure is applied to the hydraulic chamber 13 while the V-belt transmission device 6 is idling,
The V-belt shifts to the low side while rolling on the pulley surface, and can quickly shift to the low-pulley ratio without applying excessive hydraulic pressure to the hydraulic chamber 13. Also, the side pressure applied to the V-belt can be reduced, so the V The life of the belt can be improved.

なお、上記実施例では、Vベルト変速装置6として駆動
側プーリ8にトルクカム9などの機械式推力付加装置を
設け、従動側プーリ12に油圧室13を設けた例を示し
たが、これと逆の構成としてもよく、あるいは従来と同
様に駆動側プーリおよび従動側プーリの双方に油圧室を
設け、一方の油圧室にはライン圧をかけ、他方の油圧室
の油圧を制御する二とにより無段変速を行うようにして
もよい。
In the above embodiment, an example was shown in which the V-belt transmission 6 was provided with a mechanical thrust adding device such as a torque cam 9 on the driving pulley 8, and a hydraulic chamber 13 was provided on the driven pulley 12. Alternatively, as in the conventional case, hydraulic chambers are provided in both the driving pulley and the driven pulley, line pressure is applied to one hydraulic chamber, and the hydraulic pressure in the other hydraulic chamber is controlled. It may be possible to perform a step change.

また、上記実施例のシフトダウン制御において、ブレー
キ信号のON、OFFを判断したのは次のような理由に
よる。すなわち、フートブレーキを踏まずに坂道で車両
が停止した場合には、クラッチ16が切れると車両が動
き出す危険性があるため、安全のために、ブレーキ信号
がONのときに限り本発明のシフトダウン制御を行うよ
うにしたものである。
Further, in the downshift control of the above embodiment, the ON/OFF determination of the brake signal was made for the following reasons. That is, if the vehicle stops on a slope without pressing the foot brake, there is a risk that the vehicle will start moving if the clutch 16 is disengaged. It is designed to perform control.

発明の効果 以上の説明で明らかなように、本発明によればVベルト
式無段変速機の出力軸系に動力断続クラッチを設け、車
両停止時にプーリ比が許容プーリ比よりハイ側にあると
き、上記クラッチを切るようにしたので、Vベルト変速
装置を空転させながらブーり比をロー側に移行させるこ
とができ、Vベルトに無理な側圧を加えずに迅速にロー
側へ移行させることができる。したがって、急減速を行
って車両が停止しても、常に再発進可能な状態に保つこ
とができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, a power intermittent clutch is provided in the output shaft system of a V-belt type continuously variable transmission, and when the pulley ratio is higher than the allowable pulley ratio when the vehicle is stopped. Since the clutch is disengaged, the boolean ratio can be shifted to the low side while the V-belt transmission is idling, and it is possible to quickly shift the boolean ratio to the low side without applying excessive side pressure to the V-belt. can. Therefore, even if the vehicle suddenly decelerates and stops, it can always be kept in a state where it can restart.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にがかる■ベルト式無段変速機の−例の
スケルトン図、第2図は油圧制御装置のシフトダウン制
御時の構成図、第3図はシフトダウン制御を示すフロー
チャート図である。 3・・・入力軸、6・・・VヘルI・変速装置、7・・
・−次軸、8・・・駆動側プーリ、11・・・二次軸、
12・・・従動側プーリ、13・・・油圧室、16・・
・動力断続クラッチ、28・・・出力軸、30・・・プ
ーリ制御バルブ、40・・・シフトダウン制御バルブ、
50・・・クラッチ制御バルブ、60.61・・・ソレ
ノイドバルブ、70・・・制御回路。 出 願 人  ダイハツ工業株式会社 代 理 人  弁理士 筒井 秀隆 第1図 J55−
Fig. 1 is a skeleton diagram of an example of a belt-type continuously variable transmission according to the present invention, Fig. 2 is a configuration diagram of the hydraulic control device during downshift control, and Fig. 3 is a flowchart showing the downshift control. be. 3...Input shaft, 6...V Hell I/Transmission device, 7...
・-Next axis, 8... Drive side pulley, 11... Secondary axis,
12... Driven pulley, 13... Hydraulic chamber, 16...
・Power intermittent clutch, 28... Output shaft, 30... Pulley control valve, 40... Shift down control valve,
50...Clutch control valve, 60.61...Solenoid valve, 70...Control circuit. Applicant Daihatsu Motor Co., Ltd. Agent Patent Attorney Hidetaka Tsutsui Figure 1 J55-

Claims (1)

【特許請求の範囲】[Claims] (1)入力軸がVベルト変速装置の一次軸に接続され、
Vベルト変速装置の二次軸が動力断続クラッチを介して
出力軸と接続されたVベルト式無段変速機において、出
力軸が停止状態にあって、かつVベルト変速装置のプー
リ比が許容プーリ比よりハイ側にあるとき、上記動力断
続クラッチを切り、Vベルト変速装置を空転させながら
プーリ比をロー側に移行させることを特徴とするVベル
ト式無段変速機のシフトダウン制御方法。
(1) The input shaft is connected to the primary shaft of the V-belt transmission,
In a V-belt continuously variable transmission in which the secondary shaft of the V-belt transmission is connected to the output shaft via a power intermittent clutch, the output shaft is in a stopped state and the pulley ratio of the V-belt transmission is within the allowable pulley ratio. A shift down control method for a V-belt type continuously variable transmission, characterized in that when the ratio is on the high side, the power intermittent clutch is disengaged and the pulley ratio is shifted to the low side while the V-belt transmission is idling.
JP19224685A 1985-08-31 1985-08-31 Shift-down control for v belt type continuously variable transmission Pending JPS6252268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19224685A JPS6252268A (en) 1985-08-31 1985-08-31 Shift-down control for v belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19224685A JPS6252268A (en) 1985-08-31 1985-08-31 Shift-down control for v belt type continuously variable transmission

Publications (1)

Publication Number Publication Date
JPS6252268A true JPS6252268A (en) 1987-03-06

Family

ID=16288094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19224685A Pending JPS6252268A (en) 1985-08-31 1985-08-31 Shift-down control for v belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS6252268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169334A (en) * 1990-11-01 1992-06-17 Toyota Motor Corp Speed change ratio control device of continuously variable transmission for vehicle
KR100361691B1 (en) * 1997-03-07 2003-03-03 기아자동차주식회사 Mathod for controlling torque converter of Continously Variable Transmission
JP2009085402A (en) * 2007-10-02 2009-04-23 Yanmar Co Ltd Transmission for working vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169334A (en) * 1990-11-01 1992-06-17 Toyota Motor Corp Speed change ratio control device of continuously variable transmission for vehicle
KR100361691B1 (en) * 1997-03-07 2003-03-03 기아자동차주식회사 Mathod for controlling torque converter of Continously Variable Transmission
JP2009085402A (en) * 2007-10-02 2009-04-23 Yanmar Co Ltd Transmission for working vehicle

Similar Documents

Publication Publication Date Title
JPS61105351A (en) Control device for stepless transmission
US5088352A (en) System for controlling hydraulic fluid pressure for V-belt type automatic transmission
JPS6182055A (en) Backup device of electronic speed change control device
JPH0543897B2 (en)
JP3116666B2 (en) Transmission control device for continuously variable transmission for vehicles
JPS6252268A (en) Shift-down control for v belt type continuously variable transmission
JPS6280132A (en) Coast-down control method for v-belt type continuously variable transmission
JPS629063A (en) Method for controlling coast-down for v-belt type stepless transmission
JPS6293561A (en) Switching control method of transmission
JPS6293562A (en) Switching control method of transmission
JPS62141353A (en) Oil pressure control device for transmission
JPS62137462A (en) Method of controlling coasting down with v-belt type continuously variable transmission
JPS61201957A (en) Control apparatus for transmission and fuel cut unit
JPS63154434A (en) V-belt type continuously variable transmission for vehicle
JPH0674845B2 (en) Hydraulic control device for V-belt type continuously variable transmission
JPS63227432A (en) Controller for continuously variable transmission with direct coupling mechanism
JPS63101561A (en) Switching control method for continuously variable transmission with direct coupling mechanism
JPS60192130A (en) Hydraulic-type automatic clutch
JPS63246555A (en) Hydraulic control device of continuously variable transmission with direct-coupling mechanism
JPS6293563A (en) Oil hydraulic pressure control device for v belt type continuously variable transmission
JPH11182667A (en) Hydraulic control device of belt type continuously variable transmission
JPH04113066A (en) Hydraulic control device of continuously variable transmission for vehicle
JPS62204061A (en) Direct coupling mechanism control method for fluid type power transmission of automatic transmission for vehicle
JPS62137465A (en) Changeover control device for transmission
JPS62220753A (en) Hydraulic control device for continuously variable transmission